Skip to main content
Top
Published in: Journal of Diabetes & Metabolic Disorders 2/2020

01-12-2020 | Metformin | Research article

Intervention of Ayurvedic drug Tinospora cordifolia attenuates the metabolic alterations in hypertriglyceridemia: a pilot clinical trial

Authors: Amey Shirolkar, Aarti Yadav, T. K. Mandal, Rajesh Dabur

Published in: Journal of Diabetes & Metabolic Disorders | Issue 2/2020

Login to get access

Abstract

Purpose

Hypertriglyceridemia (HG) is an independent risk factor with more prevalence than hypercholesterolemia and its attributes to cardiovascular disease (CVD) and pancreatitis. Hence, it becomes imperative to search for new triglyceride (TG) lowering agents. Tinospora cordifolia (TC) is a well-known Ayurvedic drug and a rich source of protoberberine alkaloids hence can contribute to TG lowering without side effects. Hence, to explore the therapeutic efficacy of T. cordifolia and its effects on biochemistry and metabolome in the patients of hyper-triglyceridemia, clinical trials were conducted.

Methods

Patients (n = 24) with hypertriglyceridemia were randomized into two groups to receive T. cordifolia extract (TCE) (3.0 g/per day) and metformin (850 mg/day) for 14 days having >300 mg/dl triglyceride level and cholesterol in the range of 130–230 mg/dl. Lipid profiles of blood samples were analyzed. Urine samples were subjected to HPLC-QTOF-MS to quantify oxidative damage and abnormal metabolic regulation.

Results

Intervention with TCE reduced the triglyceride, LDL, and VLDL levels to 380.45 ± 17.44, 133.25 ± 3.18, and 31.85 ± 5.88 mg/dL and increased the HDL to 47.50 ± 9.05 mg/dL significantly (p < 0.05) in the HG patients after 14 days treatment. TCE dosage potently suppressed the inflammatory and oxidative stress marker’s i.e. levels of isoprostanes significantly (p < 0.01). Qualitative metabolomics approach i.e. PCA and PLS-DA showed significant alterations (p < 0.05) in the levels of 40 metabolites in the urine samples from different groups.

Conclusion

TCE administration depleted the levels of markers of HG i.e. VLDL, TG, and LDL significantly. Metabolomics studies established that the anti-HG activity of TCE was due to its antioxidative potential and modulation of the biopterin, butanoate, amino acid, and vitamin metabolism.

