Skip to main content
Top
Published in: Journal of Diabetes & Metabolic Disorders 2/2020

01-12-2020 | Insulins | Review article

Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases

Authors: Vidul Goenka, Tanhai Borkar, Aska Desai, Raunak Kumar Das

Published in: Journal of Diabetes & Metabolic Disorders | Issue 2/2020

Login to get access

Abstract

Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients’ lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Literature
3.
17.
24.
go back to reference Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol. Jan. 2015;48(3):207–13. https://doi.org/10.1590/1414-431X20144051.CrossRef Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol. Jan. 2015;48(3):207–13. https://​doi.​org/​10.​1590/​1414-431X20144051.CrossRef
40.
43.
go back to reference Yoon Y, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circ. Apr. 2005;111(16):2073–85. https://doi.org/10.1161/01.CIR.0000162472.52990.36.CrossRef Yoon Y, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circ. Apr. 2005;111(16):2073–85. https://​doi.​org/​10.​1161/​01.​CIR.​0000162472.​52990.​36.CrossRef
45.
go back to reference Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. Dec. 2004;14(6):1035–41.PubMed Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. Dec. 2004;14(6):1035–41.PubMed
56.
go back to reference Medina A, Scott PG, Ghahary A, Tredget EE. Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil. 2005;26(4):306–19.CrossRef Medina A, Scott PG, Ghahary A, Tredget EE. Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil. 2005;26(4):306–19.CrossRef
57.
go back to reference Spanheimer RG. Correlation between decreased collagen production in diabetic animals and in cells exposed to diabetic serum: response to insulin. Matrix. Apr. 1992;12(2):101–7.CrossRef Spanheimer RG. Correlation between decreased collagen production in diabetic animals and in cells exposed to diabetic serum: response to insulin. Matrix. Apr. 1992;12(2):101–7.CrossRef
63.
go back to reference Vojtassak J, et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett. Dec. 2006;27(Suppl 2):134–7.PubMed Vojtassak J, et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett. Dec. 2006;27(Suppl 2):134–7.PubMed
70.
go back to reference Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. Jul. 2005;54(7):2060–9.CrossRef Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, et al. Five-year follow-up after clinical islet transplantation. Diabetes. Jul. 2005;54(7):2060–9.CrossRef
73.
go back to reference Street CN, Lakey JRT, Shapiro AMJ, Imes S, Rajotte RV, Ryan EA, et al. Islet graft assessment in the Edmonton protocol: implications for predicting long-term clinical outcome. Diabetes. Dec. 2004;53(12):3107–14.CrossRef Street CN, Lakey JRT, Shapiro AMJ, Imes S, Rajotte RV, Ryan EA, et al. Islet graft assessment in the Edmonton protocol: implications for predicting long-term clinical outcome. Diabetes. Dec. 2004;53(12):3107–14.CrossRef
77.
go back to reference Yoon JW, Jun HS, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity. 1998;27(2):109–22.CrossRef Yoon JW, Jun HS, Santamaria P. Cellular and molecular mechanisms for the initiation and progression of beta cell destruction resulting from the collaboration between macrophages and T cells. Autoimmunity. 1998;27(2):109–22.CrossRef
80.
go back to reference Wu H, Mahato RI. Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med. Mar. 2014;17(93):139–43.PubMed Wu H, Mahato RI. Mesenchymal stem cell-based therapy for type 1 diabetes. Discov Med. Mar. 2014;17(93):139–43.PubMed
83.
go back to reference Wang M, Yuan Q, Xie L. Review article mesenchymal stem cell-based immunomodulation : properties and clinical application. Stem Cells Int. 2018;2018:12. Wang M, Yuan Q, Xie L. Review article mesenchymal stem cell-based immunomodulation : properties and clinical application. Stem Cells Int. 2018;2018:12.
88.
go back to reference Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. Feb. 2009;32(1):33–42. https://doi.org/10.1016/j.jaut.2008.10.004.CrossRefPubMed Boumaza I, Srinivasan S, Witt WT, Feghali-Bostwick C, Dai Y, Garcia-Ocana A, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. Feb. 2009;32(1):33–42. https://​doi.​org/​10.​1016/​j.​jaut.​2008.​10.​004.CrossRefPubMed
90.
go back to reference Haddad R, Saldanha-araujo F. Mechanisms of t-cell immunosuppression by mesenchymal stromal cells : what do we know so far ? Biomed Res Int. 2014;2014:14. Haddad R, Saldanha-araujo F. Mechanisms of t-cell immunosuppression by mesenchymal stromal cells : what do we know so far ? Biomed Res Int. 2014;2014:14.
105.
go back to reference De Miguel MP, Pascual CY, Aller MA, Arias J. Immunosuppressive properties of mesenchymal stem cells : advances and applications. Curr Mol Med. 2012;12(5):574–91. De Miguel MP, Pascual CY, Aller MA, Arias J. Immunosuppressive properties of mesenchymal stem cells : advances and applications. Curr Mol Med. 2012;12(5):574–91.
110.
go back to reference Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia. Dec. 1998;41(12):1511–5. https://doi.org/10.1007/s001250051098.CrossRefPubMed Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia. Dec. 1998;41(12):1511–5. https://​doi.​org/​10.​1007/​s001250051098.CrossRefPubMed
120.
122.
go back to reference Kong D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab. 2014;60(12):1969–76.PubMed Kong D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab. 2014;60(12):1969–76.PubMed
126.
go back to reference W. Wang et al., “Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes,” Diabetes Metab Res Rev, vol. 0, no. 0, p. e3212, 2019, https://doi.org/10.1002/dmrr.3212. W. Wang et al., “Liraglutide combined with human umbilical cord mesenchymal stem cell transplantation inhibits beta-cell apoptosis via mediating the ASK1/JNK/BAX pathway in rats with type 2 diabetes,” Diabetes Metab Res Rev, vol. 0, no. 0, p. e3212, 2019, https://​doi.​org/​10.​1002/​dmrr.​3212.
134.
go back to reference Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9 -deficient mice. Nat Genet. 1999;23:71–75. Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9 -deficient mice. Nat Genet. 1999;23:71–75.
135.
136.
go back to reference Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999;23:67–70. CrossRef Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999;23:67–70. CrossRef
137.
go back to reference Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95. PubMed Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122(3):983–95. PubMed
140.
go back to reference Dutta S, Bonner-weir S. Inhibition of ICE slows ALS in mice. Nature. 1998;392:8–10. CrossRef Dutta S, Bonner-weir S. Inhibition of ICE slows ALS in mice. Nature. 1998;392:8–10. CrossRef
142.
go back to reference Stoffers DA, Stanojevic V, Habener JF. Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J Clin Investigvol. 1998;1. Stoffers DA, Stanojevic V, Habener JF. Insulin promoter factor-1 gene mutation linked to early-onset type 2 diabetes mellitus directs expression of a dominant negative isoprotein. J Clin Investigvol. 1998;1.
145.
go back to reference Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993;12(11):4251–9. CrossRef Ohlsson H, Karlsson K, Edlund T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 1993;12(11):4251–9. CrossRef
150.
go back to reference Lottmann H, Vanselow J, Hessabi B, Walther R. The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic beta-cells. J Mol Med (Berl). Jun. 2001;79(5–6):321–8.CrossRef Lottmann H, Vanselow J, Hessabi B, Walther R. The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic beta-cells. J Mol Med (Berl). Jun. 2001;79(5–6):321–8.CrossRef
154.
go back to reference Watada H, Kajimoto Y, Kaneto H, Matsuoka TA, Fujitani Y, Miyazaki JI, et al. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. Dec. 1996;229(3):746–51.CrossRef Watada H, Kajimoto Y, Kaneto H, Matsuoka TA, Fujitani Y, Miyazaki JI, et al. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. Dec. 1996;229(3):746–51.CrossRef
157.
go back to reference Krapp A, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. Dec. 1998;12(23):3752–63.CrossRef Krapp A, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. Dec. 1998;12(23):3752–63.CrossRef
160.
go back to reference Apelqvist A, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol. Oct. 1997;7(10):801–4.CrossRef Apelqvist A, Ahlgren U, Edlund H. Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol. Oct. 1997;7(10):801–4.CrossRef
162.
go back to reference Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. Feb. 2000;97(4):1607–11.CrossRef Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. Feb. 2000;97(4):1607–11.CrossRef
163.
go back to reference Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. May 2002;129(10):2447–57.PubMed Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. May 2002;129(10):2447–57.PubMed
165.
go back to reference Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F̧, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. Jun. 2000;20(12):4445–54.CrossRef Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F̧, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. Jun. 2000;20(12):4445–54.CrossRef
166.
go back to reference Jacquemin P, Lemaigre FP, Rousseau GG. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol. Jun. 2003;258(1):105–16.CrossRef Jacquemin P, Lemaigre FP, Rousseau GG. The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol. Jun. 2003;258(1):105–16.CrossRef
167.
go back to reference Gannon M, Ray MK, Van Zee K, Rausa F, Costa RH, Wright CV. Persistent expression of HNF6 in islet endocrine cells causes disrupted islet architecture and loss of beta cell function. Development. Jul. 2000;127(13):2883–95.PubMed Gannon M, Ray MK, Van Zee K, Rausa F, Costa RH, Wright CV. Persistent expression of HNF6 in islet endocrine cells causes disrupted islet architecture and loss of beta cell function. Development. Jul. 2000;127(13):2883–95.PubMed
169.
go back to reference Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev. Oct. 2002;118(1–2):147–55.CrossRef Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev. Oct. 2002;118(1–2):147–55.CrossRef
176.
go back to reference Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, et al. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol. Feb. 2004;266(1):178–89.CrossRef Wang J, Elghazi L, Parker SE, Kizilocak H, Asano M, Sussel L, et al. The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol. Feb. 2004;266(1):178–89.CrossRef
179.
go back to reference Sussel L, Kalamaras J, Hartigan-O'Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. Jun. 1998;125(12):2213–21.PubMed Sussel L, Kalamaras J, Hartigan-O'Connor DJ, Meneses JJ, Pedersen RA, Rubenstein JL, et al. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. Jun. 1998;125(12):2213–21.PubMed
181.
go back to reference Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem. Apr. 1995;270(15):8971–5.CrossRef Heimberg H, De Vos A, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem. Apr. 1995;270(15):8971–5.CrossRef
185.
go back to reference Cai J, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care. Jan. 2016;39(1):149 LP–157. https://doi.org/10.2337/dc15-0171.CrossRef Cai J, et al. Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care. Jan. 2016;39(1):149 LP–157. https://​doi.​org/​10.​2337/​dc15-0171.CrossRef
194.
go back to reference Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;27:1–43. Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;27:1–43.
195.
196.
go back to reference Ledesma-martínez E, Mendoza-núñez VM, Santiago-osorio E. Mesenchymal stem cells derived from dental pulp : a review. Stem Cells Dev. 2016;2016. Ledesma-martínez E, Mendoza-núñez VM, Santiago-osorio E. Mesenchymal stem cells derived from dental pulp : a review. Stem Cells Dev. 2016;2016.
197.
go back to reference Fuller B. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters. 2004;25. Fuller B. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters. 2004;25.
Metadata
Title
Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases
Authors
Vidul Goenka
Tanhai Borkar
Aska Desai
Raunak Kumar Das
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Journal of Diabetes & Metabolic Disorders / Issue 2/2020
Electronic ISSN: 2251-6581
DOI
https://doi.org/10.1007/s40200-020-00647-5

Other articles of this Issue 2/2020

Journal of Diabetes & Metabolic Disorders 2/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine