Skip to main content
Top
Published in: Diabetologia 7/2010

01-07-2010 | Article

Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes

Authors: M. Igoillo-Esteve, L. Marselli, D. A. Cunha, L. Ladrière, F. Ortis, F. A. Grieco, F. Dotta, G. C. Weir, P. Marchetti, D. L. Eizirik, M. Cnop

Published in: Diabetologia | Issue 7/2010

Login to get access

Abstract

Aims/hypothesis

Beta cell failure is a crucial component in the pathogenesis of type 2 diabetes. One of the proposed mechanisms of beta cell failure is local inflammation, but the presence of pancreatic islet inflammation in type 2 diabetes and the mechanisms involved remain under debate.

Methods

Chemokine and cytokine expression was studied by microarray analysis of laser-capture microdissected islets from pancreases obtained from ten non-diabetic and ten type 2 diabetic donors, and by real-time PCR of human islets exposed to oleate or palmitate at 6 or 28 mmol/l glucose. The cellular source of the chemokines was analysed by immunofluorescence of pancreatic sections from individuals without diabetes and with type 2 diabetes.

Results

Microarray analysis of laser-capture microdissected beta cells showed increased chemokine and cytokine expression in type 2 diabetes compared with non-diabetic controls. The inflammatory response in type 2 diabetes was mimicked by exposure of non-diabetic human islets to palmitate, but not to oleate or high glucose, leading to the induction of IL-1β, TNF-α, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-C motif) ligand 2 (CCL2). Interference with IL-1β signalling abolished palmitate-induced cytokine and chemokine expression but failed to prevent lipotoxic human islet cell death. Palmitate activated nuclear factor κB (NF-κB) in human pancreatic beta and non-beta cells, and chemically induced endoplasmic reticulum stress caused cytokine expression and NF-κB activation similar to that occurring with palmitate.