Clinical trials registry

India (CTRI) registration no. CTRI- 2016-08-007187.
Appendix
Available only for authorised users
Literature
1.
go back to reference Upadhyay A, Kumar K, Kumar A, Mishra H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) -validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010:112. Upadhyay A, Kumar K, Kumar A, Mishra H. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi) -validation of the Ayurvedic pharmacology through experimental and clinical studies. Int J Ayurveda Res. 2010:112.
2.
go back to reference Pathak P, Vyas M, Vyas H, Naria M. Rasayana effect of Guduchi Churna on the life span of Drosophila melanogaster. AYU (An Int Q J Res Ayurveda). 2016;37:67.CrossRef Pathak P, Vyas M, Vyas H, Naria M. Rasayana effect of Guduchi Churna on the life span of Drosophila melanogaster. AYU (An Int Q J Res Ayurveda). 2016;37:67.CrossRef
3.
go back to reference Haque MA, Jantan I, Abbas Bukhari SN. Tinospora species: an overview of their modulating effects on the immune system. J Ethnopharmacol. 2017:67–85. Haque MA, Jantan I, Abbas Bukhari SN. Tinospora species: an overview of their modulating effects on the immune system. J Ethnopharmacol. 2017:67–85.
4.
go back to reference Sannegowda KM, Venkatesha SH, Moudgil KD. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage. Int J Immunopathol Pharmacol. 2015;28(4):521–31.CrossRef Sannegowda KM, Venkatesha SH, Moudgil KD. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage. Int J Immunopathol Pharmacol. 2015;28(4):521–31.CrossRef
5.
go back to reference Sharma B, Dabur R. Protective effects of Tinospora cordifolia on hepatic and gastrointestinal toxicity induced by chronic and moderate alcoholism. Alcohol Alcohol. 2015;51:1–10.CrossRef Sharma B, Dabur R. Protective effects of Tinospora cordifolia on hepatic and gastrointestinal toxicity induced by chronic and moderate alcoholism. Alcohol Alcohol. 2015;51:1–10.CrossRef
6.
go back to reference Parveen A, Wang YH, Fantoukh O, Alhusban M, Raman V, Ali Z, et al. Development of a chemical fingerprint as a tool to distinguish closely related Tinospora species and quantitation of marker compounds. J Pharm Biomed Anal. 2020;178:112894.CrossRef Parveen A, Wang YH, Fantoukh O, Alhusban M, Raman V, Ali Z, et al. Development of a chemical fingerprint as a tool to distinguish closely related Tinospora species and quantitation of marker compounds. J Pharm Biomed Anal. 2020;178:112894.CrossRef
7.
go back to reference Bajpai V, Kumar S, Singh A, Bano N, Pathak M, Kumar N, et al. Metabolic fingerprinting of dioecious Tinospora cordifolia (Thunb) Miers stem using DART TOF MS and differential pharmacological efficacy of its male and female plants. Ind Crop Prod. 2017;101:46–53.CrossRef Bajpai V, Kumar S, Singh A, Bano N, Pathak M, Kumar N, et al. Metabolic fingerprinting of dioecious Tinospora cordifolia (Thunb) Miers stem using DART TOF MS and differential pharmacological efficacy of its male and female plants. Ind Crop Prod. 2017;101:46–53.CrossRef
8.
go back to reference Bhalerao BM, Vishwakarma KS, Maheshwari VL. Tinospora cordifolia (Willd.) Miers ex Hook.f. & Thoms.-plant tissue culture and comparative chemo-profiling study as a function of different supporting trees. Indian J Nat Prod Resour. 2013;4:380–6. Bhalerao BM, Vishwakarma KS, Maheshwari VL. Tinospora cordifolia (Willd.) Miers ex Hook.f. & Thoms.-plant tissue culture and comparative chemo-profiling study as a function of different supporting trees. Indian J Nat Prod Resour. 2013;4:380–6.
9.
go back to reference Tiwari M, Dwivedi UN, Kakkar P. Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J Ethnopharmacol. 2014;153(2):326–37.CrossRef Tiwari M, Dwivedi UN, Kakkar P. Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J Ethnopharmacol. 2014;153(2):326–37.CrossRef
10.
go back to reference Reddy SS, Ramatholisamma P, Karuna R, Saralakumari D. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem Toxicol. 2009;47(9):2224–9.CrossRef Reddy SS, Ramatholisamma P, Karuna R, Saralakumari D. Preventive effect of Tinospora cordifolia against high-fructose diet-induced insulin resistance and oxidative stress in male Wistar rats. Food Chem Toxicol. 2009;47(9):2224–9.CrossRef
11.
go back to reference Singh H, Sharma AK, Gupta M, Singh AP, Kaur G. Tinospora cordifolia attenuates high fat diet-induced obesity and associated hepatic and renal dysfunctions in rats. PharmaNutrition. 2020;26:100189.CrossRef Singh H, Sharma AK, Gupta M, Singh AP, Kaur G. Tinospora cordifolia attenuates high fat diet-induced obesity and associated hepatic and renal dysfunctions in rats. PharmaNutrition. 2020;26:100189.CrossRef
12.
go back to reference Baskaran R, Priya LB, Kumar VS, Padma VV. Tinospora cordifolia extract prevents cadmium-induced oxidative stress and hepatotoxicity in experimental rats. J Ayurveda Integr Med. 2018;9(4):252–7.CrossRef Baskaran R, Priya LB, Kumar VS, Padma VV. Tinospora cordifolia extract prevents cadmium-induced oxidative stress and hepatotoxicity in experimental rats. J Ayurveda Integr Med. 2018;9(4):252–7.CrossRef
13.
go back to reference Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MS. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced parkinsonism. Indian J Pharmacol. 2014;46(2):176–80.CrossRef Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MS. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced parkinsonism. Indian J Pharmacol. 2014;46(2):176–80.CrossRef
