Skip to main content
Top
Published in: Diabetologia 4/2016

01-04-2016 | Review

Inter-organ communication and regulation of beta cell function

Authors: Mehboob A. Hussain, Elina Akalestou, Woo-jin Song

Published in: Diabetologia | Issue 4/2016

Login to get access

Abstract

The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. While circulating glucose levels and beta cell glucose metabolism regulate the amount of released insulin, additional signals emanating from other tissues and from neighbouring islet endocrine cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin release. This review discusses recent advances in our understanding of inter-organ communications that regulate beta cell insulin release in response to elevated glucose levels.
Literature
1.
go back to reference Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84:3434–3438CrossRefPubMedPubMedCentral Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84:3434–3438CrossRefPubMedPubMedCentral
2.
go back to reference Gefel D, Hendrick GK, Mojsov S, Habener J, Weir GC (1990) Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology 126:2164–2168CrossRefPubMed Gefel D, Hendrick GK, Mojsov S, Habener J, Weir GC (1990) Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology 126:2164–2168CrossRefPubMed
4.
go back to reference Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619CrossRefPubMedPubMedCentral Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619CrossRefPubMedPubMedCentral
5.
go back to reference Brown JC (1974) Candidate hormones of the gut. 3. Gastric inhibitory polypeptide (GIP). Gastroenterology 67:733–734PubMed Brown JC (1974) Candidate hormones of the gut. 3. Gastric inhibitory polypeptide (GIP). Gastroenterology 67:733–734PubMed
6.
go back to reference Brown JC, Cleator IG, Dryburgh JR, Pederson RA, Schubert H (1974) The physiology and pathophysiology of gastric inhibitory polypeptide (GIP) and motilin. Verh Dtsch Ges Inn Med 80:377–380PubMed Brown JC, Cleator IG, Dryburgh JR, Pederson RA, Schubert H (1974) The physiology and pathophysiology of gastric inhibitory polypeptide (GIP) and motilin. Verh Dtsch Ges Inn Med 80:377–380PubMed
7.
go back to reference Cataland S, Crockett SE, Brown JC, Mazzaferri EL (1974) Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man. J Clin Endocrinol Metab 39:223–228CrossRefPubMed Cataland S, Crockett SE, Brown JC, Mazzaferri EL (1974) Gastric inhibitory polypeptide (GIP) stimulation by oral glucose in man. J Clin Endocrinol Metab 39:223–228CrossRefPubMed
8.
go back to reference Turner DS, Etheridge L, Jones J et al (1974) The effect of the intestinal polypeptides, IRP and GIP, on insulin release and glucose tolerance in the baboon. Clin Endocrinol (Oxf) 3:489–493CrossRef Turner DS, Etheridge L, Jones J et al (1974) The effect of the intestinal polypeptides, IRP and GIP, on insulin release and glucose tolerance in the baboon. Clin Endocrinol (Oxf) 3:489–493CrossRef
9.
go back to reference Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMed Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705CrossRefPubMed
10.
11.
go back to reference Smith EP, An Z, Wagner C et al (2014) The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab 19:1050–1057CrossRefPubMedPubMedCentral Smith EP, An Z, Wagner C et al (2014) The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab 19:1050–1057CrossRefPubMedPubMedCentral
12.
go back to reference Svendsen B, Pedersen J, Albrechtsen NJ et al (2015) An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 156:847–857CrossRefPubMed Svendsen B, Pedersen J, Albrechtsen NJ et al (2015) An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 156:847–857CrossRefPubMed
13.
go back to reference Wice BM, Wang S, Crimmins DL et al (2010) Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem 285:19842–19853CrossRefPubMedPubMedCentral Wice BM, Wang S, Crimmins DL et al (2010) Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism. J Biol Chem 285:19842–19853CrossRefPubMedPubMedCentral
14.
go back to reference Zhang S, Hyrc K, Wang S, Wice BM (2012) Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 303:G1347–G1355CrossRefPubMedPubMedCentral Zhang S, Hyrc K, Wang S, Wice BM (2012) Xenin-25 increases cytosolic free calcium levels and acetylcholine release from a subset of myenteric neurons. Am J Physiol Gastrointest Liver Physiol 303:G1347–G1355CrossRefPubMedPubMedCentral
15.