Conclusions/interpretation

Saturated-fatty-acid-induced NF-κB activation and endoplasmic reticulum stress may contribute to IL-1β production and mild islet inflammation in type 2 diabetes. This inflammatory process does not contribute to lipotoxicity ex vivo, but may lead to local chemokine release.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104:787–794PubMedCrossRef Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 104:787–794PubMedCrossRef
2.
go back to reference Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef
3.
go back to reference Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 278:9796–9801PubMedCrossRef Bindokas VP, Kuznetsov A, Sreenan S, Polonsky KS, Roe MW, Philipson LH (2003) Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J Biol Chem 278:9796–9801PubMedCrossRef
4.
go back to reference Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 277:30010–30018PubMedCrossRef Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC (2002) Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 277:30010–30018PubMedCrossRef
5.
go back to reference Piro S, Anello M, Di Pietro C et al (2002) Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51:1340–1347PubMedCrossRef Piro S, Anello M, Di Pietro C et al (2002) Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51:1340–1347PubMedCrossRef
6.
go back to reference Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 278:30015–30021PubMedCrossRef Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 278:30015–30021PubMedCrossRef
7.
go back to reference Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology 145:5087–5096PubMedCrossRef Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic β-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology 145:5087–5096PubMedCrossRef
8.
go back to reference Laybutt DR, Preston AM, Akerfeldt MC et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763PubMedCrossRef Laybutt DR, Preston AM, Akerfeldt MC et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763PubMedCrossRef
9.
go back to reference Lupi R, Dotta F, Marselli L et al (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437–1442PubMedCrossRef Lupi R, Dotta F, Marselli L et al (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437–1442PubMedCrossRef
10.
go back to reference Cunha DA, Hekerman P, Ladriere L et al (2008) Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J Cell Sci 121:2308–2318PubMedCrossRef Cunha DA, Hekerman P, Ladriere L et al (2008) Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J Cell Sci 121:2308–2318PubMedCrossRef
11.
go back to reference Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced β-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia 45:85–96PubMedCrossRef Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced β-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia 45:85–96PubMedCrossRef
12.
go back to reference Huang CJ, Lin CY, Haataja L et al (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027PubMedCrossRef Huang CJ, Lin CY, Haataja L et al (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56:2016–2027PubMedCrossRef
13.
go back to reference Marchetti P, Bugliani M, Lupi R et al (2007) The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50:2486–2494PubMedCrossRef Marchetti P, Bugliani M, Lupi R et al (2007) The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50:2486–2494PubMedCrossRef
14.
go back to reference Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7PubMedCrossRef Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7PubMedCrossRef
15.
16.
go back to reference Spranger J, Kroke A, Mohlig M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817PubMedCrossRef Spranger J, Kroke A, Mohlig M et al (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817PubMedCrossRef
17.
go back to reference Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81:455–470PubMedCrossRef Donath MY, Storling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet β-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 81:455–470PubMedCrossRef
18.
go back to reference Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370PubMedCrossRef Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370PubMedCrossRef
19.
go back to reference Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688PubMedCrossRef Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688PubMedCrossRef
20.
go back to reference Boni-Schnetzler M, Thorne J, Parnaud G et al (2008) Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074PubMedCrossRef Boni-Schnetzler M, Thorne J, Parnaud G et al (2008) Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074PubMedCrossRef
21.
go back to reference Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860PubMed Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860PubMed
22.
go back to reference Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107PubMedCrossRef Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107PubMedCrossRef
23.
go back to reference Welsh N, Cnop M, Kharroubi I et al (2005) Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 54:3238–3244PubMedCrossRef Welsh N, Cnop M, Kharroubi I et al (2005) Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 54:3238–3244PubMedCrossRef
24.