14.
go back to reference Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 1999;13(4):275–91.CrossRef Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 1999;13(4):275–91.CrossRef
15.
go back to reference Kuchay MS, Farooqui KJ, Bano T, Khandelwal M, Gill H, Mithal A. Heparin and insulin in the management of hypertriglyceridemia-associated pancreatitis: Case series and literature review. Arch Endocrinol Metab. 2017:198–201. Kuchay MS, Farooqui KJ, Bano T, Khandelwal M, Gill H, Mithal A. Heparin and insulin in the management of hypertriglyceridemia-associated pancreatitis: Case series and literature review. Arch Endocrinol Metab. 2017:198–201.
16.
go back to reference Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.CrossRef Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.CrossRef
17.
go back to reference Chu AHY, Moy FM. Joint association of sitting time and physical activity with metabolic risk factors among middle-aged Malays in a developing country: a cross-sectional study. PLoS One. 2013;8. Chu AHY, Moy FM. Joint association of sitting time and physical activity with metabolic risk factors among middle-aged Malays in a developing country: a cross-sectional study. PLoS One. 2013;8.
18.
go back to reference Hasani-Ranjbar S, Jouyandeh Z, Abdollahi M. A systematic review of anti-obesity medicinal plants – an update. J Diabetes Metab Disord. 2013. Hasani-Ranjbar S, Jouyandeh Z, Abdollahi M. A systematic review of anti-obesity medicinal plants – an update. J Diabetes Metab Disord. 2013.
19.
go back to reference Shirolkar A, Gahlaut A, Hooda V, Dabur R. Phytochemical composition changes in untreated stem juice of Tinospora cordifolia (W) Mier during refrigerated storage. J Pharm Res. 2013;7:1–6. Shirolkar A, Gahlaut A, Hooda V, Dabur R. Phytochemical composition changes in untreated stem juice of Tinospora cordifolia (W) Mier during refrigerated storage. J Pharm Res. 2013;7:1–6.
20.
go back to reference Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom. 2001;36:849–65.CrossRef Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom. 2001;36:849–65.CrossRef
21.
go back to reference Shirolkar A, Sharma B, Lata S, Dabur R. Guduchi Sawras (Tinospora cordifolia): an Ayurvedic drug treatment modulates the impaired lipid metabolism in alcoholics through dopaminergic neurotransmission and anti-oxidant defense system. Biomed Pharmacother. 2016;83:1265–77.CrossRef Shirolkar A, Sharma B, Lata S, Dabur R. Guduchi Sawras (Tinospora cordifolia): an Ayurvedic drug treatment modulates the impaired lipid metabolism in alcoholics through dopaminergic neurotransmission and anti-oxidant defense system. Biomed Pharmacother. 2016;83:1265–77.CrossRef
22.
go back to reference Aoyagi K. Inhibition of arginine synthesis by urea: a mechanism for arginine deficiency in renal failure which leads to increased hydroxyl radical generation. InGuanidino Compounds in Biology and Medicine. 2003:11–5. Aoyagi K. Inhibition of arginine synthesis by urea: a mechanism for arginine deficiency in renal failure which leads to increased hydroxyl radical generation. InGuanidino Compounds in Biology and Medicine. 2003:11–5.
23.
go back to reference Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, et al. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS One. 2015;10:e0136822.CrossRef Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, et al. Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS One. 2015;10:e0136822.CrossRef
24.
go back to reference Singh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 2015;31(2):113–26.CrossRef Singh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 2015;31(2):113–26.CrossRef
25.
go back to reference Radosinska J, Bacova B, Bernatova I, Navarova J, Zhukovska A, Shysh A, et al. Myocardial NOS activity and connexin-43 expression in untreated and omega-3 fatty acids-treated spontaneously hypertensive and hereditary hypertriglyceridemic rats. Mol Cell Biochem. 2011;347(1–2):163–73.CrossRef Radosinska J, Bacova B, Bernatova I, Navarova J, Zhukovska A, Shysh A, et al. Myocardial NOS activity and connexin-43 expression in untreated and omega-3 fatty acids-treated spontaneously hypertensive and hereditary hypertriglyceridemic rats. Mol Cell Biochem. 2011;347(1–2):163–73.CrossRef
26.
go back to reference Tejero J, Stuehr D. Tetrahydrobiopterin in nitric oxide synthase. IUBMB Life. 2013;65(4):358–65.CrossRef Tejero J, Stuehr D. Tetrahydrobiopterin in nitric oxide synthase. IUBMB Life. 2013;65(4):358–65.CrossRef
27.
go back to reference Mortensen PB. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1992;1124:71–9.CrossRef Mortensen PB. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats. Biochim Biophys Acta (BBA)/Lipids Lipid Metab. 1992;1124:71–9.CrossRef
28.
go back to reference Zhang W, He H, Wang H, Wang S, Li X, Liu Y, et al. Activation of transsulfuration pathway by salvianolic acid a treatment: a homocysteine-lowering approach with beneficial effects on redox homeostasis in high-fat diet-induced hyperlipidemic rats. Nutr Metab. 2013;10(1):1–1.CrossRef Zhang W, He H, Wang H, Wang S, Li X, Liu Y, et al. Activation of transsulfuration pathway by salvianolic acid a treatment: a homocysteine-lowering approach with beneficial effects on redox homeostasis in high-fat diet-induced hyperlipidemic rats. Nutr Metab. 2013;10(1):1–1.CrossRef
