Skip to main content
Top
Published in: Seminars in Immunopathology 5/2013

Open Access 01-09-2013 | Review

Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration

Authors: V. Hugh Perry, Jessica Teeling

Published in: Seminars in Immunopathology | Issue 5/2013

Login to get access

Abstract

Microglia, the resident immune cells of the central nervous system (CNS), play an important role in CNS homeostasis during development, adulthood and ageing. Their phenotype and function have been widely studied, but most studies have focused on their local interactions in the CNS. Microglia are derived from a particular developmental niche, are long-lived, locally replaced and form a significant part of the communication route between the peripheral immune system and the CNS; all these components of microglia biology contribute to maintaining homeostasis. Microglia function is tightly regulated by the CNS microenvironment, and increasing evidence suggests that disturbances, such as neurodegeneration and ageing, can have profound consequences for microglial phenotype and function. We describe the possible biological mechanisms underlying the altered threshold for microglial activation, also known as ‘microglial priming’, seen in CNS disease and ageing and consider how priming may contribute to turning immune-to-brain communication from a homeostatic pathway into a maladaptive response that contributes to symptoms and progression of diseases of the CNS.
Literature
1.
2.
3.
go back to reference Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415PubMedCrossRef Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415PubMedCrossRef
4.
go back to reference Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845PubMedCrossRef Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845PubMedCrossRef
5.
go back to reference Hume DA, Perry VH, Gordon S (1983) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97(1):253–257PubMedCrossRef Hume DA, Perry VH, Gordon S (1983) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97(1):253–257PubMedCrossRef
6.
go back to reference Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15(2):313–326PubMedCrossRef Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15(2):313–326PubMedCrossRef
7.
go back to reference Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N et al (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547PubMedCrossRef Marín-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N et al (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547PubMedCrossRef
8.
go back to reference Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178PubMedCrossRef Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178PubMedCrossRef
9.
go back to reference Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705PubMedCrossRef Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705PubMedCrossRef
10.
go back to reference Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2(5):e00047PubMed Perry VH, O’Connor V (2010) The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2(5):e00047PubMed
11.
go back to reference Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458PubMedCrossRef Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458PubMedCrossRef
12.
go back to reference Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T et al (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117(3):531–539PubMedCrossRef Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T et al (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117(3):531–539PubMedCrossRef
13.
go back to reference Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553PubMedCrossRef Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553PubMedCrossRef
14.
15.
go back to reference Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543PubMedCrossRef Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543PubMedCrossRef
16.
go back to reference Mildner A, Schlevogt B, Kierdorf K, Böttcher C, Erny D et al (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31(31):11159–11171PubMedCrossRef Mildner A, Schlevogt B, Kierdorf K, Böttcher C, Erny D et al (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31(31):11159–11171PubMedCrossRef
17.
go back to reference Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163PubMedCrossRef Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163PubMedCrossRef
18.
go back to reference Gómez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493PubMedCrossRef Gómez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493PubMedCrossRef
19.
go back to reference Lawson LJ, Perry VH, Gordon S (1993) Microglial responses to physiological change: osmotic stress elevates DNA synthesis of neurohypophyseal microglia. Neuroscience 56(4):929–938PubMedCrossRef Lawson LJ, Perry VH, Gordon S (1993) Microglial responses to physiological change: osmotic stress elevates DNA synthesis of neurohypophyseal microglia. Neuroscience 56(4):929–938PubMedCrossRef
20.
go back to reference Shankaran M, Marino ME, Busch R, Keim C, King C et al (2007) Measurement of brain microglial proliferation rates in vivo in response to neuroinflammatory stimuli: application to drug discovery. J Neurosci Res 85(11):2374–2384PubMedCrossRef Shankaran M, Marino ME, Busch R, Keim C, King C et al (2007) Measurement of brain microglial proliferation rates in vivo in response to neuroinflammatory stimuli: application to drug discovery. J Neurosci Res 85(11):2374–2384PubMedCrossRef
21.
go back to reference Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149PubMedCrossRef Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149PubMedCrossRef
22.
go back to reference Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A et al (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109:18150–18155PubMedCrossRef Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A et al (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 109:18150–18155PubMedCrossRef
23.
go back to reference Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M et al (2011) Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 70(6):481–494PubMedCrossRef Lambertsen KL, Deierborg T, Gregersen R, Clausen BH, Wirenfeldt M et al (2011) Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 70(6):481–494PubMedCrossRef
24.