go back to reference Chowdhury S, Reeds DN, Crimmins DL et al (2014) Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 306:G301–G309CrossRefPubMedPubMedCentral Chowdhury S, Reeds DN, Crimmins DL et al (2014) Xenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes. Am J Physiol Gastrointest Liver Physiol 306:G301–G309CrossRefPubMedPubMedCentral
16.
go back to reference Nasteska D, Harada N, Suzuki K et al (2014) Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes 63:2332–2343CrossRefPubMed Nasteska D, Harada N, Suzuki K et al (2014) Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes 63:2332–2343CrossRefPubMed
17.
go back to reference Campbell JE, Ussher JR, Mulvihill EE et al (2016) TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90CrossRefPubMed Campbell JE, Ussher JR, Mulvihill EE et al (2016) TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90CrossRefPubMed
18.
go back to reference Lilavivathana U, Campbell RG, Brodows RG (1978) Control of insulin secretion during fasting in man. Metabolism 27:815–821CrossRefPubMed Lilavivathana U, Campbell RG, Brodows RG (1978) Control of insulin secretion during fasting in man. Metabolism 27:815–821CrossRefPubMed
20.
go back to reference Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L (2004) Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101:2924–2929CrossRefPubMedPubMedCentral Prado CL, Pugh-Bernard AE, Elghazi L, Sosa-Pineda B, Sussel L (2004) Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A 101:2924–2929CrossRefPubMedPubMedCentral
21.
go back to reference Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69CrossRefPubMed Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107:63–69CrossRefPubMed
22.
go back to reference Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F (2004) Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem 52(3):301–310CrossRefPubMed Wierup N, Yang S, McEvilly RJ, Mulder H, Sundler F (2004) Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells. J Histochem Cytochem 52(3):301–310CrossRefPubMed
24.
go back to reference Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ (2012) Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem 287:17942–17950CrossRefPubMedPubMedCentral Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ (2012) Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem 287:17942–17950CrossRefPubMedPubMedCentral
25.
go back to reference McFarlane MR, Brown MS, Goldstein JL, Zhao TJ (2014) Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab 20:54–60CrossRefPubMedPubMedCentral McFarlane MR, Brown MS, Goldstein JL, Zhao TJ (2014) Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab 20:54–60CrossRefPubMedPubMedCentral
26.
go back to reference Barnett BP, Hwang Y, Taylor MS et al (2010) Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330:1689–1692CrossRefPubMedPubMedCentral Barnett BP, Hwang Y, Taylor MS et al (2010) Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330:1689–1692CrossRefPubMedPubMedCentral
27.
go back to reference Tang G, Wang Y, Park S et al (2012) Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic beta cells. Proc Natl Acad Sci U S A 109:2636–2641CrossRefPubMedPubMedCentral Tang G, Wang Y, Park S et al (2012) Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic beta cells. Proc Natl Acad Sci U S A 109:2636–2641CrossRefPubMedPubMedCentral
28.
go back to reference Wang Y, Park S, Bajpayee NS, Nagaoka Y, Boulay G, Birnbaumer L, Jiang M (2011) Augmented glucose-induced insulin release in mice lacking G(o2), but not Go1 or Gi proteins. Proc Natl Acad Sci U S A 108:1693–1698CrossRefPubMedPubMedCentral Wang Y, Park S, Bajpayee NS, Nagaoka Y, Boulay G, Birnbaumer L, Jiang M (2011) Augmented glucose-induced insulin release in mice lacking G(o2), but not Go1 or Gi proteins. Proc Natl Acad Sci U S A 108:1693–1698CrossRefPubMedPubMedCentral
29.
go back to reference Hussain MA, Song WJ, Wolfe A (2015) There is Kisspeptin—and there is Kisspeptin. Trends Endocrinol Metab 26:564–572CrossRefPubMed Hussain MA, Song WJ, Wolfe A (2015) There is Kisspeptin—and there is Kisspeptin. Trends Endocrinol Metab 26:564–572CrossRefPubMed
31.
go back to reference Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278:E1–E14PubMed Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278:E1–E14PubMed
32.
go back to reference Kieffer TJ, Heller RS, Habener JF (1996) Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun 224:522–527CrossRefPubMed Kieffer TJ, Heller RS, Habener JF (1996) Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun 224:522–527CrossRefPubMed
33.