29.
go back to reference Montuschi P, Barnes PJ, Roberts LJ. Isoprostanes: markers and mediators of oxidative stress. FASEB J [Internet]. 2004;18:1791–800.CrossRef Montuschi P, Barnes PJ, Roberts LJ. Isoprostanes: markers and mediators of oxidative stress. FASEB J [Internet]. 2004;18:1791–800.CrossRef
30.
go back to reference Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005:10–23. Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005:10–23.
31.
go back to reference van’t Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F2-isoprostane levels across human diseases: a meta-analysis. Redox Biol. 2017;12:582–99.CrossRef van’t Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F2-isoprostane levels across human diseases: a meta-analysis. Redox Biol. 2017;12:582–99.CrossRef
32.
go back to reference Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol. 2017:1366–77. Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol. 2017:1366–77.
33.
go back to reference Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 2019;29:417–29.CrossRef Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 2019;29:417–29.CrossRef
34.
go back to reference Arany Z, Neinast M. Branched chain amino acids in metabolic disease. Curr Diab Rep. 2018;18(10):76.CrossRef Arany Z, Neinast M. Branched chain amino acids in metabolic disease. Curr Diab Rep. 2018;18(10):76.CrossRef
35.
go back to reference Kametani T, Koshida H, Nagaoka T, Miyakoshi H. Hypertriglyceridemia is an independent risk factor for development of impaired fasting glucose and diabetes mellitus: a 9-year longitudinal study in Japanese. Inter Med. 2002;41:516–21.CrossRef Kametani T, Koshida H, Nagaoka T, Miyakoshi H. Hypertriglyceridemia is an independent risk factor for development of impaired fasting glucose and diabetes mellitus: a 9-year longitudinal study in Japanese. Inter Med. 2002;41:516–21.CrossRef
36.
go back to reference Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The hypertriglyceridemia is associated with isolated impaired glucose tolerance in subjects without insulin resistance. Endocr Res. 2015;40:70–3.CrossRef Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The hypertriglyceridemia is associated with isolated impaired glucose tolerance in subjects without insulin resistance. Endocr Res. 2015;40:70–3.CrossRef
37.
go back to reference Mook-Kanamori DO, Römisch-Margl W, Kastenmüller G, Prehn C, Petersen AK, Illig T, et al. Increased amino acids levels and the risk of developing of hypertriglyceridemia in a 7-year follow-up. J Endocrinol Investig. 2014;37:369–74.CrossRef Mook-Kanamori DO, Römisch-Margl W, Kastenmüller G, Prehn C, Petersen AK, Illig T, et al. Increased amino acids levels and the risk of developing of hypertriglyceridemia in a 7-year follow-up. J Endocrinol Investig. 2014;37:369–74.CrossRef
38.
go back to reference Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19. Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19.
39.
go back to reference Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012:606–14. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012:606–14.
40.
go back to reference Abdoli N, Azarmi Y, Eghbal MA. Mitigation of statins-induced cytotoxicity and mitochondrial dysfunction by L-carnitine in freshly-isolated rat hepatocytes. Res Pharm Sci. 2015;10:143–51.PubMedPubMedCentral Abdoli N, Azarmi Y, Eghbal MA. Mitigation of statins-induced cytotoxicity and mitochondrial dysfunction by L-carnitine in freshly-isolated rat hepatocytes. Res Pharm Sci. 2015;10:143–51.PubMedPubMedCentral
41.
go back to reference Noipha K, Ratanachaiyavong S, Purintrapiban J, Herunsalee A, Ninla-Aesong P. Effect of Tinospora crispa on glucose uptake in skeletal muscle: role of glucose transporter 1 expression and extracellular signal-regulated kinase1/2 activation. Asian Biomed. 2011;5:361–9. Noipha K, Ratanachaiyavong S, Purintrapiban J, Herunsalee A, Ninla-Aesong P. Effect of Tinospora crispa on glucose uptake in skeletal muscle: role of glucose transporter 1 expression and extracellular signal-regulated kinase1/2 activation. Asian Biomed. 2011;5:361–9.
42.
go back to reference El-Hattab AW, Scaglia F. Disorders of carnitine biosynthesis and transport. Mol Genet Metab. 2015:107–12. El-Hattab AW, Scaglia F. Disorders of carnitine biosynthesis and transport. Mol Genet Metab. 2015:107–12.
43.
go back to reference Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie. 2017:75–84. Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie. 2017:75–84.
Metadata
Title
Intervention of Ayurvedic drug Tinospora cordifolia attenuates the metabolic alterations in hypertriglyceridemia: a pilot clinical trial
Authors
Amey Shirolkar
Aarti Yadav
T. K. Mandal
Rajesh Dabur
Publication date
01-12-2020
Publisher
Springer International Publishing
Keyword
Metformin
Published in
Journal of Diabetes & Metabolic Disorders / Issue 2/2020
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-020-00657-3

Other articles of this Issue 2/2020

Journal of Diabetes & Metabolic Disorders 2/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.