go back to reference Marselli L, Sgroi DC, Bonner-Weir S, Weir GC (2009) Laser capture microdissection of human pancreatic β-cells and RNA preparation for gene expression profiling. Methods Mol Biol 560:87–98PubMedCrossRef Marselli L, Sgroi DC, Bonner-Weir S, Weir GC (2009) Laser capture microdissection of human pancreatic β-cells and RNA preparation for gene expression profiling. Methods Mol Biol 560:87–98PubMedCrossRef
25.
go back to reference Marselli L, Thorne J, Ahn YB et al (2008) Gene expression of purified β-cell tissue obtained from human pancreas with laser capture microdissection. J Clin Endocrinol Metab 93:1046–1053PubMedCrossRef Marselli L, Thorne J, Ahn YB et al (2008) Gene expression of purified β-cell tissue obtained from human pancreas with laser capture microdissection. J Clin Endocrinol Metab 93:1046–1053PubMedCrossRef
26.
go back to reference Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG (2001) Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50:1771–1777PubMedCrossRef Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG (2001) Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50:1771–1777PubMedCrossRef
27.
go back to reference Eizirik DL, Tracey DE, Bendtzen K, Sandler S (1991) An interleukin-1 receptor antagonist protein protects insulin-producing β cells against suppressive effects of interleukin-1β. Diabetologia 34:445–448PubMedCrossRef Eizirik DL, Tracey DE, Bendtzen K, Sandler S (1991) An interleukin-1 receptor antagonist protein protects insulin-producing β cells against suppressive effects of interleukin-1β. Diabetologia 34:445–448PubMedCrossRef
28.
go back to reference Ladriere L, Igoillo-Esteve M, Cunha DA, et al. (2010) Enhanced signaling downstream of PERK potentiates lipotoxic endoplasmic reticulum stress in human islets. J Clin Endocrinol Metab 95:1442–1449PubMedCrossRef Ladriere L, Igoillo-Esteve M, Cunha DA, et al. (2010) Enhanced signaling downstream of PERK potentiates lipotoxic endoplasmic reticulum stress in human islets. J Clin Endocrinol Metab 95:1442–1449PubMedCrossRef
29.
go back to reference Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 442:444–452PubMed Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 442:444–452PubMed
30.
go back to reference Cnop M, Ladriere L, Hekerman P et al (2007) Selective inhibition of eukaryotic translation initiation factor 2α dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis. J Biol Chem 282:3989–3997PubMedCrossRef Cnop M, Ladriere L, Hekerman P et al (2007) Selective inhibition of eukaryotic translation initiation factor 2α dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis. J Biol Chem 282:3989–3997PubMedCrossRef
31.
go back to reference Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61PubMedCrossRef Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61PubMedCrossRef
32.
go back to reference Simeoni E, Hoffmann MM, Winkelmann BR et al (2004) Association between the A-2518G polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and type 2 diabetes mellitus. Diabetologia 47:1574–1580PubMedCrossRef Simeoni E, Hoffmann MM, Winkelmann BR et al (2004) Association between the A-2518G polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and type 2 diabetes mellitus. Diabetologia 47:1574–1580PubMedCrossRef
33.
go back to reference Rafiq S, Melzer D, Weedon MN et al (2008) Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes. Diabetologia 51:2205–2213PubMedCrossRef Rafiq S, Melzer D, Weedon MN et al (2008) Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes. Diabetologia 51:2205–2213PubMedCrossRef
34.
go back to reference Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32:1663–1668PubMedCrossRef Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32:1663–1668PubMedCrossRef
35.
go back to reference Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526PubMedCrossRef Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526PubMedCrossRef
36.
go back to reference Weksler-Zangen S, Raz I, Lenzen S et al (2008) Impaired glucose-stimulated insulin secretion is coupled with exocrine pancreatic lesions in the Cohen diabetic rat. Diabetes 57:279–287PubMedCrossRef Weksler-Zangen S, Raz I, Lenzen S et al (2008) Impaired glucose-stimulated insulin secretion is coupled with exocrine pancreatic lesions in the Cohen diabetic rat. Diabetes 57:279–287PubMedCrossRef
37.
go back to reference Ehses JA, Lacraz G, Giroix MH et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 106:13998–14003PubMedCrossRef Ehses JA, Lacraz G, Giroix MH et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci USA 106:13998–14003PubMedCrossRef
38.
go back to reference Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633PubMedCrossRef Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633PubMedCrossRef
39.
go back to reference Tessem JS, Jensen JN, Pelli H et al (2008) Critical roles for macrophages in islet angiogenesis and maintenance during pancreatic degeneration. Diabetes 57:1605–1617PubMedCrossRef Tessem JS, Jensen JN, Pelli H et al (2008) Critical roles for macrophages in islet angiogenesis and maintenance during pancreatic degeneration. Diabetes 57:1605–1617PubMedCrossRef
40.
go back to reference Frigerio F, Brun T, Bartley C et al (2010) Peroxisome proliferator-activated receptor α (PPARα) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism. Diabetologia 53:331–340PubMedCrossRef Frigerio F, Brun T, Bartley C et al (2010) Peroxisome proliferator-activated receptor α (PPARα) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism. Diabetologia 53:331–340PubMedCrossRef