go back to reference Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF (1997) Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 46:1087–1093CrossRefPubMedPubMedCentral Kieffer TJ, Heller RS, Leech CA, Holz GG, Habener JF (1997) Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 46:1087–1093CrossRefPubMedPubMedCentral
34.
go back to reference Morioka T, Asilmaz E, Hu J et al (2007) Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest 117:2860–2868CrossRefPubMedPubMedCentral Morioka T, Asilmaz E, Hu J et al (2007) Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest 117:2860–2868CrossRefPubMedPubMedCentral
35.
go back to reference Seufert J, Kieffer TJ, Habener JF (1999) Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci U S A 96:674–679CrossRefPubMedPubMedCentral Seufert J, Kieffer TJ, Habener JF (1999) Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc Natl Acad Sci U S A 96:674–679CrossRefPubMedPubMedCentral
36.
go back to reference Seufert J, Kieffer TJ, Leech CA et al (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84:670–676PubMedPubMedCentral Seufert J, Kieffer TJ, Leech CA et al (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84:670–676PubMedPubMedCentral
37.
go back to reference Soedling H, Hodson DJ, Andrianssens AE et al (2015) Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Mol Metab 4:619–630CrossRefPubMedPubMedCentral Soedling H, Hodson DJ, Andrianssens AE et al (2015) Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells. Mol Metab 4:619–630CrossRefPubMedPubMedCentral
38.
go back to reference Ye R, Holland WL, Gordillo R et al (2014) Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration. Elife 3:e03851PubMedCentral Ye R, Holland WL, Gordillo R et al (2014) Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration. Elife 3:e03851PubMedCentral
39.
go back to reference Ye R, Wang M, Wang QA, Scherer PE (2015) Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology 156:2019–2028CrossRefPubMed Ye R, Wang M, Wang QA, Scherer PE (2015) Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology 156:2019–2028CrossRefPubMed
40.
go back to reference Cantley J (2014) The control of insulin secretion by adipokines: current evidence for adipocyte–beta cell endocrine signalling in metabolic homeostasis. Mamm Genome 25:442–454CrossRefPubMed Cantley J (2014) The control of insulin secretion by adipokines: current evidence for adipocyte–beta cell endocrine signalling in metabolic homeostasis. Mamm Genome 25:442–454CrossRefPubMed
41.
go back to reference Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98CrossRefPubMed Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98CrossRefPubMed
42.
go back to reference Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis. J Clin Invest 123:2421–2433CrossRefPubMedPubMedCentral Oury F, Ferron M, Huizhen W et al (2013) Osteocalcin regulates murine and human fertility through a pancreas–bone–testis axis. J Clin Invest 123:2421–2433CrossRefPubMedPubMedCentral
44.
go back to reference Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680CrossRefPubMed Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 26:677–680CrossRefPubMed
45.
47.
go back to reference Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031CrossRefPubMedPubMedCentral Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031CrossRefPubMedPubMedCentral
48.
go back to reference Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319CrossRefPubMedPubMedCentral Fulzele K, Riddle RC, DiGirolamo DJ et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319CrossRefPubMedPubMedCentral
49.
go back to reference Wei J, Ferron M, Clarke CJ et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13CrossRefPubMed Wei J, Ferron M, Clarke CJ et al (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13CrossRefPubMed
50.
go back to reference Abdallah BM, Ditzel N, Laborda J, Karsenty G, Kassem M (2015) DLK1 regulates whole-body glucose metabolism: a negative feedback regulation of the osteocalcin–insulin loop. Diabetes 64:3069–3080CrossRefPubMed Abdallah BM, Ditzel N, Laborda J, Karsenty G, Kassem M (2015) DLK1 regulates whole-body glucose metabolism: a negative feedback regulation of the osteocalcin–insulin loop. Diabetes 64:3069–3080CrossRefPubMed
51.
go back to reference Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207CrossRefPubMed Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207CrossRefPubMed
52.
go back to reference Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317CrossRefPubMed Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317CrossRefPubMed
53.
go back to reference Bartell SM, Rayalam S, Ambati S et al (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720CrossRefPubMed Bartell SM, Rayalam S, Ambati S et al (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720CrossRefPubMed
54.
go back to reference Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915CrossRefPubMedPubMedCentral Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915CrossRefPubMedPubMedCentral
55.
go back to reference Kondegowda NG, Fenutria R, Pollack IR et al (2015) Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of nf-kappab ligand pathway. Cell Metab 22:77–85CrossRefPubMed Kondegowda NG, Fenutria R, Pollack IR et al (2015) Osteoprotegerin and denosumab stimulate human beta cell proliferation through inhibition of the receptor activator of nf-kappab ligand pathway. Cell Metab 22:77–85CrossRefPubMed
56.
go back to reference Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral
57.
go back to reference Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121CrossRefPubMedPubMedCentral Bouzakri K, Plomgaard P, Berney T, Donath MY, Pedersen BK, Halban PA (2011) Bimodal effect on pancreatic beta-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60:1111–1121CrossRefPubMedPubMedCentral
58.
go back to reference Hanchang W, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwut S (2013) Testosterone protects against glucotoxicity-induced apoptosis of pancreatic beta-cells (INS-1) and male mouse pancreatic islets. Endocrinology 154:4058–4067CrossRefPubMed Hanchang W, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwut S (2013) Testosterone protects against glucotoxicity-induced apoptosis of pancreatic beta-cells (INS-1) and male mouse pancreatic islets. Endocrinology 154:4058–4067CrossRefPubMed
59.
go back to reference Kooptiwut S, Hanchang W, Semprasert N, Junking M, Limjindaporn T, Yenchitsomanus PT (2015) Testosterone reduces AGTR1 expression to prevent beta-cell and islet apoptosis from glucotoxicity. J Endocrinol 224:215–224CrossRefPubMed Kooptiwut S, Hanchang W, Semprasert N, Junking M, Limjindaporn T, Yenchitsomanus PT (2015) Testosterone reduces AGTR1 expression to prevent beta-cell and islet apoptosis from glucotoxicity. J Endocrinol 224:215–224CrossRefPubMed
60.
go back to reference Le May C, Chu K, Hu M et al (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103:9232–9237CrossRefPubMedPubMedCentral Le May C, Chu K, Hu M et al (2006) Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 103:9232–9237CrossRefPubMedPubMedCentral
61.
62.
go back to reference Kilic G, Alvarez-Mercado AI, Zarrouki B et al (2014) The islet estrogen receptor-alpha is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes. PLoS One 9:e87941CrossRefPubMedPubMedCentral Kilic G, Alvarez-Mercado AI, Zarrouki B et al (2014) The islet estrogen receptor-alpha is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes. PLoS One 9:e87941CrossRefPubMedPubMedCentral
63.
go back to reference Liu S, Le May C, Wong WP et al (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–2302CrossRefPubMedPubMedCentral Liu S, Le May C, Wong WP et al (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–2302CrossRefPubMedPubMedCentral
65.
go back to reference Tiano JP, Delghingaro-Augusto V, Le May C et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342CrossRefPubMedPubMedCentral Tiano JP, Delghingaro-Augusto V, Le May C et al (2011) Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 121:3331–3342CrossRefPubMedPubMedCentral
66.
go back to reference Wong WP, Tiano JP, Liu S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107:13057–13062CrossRefPubMedPubMedCentral Wong WP, Tiano JP, Liu S et al (2010) Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci U S A 107:13057–13062CrossRefPubMedPubMedCentral
67.
go back to reference Navarro G, Allard C, Xu W, Mauvais-Jarvis F (2015) The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring) 23:713–719CrossRef Navarro G, Allard C, Xu W, Mauvais-Jarvis F (2015) The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring) 23:713–719CrossRef
69.
go back to reference Kim K, Oh CM, Ohara-Imaizumi M et al (2015) Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 156:444–452CrossRefPubMedPubMedCentral Kim K, Oh CM, Ohara-Imaizumi M et al (2015) Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 156:444–452CrossRefPubMedPubMedCentral
70.
go back to reference Logie JJ, Denison FC, Riley SC et al (2012) Evaluation of kisspeptin levels in obese pregnancy as a biomarker for pre-eclampsia. Clin Endocrinol (Oxf) 76:887–893CrossRef Logie JJ, Denison FC, Riley SC et al (2012) Evaluation of kisspeptin levels in obese pregnancy as a biomarker for pre-eclampsia. Clin Endocrinol (Oxf) 76:887–893CrossRef