go back to reference Soulas C, Donahue RE, Dunbar CE, Persons DA, Alvarez X et al (2009) Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol 174(5):1808–1817PubMedCrossRef Soulas C, Donahue RE, Dunbar CE, Persons DA, Alvarez X et al (2009) Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am J Pathol 174(5):1808–1817PubMedCrossRef
25.
go back to reference Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR et al (1993) Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol 52(5):460–470PubMedCrossRef Unger ER, Sung JH, Manivel JC, Chenggis ML, Blazar BR et al (1993) Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J Neuropathol Exp Neurol 52(5):460–470PubMedCrossRef
26.
go back to reference Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427PubMedCrossRef Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427PubMedCrossRef
27.
go back to reference Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14PubMedCrossRef Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14PubMedCrossRef
28.
go back to reference Matyszak MK, Perry VH (1998) Bacillus Calmette-Guérin sequestered in the brain parenchyma escapes immune recognition. J Neuroimmunol 82(1):73–80PubMedCrossRef Matyszak MK, Perry VH (1998) Bacillus Calmette-Guérin sequestered in the brain parenchyma escapes immune recognition. J Neuroimmunol 82(1):73–80PubMedCrossRef
29.
go back to reference Matyszak MK, Perry VH (1996) A comparison of leucocyte responses to heat-killed bacillus Calmette-Guérin in different CNS compartments. Neuropathol Appl Neurobiol 22(1):44–53PubMedCrossRef Matyszak MK, Perry VH (1996) A comparison of leucocyte responses to heat-killed bacillus Calmette-Guérin in different CNS compartments. Neuropathol Appl Neurobiol 22(1):44–53PubMedCrossRef
30.
go back to reference Schnell L, Fearn S, Schwab ME, Perry VH, Anthony DC (1999) Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol 58(3):245–254PubMedCrossRef Schnell L, Fearn S, Schwab ME, Perry VH, Anthony DC (1999) Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol 58(3):245–254PubMedCrossRef
31.
go back to reference Gautier EL, Shay T, Miller J, Greter M, Jakubzick C et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128PubMedCrossRef Gautier EL, Shay T, Miller J, Greter M, Jakubzick C et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13(11):1118–1128PubMedCrossRef
32.
go back to reference Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci U S A 95(10):5779–5784PubMedCrossRef Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor. Proc Natl Acad Sci U S A 95(10):5779–5784PubMedCrossRef
33.
go back to reference Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95(1–2):8–18PubMedCrossRef Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95(1–2):8–18PubMedCrossRef
34.
go back to reference Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535PubMedCrossRef Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30(10):527–535PubMedCrossRef
35.
go back to reference Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59:152–165PubMedCrossRef Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59:152–165PubMedCrossRef
36.
go back to reference Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771PubMedCrossRef Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R et al (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771PubMedCrossRef
37.
go back to reference Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924PubMedCrossRef Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924PubMedCrossRef
38.
go back to reference Billadeau DD, Leibson PJ (2002) ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 109:161–168PubMed Billadeau DD, Leibson PJ (2002) ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 109:161–168PubMed
40.
go back to reference Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR et al (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277(27):24466–24474PubMedCrossRef Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR et al (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277(27):24466–24474PubMedCrossRef
41.
go back to reference Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657PubMedCrossRef Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657PubMedCrossRef
42.
go back to reference Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ et al (2011) CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflammation 6(8):154CrossRef Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ et al (2011) CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflammation 6(8):154CrossRef
43.
go back to reference Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM et al (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 6(68(1)):19–31CrossRef Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM et al (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 6(68(1)):19–31CrossRef
44.
go back to reference Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127PubMedCrossRef Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127PubMedCrossRef
45.
go back to reference Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116PubMedCrossRef Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116PubMedCrossRef
46.
go back to reference Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C et al (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 7(11):e50976PubMedCrossRef Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C et al (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 7(11):e50976PubMedCrossRef
47.
go back to reference Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170PubMedCrossRef Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170PubMedCrossRef
48.
go back to reference Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMedCrossRef Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMedCrossRef
49.
go back to reference de Haas AH, Boddeke HW, Biber K (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56(8):888–894PubMedCrossRef de Haas AH, Boddeke HW, Biber K (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56(8):888–894PubMedCrossRef
50.
go back to reference Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S et al (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60(12):1930–1943PubMedCrossRef Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S et al (2012) Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia 60(12):1930–1943PubMedCrossRef
51.
go back to reference Ravasi T, Wells C, Forest A, Underhill DM, Wainwright BJ et al (2002) Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immunol 168(1):44–50PubMed Ravasi T, Wells C, Forest A, Underhill DM, Wainwright BJ et al (2002) Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immunol 168(1):44–50PubMed
52.
go back to reference Dantzer R, Bluthe RM, Laye S, Bret-Dibat JL, Parnet P et al (1998) Cytokines and sickness behavior. Ann N Y Acad Sci 840:586–590PubMedCrossRef Dantzer R, Bluthe RM, Laye S, Bret-Dibat JL, Parnet P et al (1998) Cytokines and sickness behavior. Ann N Y Acad Sci 840:586–590PubMedCrossRef
53.
go back to reference Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388PubMedCrossRef Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388PubMedCrossRef
54.
go back to reference Lacroix S, Feinstein D, Rivest S (1998) The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 8:625–640PubMedCrossRef Lacroix S, Feinstein D, Rivest S (1998) The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 8:625–640PubMedCrossRef
55.
go back to reference Teeling JL, Cunningham C, Newman TA, Perry VH (2010) The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: implications for a role of COX-1. Brain Behav Immun 24:409–419PubMedCrossRef Teeling JL, Cunningham C, Newman TA, Perry VH (2010) The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: implications for a role of COX-1. Brain Behav Immun 24:409–419PubMedCrossRef
56.
go back to reference Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930PubMed Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930PubMed
57.
go back to reference Konsman JP, Tridon V, Dantzer R (2000) Diffusion and action of intracerebroventricularly injected interleukin-1 in the CNS. Neuroscience 101:957–967PubMedCrossRef Konsman JP, Tridon V, Dantzer R (2000) Diffusion and action of intracerebroventricularly injected interleukin-1 in the CNS. Neuroscience 101:957–967PubMedCrossRef
58.
go back to reference Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK et al (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19:453–460PubMedCrossRef Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK et al (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19:453–460PubMedCrossRef
60.
go back to reference Luyt CE, Combes A, Becquemin MH, Beigelman-Aubry C, Hatem S et al (2012) Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest 142:583–592PubMedCrossRef Luyt CE, Combes A, Becquemin MH, Beigelman-Aubry C, Hatem S et al (2012) Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest 142:583–592PubMedCrossRef
61.
go back to reference Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56:819–824PubMedCrossRef Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56:819–824PubMedCrossRef
62.
go back to reference Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L et al (2005) Alzheimer’s Disease International. Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117PubMedCrossRef Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L et al (2005) Alzheimer’s Disease International. Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117PubMedCrossRef
63.
go back to reference Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169PubMedCrossRef Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169PubMedCrossRef
64.
go back to reference Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90PubMedCrossRef Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61(1):71–90PubMedCrossRef
65.
go back to reference Perry VH (2010) Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 120(3):277–286PubMedCrossRef Perry VH (2010) Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 120(3):277–286PubMedCrossRef
66.
go back to reference Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969PubMedCrossRef Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969PubMedCrossRef
67.
go back to reference Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15(3):349–354PubMedCrossRef Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15(3):349–354PubMedCrossRef
68.
go back to reference Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2):161–167PubMedCrossRef Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2):161–167PubMedCrossRef
69.
go back to reference Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C (2010) Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 58(16):2017–2030PubMedCrossRef Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C (2010) Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 58(16):2017–2030PubMedCrossRef
70.
go back to reference Sisková Z, Page A, O’Connor V, Perry VH (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 175(4):1610–1621PubMedCrossRef Sisková Z, Page A, O’Connor V, Perry VH (2009) Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 175(4):1610–1621PubMedCrossRef
71.
go back to reference Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ et al (2011) Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol 186:7215–7224PubMedCrossRef Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ et al (2011) Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol 186:7215–7224PubMedCrossRef
72.
go back to reference Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27PubMedCrossRef Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27PubMedCrossRef
73.
go back to reference Combrinck MI, Perry VH, Cunningham C (2002) Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112(1):7–11PubMedCrossRef Combrinck MI, Perry VH, Cunningham C (2002) Peripheral infection evokes exaggerated sickness behaviour in pre-clinical murine prion disease. Neuroscience 112(1):7–11PubMedCrossRef
74.
go back to reference Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284PubMedCrossRef Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25(40):9275–9284PubMedCrossRef
75.
go back to reference Field R, Campion S, Warren C, Murray C, Cunningham C (2010) Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun 24(6):996–1007PubMedCrossRef Field R, Campion S, Warren C, Murray C, Cunningham C (2010) Systemic challenge with the TLR3 agonist poly I:C induces amplified IFNalpha/beta and IL-1beta responses in the diseased brain and exacerbates chronic neurodegeneration. Brain Behav Immun 24(6):996–1007PubMedCrossRef
76.
go back to reference Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF et al (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65(4):304–312PubMedCrossRef Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF et al (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65(4):304–312PubMedCrossRef
77.
go back to reference Schroder K, Sweet MJ, Hume DA (2006) Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology 211(6–8):511–524PubMedCrossRef Schroder K, Sweet MJ, Hume DA (2006) Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology 211(6–8):511–524PubMedCrossRef
78.
go back to reference Betmouni S, Perry VH, Gordon JL (1996) Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 74(1):1–5PubMedCrossRef Betmouni S, Perry VH, Gordon JL (1996) Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 74(1):1–5PubMedCrossRef
79.
go back to reference Maitra U, Deng H, Glaros T, Baker B, Capelluto DG et al (2012) Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J Immunol 189:1014–1023PubMedCrossRef Maitra U, Deng H, Glaros T, Baker B, Capelluto DG et al (2012) Molecular mechanisms responsible for the selective and low-grade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J Immunol 189:1014–1023PubMedCrossRef
80.
go back to reference Deng H, Maitra U, Morris M, Li L (2013) Molecular mechanism responsible for the priming of macrophage activation. J Biol Chem 288(6):3897–3906PubMedCrossRef Deng H, Maitra U, Morris M, Li L (2013) Molecular mechanism responsible for the priming of macrophage activation. J Biol Chem 288(6):3897–3906PubMedCrossRef
81.
go back to reference Chapoval AI, Kamdar SJ, Kremlev SG, Evans R (1998) CSF-1 (M-CSF) differentially sensitizes mononuclear phagocyte subpopulations to endotoxin in vivo: a potential pathway that regulates the severity of gram-negative infections. J Leukoc Biol 63(2):245–252PubMed Chapoval AI, Kamdar SJ, Kremlev SG, Evans R (1998) CSF-1 (M-CSF) differentially sensitizes mononuclear phagocyte subpopulations to endotoxin in vivo: a potential pathway that regulates the severity of gram-negative infections. J Leukoc Biol 63(2):245–252PubMed
82.
go back to reference Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD et al (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56(6):581–588PubMedCrossRef Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD et al (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56(6):581–588PubMedCrossRef
83.
go back to reference Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894CrossRef Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894CrossRef
84.
go back to reference Buljevac D, Flach HZ, Hop WC et al (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125:952–960PubMedCrossRef Buljevac D, Flach HZ, Hop WC et al (2002) Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain 125:952–960PubMedCrossRef
85.
go back to reference Schiffenbauer J, Johnson H, Butfiloski E, Wegrzyn L, Soos J (1993) Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 90:8543–8546PubMedCrossRef Schiffenbauer J, Johnson H, Butfiloski E, Wegrzyn L, Soos J (1993) Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 90:8543–8546PubMedCrossRef
86.
go back to reference Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P et al (2011) Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70(6):932–942PubMedCrossRef Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P et al (2011) Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70(6):932–942PubMedCrossRef
87.
go back to reference Cevenini E, Monti D, Franceschi C (2013) Inflamm-ageing. Curr Opin Clin Nutr Metab Care 16(1):14–20PubMedCrossRef Cevenini E, Monti D, Franceschi C (2013) Inflamm-ageing. Curr Opin Clin Nutr Metab Care 16(1):14–20PubMedCrossRef
88.
go back to reference Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26:754–765PubMedCrossRef Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26:754–765PubMedCrossRef
89.
go back to reference Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23:309–317PubMedCrossRef Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23:309–317PubMedCrossRef
90.
go back to reference Wynne AM, Henry CJ, Godbout JP (2009) Immune and behavioral consequences of microglial reactivity in the aged brain. Integr Comp Biol 49:254–266PubMedCrossRef Wynne AM, Henry CJ, Godbout JP (2009) Immune and behavioral consequences of microglial reactivity in the aged brain. Integr Comp Biol 49:254–266PubMedCrossRef
91.
go back to reference Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2):103–112PubMedCrossRef Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4(2):103–112PubMedCrossRef
92.
go back to reference Cunningham C, Maclullich AM (2013) At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behavior response. Brain Behav Immun 28:1–13PubMedCrossRef Cunningham C, Maclullich AM (2013) At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behavior response. Brain Behav Immun 28:1–13PubMedCrossRef
93.
go back to reference Holmes C, Cunningham C, Zotova E, Woolford J, Dean C et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10):768–774PubMedCrossRef Holmes C, Cunningham C, Zotova E, Woolford J, Dean C et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73(10):768–774PubMedCrossRef
94.
go back to reference Ohmoto Y, Wood MJ, Charlton HM, Kajiwara K, Perry VH et al (1999) Variation in the immune response to adenoviral vectors in the brain: influence of mouse strain, environmental conditions and priming. Gene Ther 6(4):471–481PubMedCrossRef Ohmoto Y, Wood MJ, Charlton HM, Kajiwara K, Perry VH et al (1999) Variation in the immune response to adenoviral vectors in the brain: influence of mouse strain, environmental conditions and priming. Gene Ther 6(4):471–481PubMedCrossRef
95.
go back to reference Püntener U, Booth SG, Perry VH, Teeling JL (2012) Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation 9:146PubMedCrossRef Püntener U, Booth SG, Perry VH, Teeling JL (2012) Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia. J Neuroinflammation 9:146PubMedCrossRef
Metadata
Title
Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration
Authors
V. Hugh Perry
Jessica Teeling
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 5/2013
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-013-0382-8

Other articles of this Issue 5/2013

Seminars in Immunopathology 5/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.