41.
go back to reference Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY (2001) Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes 50:69–76PubMedCrossRef Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY (2001) Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes 50:69–76PubMedCrossRef
42.
go back to reference Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic β-cell line INS-1. Diabetes 48:2007–2014PubMedCrossRef Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic β-cell line INS-1. Diabetes 48:2007–2014PubMedCrossRef
43.
go back to reference Ajuwon KM, Spurlock ME (2005) Palmitate activates the NF-κB transcription factor and induces IL-6 and TNFα expression in 3T3-L1 adipocytes. J Nutr 135:1841–1846PubMed Ajuwon KM, Spurlock ME (2005) Palmitate activates the NF-κB transcription factor and induces IL-6 and TNFα expression in 3T3-L1 adipocytes. J Nutr 135:1841–1846PubMed
44.
go back to reference Staiger H, Staiger K, Stefan N et al (2004) Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes 53:3209–3216PubMedCrossRef Staiger H, Staiger K, Stefan N et al (2004) Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes 53:3209–3216PubMedCrossRef
45.
go back to reference Kaneko M, Niinuma Y, Nomura Y (2003) Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26:931–935PubMedCrossRef Kaneko M, Niinuma Y, Nomura Y (2003) Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26:931–935PubMedCrossRef
46.
go back to reference Pahl HL, Baeuerle PA (1996) Activation of NF-κB by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 392:129–136PubMedCrossRef Pahl HL, Baeuerle PA (1996) Activation of NF-κB by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett 392:129–136PubMedCrossRef
47.
go back to reference Tonnesen MF, Grunnet LG, Friberg J et al (2009) Inhibition of nuclear factor-κB or Bax prevents endoplasmic reticulum stress- but not nitric oxide-mediated apoptosis in INS-1E cells. Endocrinology 150:4094–4103PubMedCrossRef Tonnesen MF, Grunnet LG, Friberg J et al (2009) Inhibition of nuclear factor-κB or Bax prevents endoplasmic reticulum stress- but not nitric oxide-mediated apoptosis in INS-1E cells. Endocrinology 150:4094–4103PubMedCrossRef
48.
go back to reference Glazner GW, Camandola S, Geiger JD, Mattson MP (2001) Endoplasmic reticulum d-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-κB binding activity in a calcium-independent manner. J Biol Chem 276:22461–22467PubMedCrossRef Glazner GW, Camandola S, Geiger JD, Mattson MP (2001) Endoplasmic reticulum d-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-κB binding activity in a calcium-independent manner. J Biol Chem 276:22461–22467PubMedCrossRef
49.
go back to reference Jiang HY, Wek RC (2005) GCN2 phosphorylation of eIF2α activates NF-κB in response to UV irradiation. Biochem J 385:371–380PubMedCrossRef Jiang HY, Wek RC (2005) GCN2 phosphorylation of eIF2α activates NF-κB in response to UV irradiation. Biochem J 385:371–380PubMedCrossRef
50.
go back to reference Pahl HL, Sester M, Burgert HG, Baeuerle PA (1996) Activation of transcription factor NF-κB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 132:511–522PubMedCrossRef Pahl HL, Sester M, Burgert HG, Baeuerle PA (1996) Activation of transcription factor NF-κB by the adenovirus E3/19K protein requires its ER retention. J Cell Biol 132:511–522PubMedCrossRef
51.
go back to reference Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276:16683–16689PubMedCrossRef Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276:16683–16689PubMedCrossRef
52.
go back to reference Boni-Schnetzler M, Boller S, Debray S et al (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150:5218–5229PubMedCrossRef Boni-Schnetzler M, Boller S, Debray S et al (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150:5218–5229PubMedCrossRef
53.
go back to reference Eizirik DL, Welsh N, Hellerstrom C (1993) Predominance of stimulatory effects of interleukin-1β on isolated human pancreatic islets. J Clin Endocrinol Metab 76:399–403PubMedCrossRef Eizirik DL, Welsh N, Hellerstrom C (1993) Predominance of stimulatory effects of interleukin-1β on isolated human pancreatic islets. J Clin Endocrinol Metab 76:399–403PubMedCrossRef
54.
go back to reference Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K (2008) The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 149:2208–2218PubMedCrossRef Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K (2008) The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 149:2208–2218PubMedCrossRef
55.
go back to reference Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29:351–366PubMedCrossRef Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29:351–366PubMedCrossRef
Metadata
Title
Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes
Authors
M. Igoillo-Esteve
L. Marselli
D. A. Cunha
L. Ladrière
F. Ortis
F. A. Grieco
F. Dotta
G. C. Weir
P. Marchetti
D. L. Eizirik
M. Cnop
Publication date
01-07-2010
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 7/2010
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1707-y

Other articles of this Issue 7/2010

Diabetologia 7/2010 Go to the issue