71.
go back to reference Ahren B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410CrossRefPubMed Ahren B (2000) Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:393–410CrossRefPubMed
72.
go back to reference Edvell A, Lindstrom P (1998) Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 274:E1034–E1039PubMed Edvell A, Lindstrom P (1998) Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 274:E1034–E1039PubMed
73.
74.
go back to reference Kiba T (2004) Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 29:e51–e58CrossRefPubMed Kiba T (2004) Relationships between the autonomic nervous system and the pancreas including regulation of regeneration and apoptosis: recent developments. Pancreas 29:e51–e58CrossRefPubMed
75.
go back to reference Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S (1996) Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 110:885–893CrossRefPubMed Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S (1996) Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 110:885–893CrossRefPubMed
76.
77.
go back to reference Rodriguez-Diaz R, Dando R, Jacques-Silva MC et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17:888–892CrossRefPubMedPubMedCentral Rodriguez-Diaz R, Dando R, Jacques-Silva MC et al (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17:888–892CrossRefPubMedPubMedCentral
78.
go back to reference Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604PubMed Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 22:565–604PubMed
79.
go back to reference Satin LS, Kinard TA (1998) Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine 8:213–223CrossRefPubMed Satin LS, Kinard TA (1998) Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine 8:213–223CrossRefPubMed
80.
go back to reference Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53:1714–1720CrossRefPubMed Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53:1714–1720CrossRefPubMed
81.
go back to reference Gautam D, Han SJ, Hamdan FF et al (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461CrossRefPubMed Gautam D, Han SJ, Hamdan FF et al (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461CrossRefPubMed
82.
go back to reference Guettier JM, Gautam D, Scarselli M et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202CrossRefPubMedPubMedCentral Guettier JM, Gautam D, Scarselli M et al (2009) A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202CrossRefPubMedPubMedCentral
83.
go back to reference Shi X, Zhou F, Li X et al (2013) Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab 18:86–98CrossRefPubMedPubMedCentral Shi X, Zhou F, Li X et al (2013) Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab 18:86–98CrossRefPubMedPubMedCentral
84.
go back to reference Liu C, Lee S, Elmquist JK (2014) Circuits controlling energy balance and mood: inherently intertwined or just complicated intersections? Cell Metab 19:902–909CrossRefPubMedPubMedCentral Liu C, Lee S, Elmquist JK (2014) Circuits controlling energy balance and mood: inherently intertwined or just complicated intersections? Cell Metab 19:902–909CrossRefPubMedPubMedCentral
85.
go back to reference Ahren B, Ericson LE, Lundquist I, Loren I, Sundler F (1981) Adrenergic innervation of pancreatic islets and modulation of insulin secretion by the sympatho-adrenal system. Cell Tissue Res 216:15–30CrossRefPubMed Ahren B, Ericson LE, Lundquist I, Loren I, Sundler F (1981) Adrenergic innervation of pancreatic islets and modulation of insulin secretion by the sympatho-adrenal system. Cell Tissue Res 216:15–30CrossRefPubMed
86.
go back to reference Borden P, Houtz J, Leach SD, Kuruvilla R (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301CrossRefPubMedPubMedCentral Borden P, Houtz J, Leach SD, Kuruvilla R (2013) Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation. Cell Rep 4:287–301CrossRefPubMedPubMedCentral
87.
go back to reference Tan Z, Fogel R, Jiang C, Zhang X (2004) Galanin inhibits gut-related vagal neurons in rats. J Neurophysiol 91:2330–2343CrossRefPubMed Tan Z, Fogel R, Jiang C, Zhang X (2004) Galanin inhibits gut-related vagal neurons in rats. J Neurophysiol 91:2330–2343CrossRefPubMed
Metadata
Title
Inter-organ communication and regulation of beta cell function
Authors
Mehboob A. Hussain
Elina Akalestou
Woo-jin Song
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 4/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3862-7

Other articles of this Issue 4/2016

Diabetologia 4/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine