Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2016

Open Access 01-12-2016 | Original investigation

Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice

Authors: Jia-Wen Yu, Ya-Ping Deng, Xue Han, Guo-Fei Ren, Jian Cai, Guo-Jun Jiang

Published in: Cardiovascular Diabetology | Issue 1/2016

Login to get access

Abstract

Background

Endothelial dysfunction has been suggested as a possible causal link between hyperglycemia and microvascular complications in diabetes mellitus. The effect of metformin on endothelial progenitor cells (EPCs) is still unclear. This study was designed to test the hypothesis that metformin could accelerate wound healing by improving the impaired EPC functions in streptozotocin-induced diabetic mice.

Methods

Streptozotocin (STZ, 60 mg/kg/d × 5 d, i.p.) was injected to induce type 1 diabetes in male C57BL/6 mice. Mice were treated with metformin (250 mg/kg/d, i.g.) for consecutive 14 days. Wound closure was evaluated by wound area and number of CD31 stained capillaries. Functions of bone marrow-endothelial progenitor cells (BM-EPCs) were assessed by tube formation and migration assays, and expression of AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) was determined by western blot analysis.

Results

Metformin accelerated wound closure and stimulated angiogenesis in diabetic mice. The number of circulating EPCs was increased significantly in metformin treated diabetic mice. Abilities of tube formation and migration of BM-EPCs were impaired in diabetic mice, which were improved by metformin. Expression of both phosphorylated-AMPK and phosphorylated-eNOS was significantly increased, and nitric oxide (NO) production was enhanced by metformin in BM-EPCs of diabetic mice. In vitro, metformin improved impaired BM-EPC functions, and increased phosphorylated-eNOS expression and NO production in cultured BM-EPCs caused by high glucose, which was prevented by the AMPK inhibitor compound C.

Conclusions

Our results suggest that metformin could improve BM-EPC functions in STZ-induced diabetic mice, which was possibly dependent on the AMPK/eNOS pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.CrossRefPubMed Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–21.CrossRefPubMed
2.
go back to reference Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.CrossRef Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus – present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.CrossRef
3.
go back to reference Solini A, Zoppini G, Orsi E, et al. Resistant hypertension in patients with type 2 diabetes: clinical correlates and association with complications. J Hypertens. 2014;32(12):2401–10.CrossRefPubMed Solini A, Zoppini G, Orsi E, et al. Resistant hypertension in patients with type 2 diabetes: clinical correlates and association with complications. J Hypertens. 2014;32(12):2401–10.CrossRefPubMed
4.
go back to reference Smith-Palmer J, Brändle M, Trevisan R, Orsini Federici M, Liabat S, Valentine W. Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(3):273–84.CrossRefPubMed Smith-Palmer J, Brändle M, Trevisan R, Orsini Federici M, Liabat S, Valentine W. Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(3):273–84.CrossRefPubMed
5.
go back to reference Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31(8):817–36.CrossRefPubMed Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31(8):817–36.CrossRefPubMed
6.
go back to reference Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study. Cardiovasc Diabetol. 2010;9:12.CrossRefPubMedPubMedCentral Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study. Cardiovasc Diabetol. 2010;9:12.CrossRefPubMedPubMedCentral
7.
go back to reference Callaghan MJ, Ceradini DJ, Gurtner GC. Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxid Redox Signal. 2005;7(11–12):1476–82.CrossRefPubMed Callaghan MJ, Ceradini DJ, Gurtner GC. Hyperglycemia-induced reactive oxygen species and impaired endothelial progenitor cell function. Antioxid Redox Signal. 2005;7(11–12):1476–82.CrossRefPubMed
8.
go back to reference Fadini GP, Agostini C, Sartore S, Avogaro A. Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis. 2007;194(1):46–54.CrossRefPubMed Fadini GP, Agostini C, Sartore S, Avogaro A. Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis. 2007;194(1):46–54.CrossRefPubMed
9.
go back to reference Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am CollCardiol. 2005;45(9):1449–57.CrossRef Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am CollCardiol. 2005;45(9):1449–57.CrossRef
10.
go back to reference Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–9.CrossRefPubMed Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–9.CrossRefPubMed
11.
go back to reference Li DJ, Huang F, Lu WJ, Jiang GJ, Deng YP, Shen FM. Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation. Acta Physiol (Oxf). 2015;213(3):711–21.CrossRef Li DJ, Huang F, Lu WJ, Jiang GJ, Deng YP, Shen FM. Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation. Acta Physiol (Oxf). 2015;213(3):711–21.CrossRef
12.
13.
go back to reference Chen LL, Liao YF, Zeng TS, Yu F, Li HQ, Feng Y. Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients. Endocrine. 2010;38(2):266–75.CrossRefPubMed Chen LL, Liao YF, Zeng TS, Yu F, Li HQ, Feng Y. Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients. Endocrine. 2010;38(2):266–75.CrossRefPubMed
14.
go back to reference Takahashi N, Shibata R, Ouchi N, Sugimoto M, Murohara T, Komori K. Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J Vasc Surg. 2015;61(2):489–96.CrossRefPubMed Takahashi N, Shibata R, Ouchi N, Sugimoto M, Murohara T, Komori K. Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J Vasc Surg. 2015;61(2):489–96.CrossRefPubMed
15.
go back to reference Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J. Role of amp-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74.CrossRefPubMedPubMedCentral Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J. Role of amp-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74.CrossRefPubMedPubMedCentral
16.
go back to reference Teng RJ, Du J, Afolayan AJ, Eis A, Shi Y, Konduri GG. Amp kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304(1):L29–42.CrossRefPubMed Teng RJ, Du J, Afolayan AJ, Eis A, Shi Y, Konduri GG. Amp kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2013;304(1):L29–42.CrossRefPubMed
17.
go back to reference Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55(2):496–505.CrossRefPubMed Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55(2):496–505.CrossRefPubMed
18.
go back to reference Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D. Activation of amp-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104(3):403–11.CrossRefPubMed Gundewar S, Calvert JW, Jha S, Toedt-Pingel I, Ji SY, Nunez D. Activation of amp-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res. 2009;104(3):403–11.CrossRefPubMed
19.
go back to reference Xie Z, Singh M, Siwik DA, Joyner WL, Singh K. Osteopontin inhibits interleukin-1beta-stimulated increases in matrix metalloproteinase activity in adult rat cardiac fibroblasts: role of protein kinase C-zeta. J Biol Chem. 2003;278(49):48546–52.CrossRefPubMed Xie Z, Singh M, Siwik DA, Joyner WL, Singh K. Osteopontin inhibits interleukin-1beta-stimulated increases in matrix metalloproteinase activity in adult rat cardiac fibroblasts: role of protein kinase C-zeta. J Biol Chem. 2003;278(49):48546–52.CrossRefPubMed
20.
go back to reference Zhao G, Cui MZ, Mao G, Dong Y, Tan J, Sun L, Xu X. gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem. 2005;280(45):37689–97.CrossRefPubMed Zhao G, Cui MZ, Mao G, Dong Y, Tan J, Sun L, Xu X. gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem. 2005;280(45):37689–97.CrossRefPubMed
21.
go back to reference Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo: role of mitochondrial reactive nitrogen species. J Biol Chem. 2004;279(42):43940–51.CrossRefPubMed Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo: role of mitochondrial reactive nitrogen species. J Biol Chem. 2004;279(42):43940–51.CrossRefPubMed
22.
go back to reference Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, Van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003;31(Pt 1):162–8.CrossRefPubMed Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, Van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 2003;31(Pt 1):162–8.CrossRefPubMed
23.
go back to reference Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem. 2003;278(33):31000–6.CrossRefPubMed Nagata D, Mogi M, Walsh K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem. 2003;278(33):31000–6.CrossRefPubMed
24.
go back to reference Li X, Han Y, Pang W, Li C, Xie X, Shyy JY, Zhu Y. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28(10):1789–95.CrossRefPubMedPubMedCentral Li X, Han Y, Pang W, Li C, Xie X, Shyy JY, Zhu Y. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28(10):1789–95.CrossRefPubMedPubMedCentral
25.
go back to reference Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA. AMP-activated protein kinase phosphory-lation of endothelial no synthase. FEBS Lett. 1999;443(3):285–9.CrossRefPubMed Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA. AMP-activated protein kinase phosphory-lation of endothelial no synthase. FEBS Lett. 1999;443(3):285–9.CrossRefPubMed
26.
go back to reference Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T. Adiponectin stimulates angiogenesis by promoting cross-talk between amp-activated protein kinase and akt signaling in endothelial cells. J Biol Chem. 2004;279(2):1304–9.CrossRefPubMed Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T. Adiponectin stimulates angiogenesis by promoting cross-talk between amp-activated protein kinase and akt signaling in endothelial cells. J Biol Chem. 2004;279(2):1304–9.CrossRefPubMed
27.
go back to reference Kondo M, Shibata R, Miura R, Shimano M, Kondo K, Li P. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J Biol Chem. 2009;284(3):1718–24.CrossRefPubMedPubMedCentral Kondo M, Shibata R, Miura R, Shimano M, Kondo K, Li P. Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J Biol Chem. 2009;284(3):1718–24.CrossRefPubMedPubMedCentral
28.
go back to reference Li X, Song Y, Han Y, Wang D, Zhu Y. Liver X receptor agonist alleviated high glucose-induced endothelial progenitor cell dysfunction via inhibition of reactive oxygen species and activation of AMP-activated protein kinase. Microcirculation. 2012;19(6):547–53.CrossRefPubMed Li X, Song Y, Han Y, Wang D, Zhu Y. Liver X receptor agonist alleviated high glucose-induced endothelial progenitor cell dysfunction via inhibition of reactive oxygen species and activation of AMP-activated protein kinase. Microcirculation. 2012;19(6):547–53.CrossRefPubMed
29.
go back to reference Li ZP, Xin RJ, Yang H, Jiang GJ, Deng YP, Li DJ, Shen FM. Diazoxide accelerates wound healing by improving EPC function. Front Biosci (Landmark Ed). 2016;21:1039–51.CrossRef Li ZP, Xin RJ, Yang H, Jiang GJ, Deng YP, Li DJ, Shen FM. Diazoxide accelerates wound healing by improving EPC function. Front Biosci (Landmark Ed). 2016;21:1039–51.CrossRef
30.
go back to reference Cai J, Lu S, Yao Z, Deng YP, Zhang LD, Yu JW, Ren GF, Shen FM, Jiang GJ. Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice. Cardiovasc Diabetol. 2014;13:106.CrossRefPubMedPubMedCentral Cai J, Lu S, Yao Z, Deng YP, Zhang LD, Yu JW, Ren GF, Shen FM, Jiang GJ. Glibenclamide attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic mice. Cardiovasc Diabetol. 2014;13:106.CrossRefPubMedPubMedCentral
31.
go back to reference Chen JK, Deng YP, Jiang GJ, Liu YZ, Zhao T, Shen FM. Establishment of tube formation assay of bone marrow-derived endothelial progenitor cells. CNS Neurosci Ther. 2013;19(7):533–5.CrossRefPubMed Chen JK, Deng YP, Jiang GJ, Liu YZ, Zhao T, Shen FM. Establishment of tube formation assay of bone marrow-derived endothelial progenitor cells. CNS Neurosci Ther. 2013;19(7):533–5.CrossRefPubMed
32.
go back to reference Marchetti V, Menghini R, Rizza S, Vivanti A, Feccia T, Lauro D, et al. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes. 2006;55(8):2231–7.CrossRefPubMed Marchetti V, Menghini R, Rizza S, Vivanti A, Feccia T, Lauro D, et al. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes. 2006;55(8):2231–7.CrossRefPubMed
33.
go back to reference Yang ZW, Li DJ, Liu C, Han P, Yang YL, Su DF, Shen FM. Role of vascular K(ATP) channels in blood pressure variability after sinoaortic denervation in rats. Acta Pharmacol Sin. 2011;32(2):194–200.CrossRefPubMedPubMedCentral Yang ZW, Li DJ, Liu C, Han P, Yang YL, Su DF, Shen FM. Role of vascular K(ATP) channels in blood pressure variability after sinoaortic denervation in rats. Acta Pharmacol Sin. 2011;32(2):194–200.CrossRefPubMedPubMedCentral
34.
go back to reference Galeano M, Altavilla D, Cucinotta D, et al. Recombinant Human Erythropoietin Stimulates Angiogenesis and Wound Healing in the Genetically Diabetic Mouse. Diabetes. 2004;53(9):2509–17.CrossRefPubMed Galeano M, Altavilla D, Cucinotta D, et al. Recombinant Human Erythropoietin Stimulates Angiogenesis and Wound Healing in the Genetically Diabetic Mouse. Diabetes. 2004;53(9):2509–17.CrossRefPubMed
36.
go back to reference Dinh Tecilazich F, Kafanas A, Doupis J, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47.CrossRefPubMed Dinh Tecilazich F, Kafanas A, Doupis J, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47.CrossRefPubMed
37.
go back to reference Liu F, Chen DD, Sun X, et al. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes. 2014;63(5):1763–78.CrossRefPubMedPubMedCentral Liu F, Chen DD, Sun X, et al. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes. 2014;63(5):1763–78.CrossRefPubMedPubMedCentral
38.
go back to reference Kulkarni M, O’Loughlin A, Vazquez R, et al. Use of a fibrin-based system for enhancing angiogenesis and modulating inflammation in the treatment of hyperglycemic wounds. Biomaterials. 2014;35(6):2001–10.CrossRefPubMed Kulkarni M, O’Loughlin A, Vazquez R, et al. Use of a fibrin-based system for enhancing angiogenesis and modulating inflammation in the treatment of hyperglycemic wounds. Biomaterials. 2014;35(6):2001–10.CrossRefPubMed
39.
go back to reference Qi W, Yang C, Dai Z, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of wnt signaling. Diabetes. 2015;64(4):1407–19.CrossRefPubMed Qi W, Yang C, Dai Z, et al. High levels of pigment epithelium-derived factor in diabetes impair wound healing through suppression of wnt signaling. Diabetes. 2015;64(4):1407–19.CrossRefPubMed
40.
go back to reference Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal 447 neovascularization. J Clin Investig. 1999;103(9):1231–6.CrossRefPubMedPubMedCentral Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal 447 neovascularization. J Clin Investig. 1999;103(9):1231–6.CrossRefPubMedPubMedCentral
41.
go back to reference Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol. 2008;295(3):H1165–76.CrossRefPubMed Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol. 2008;295(3):H1165–76.CrossRefPubMed
42.
go back to reference Albini A, et al. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol. 2012;9(9):498–509.CrossRefPubMed Albini A, et al. Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol. 2012;9(9):498–509.CrossRefPubMed
43.
go back to reference Zaafar Dalia K, Zaitone Sawsan A, Moustafa Yasser M. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS ONE. 2014;9(6):e100562.CrossRefPubMedPubMedCentral Zaafar Dalia K, Zaitone Sawsan A, Moustafa Yasser M. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS ONE. 2014;9(6):e100562.CrossRefPubMedPubMedCentral
44.
go back to reference Chung AS, et al. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10(7):505–14.CrossRefPubMed Chung AS, et al. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010;10(7):505–14.CrossRefPubMed
46.
go back to reference Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, Cortizo AM. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract. 2013;101(2):177–86.CrossRefPubMed Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, Cortizo AM. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract. 2013;101(2):177–86.CrossRefPubMed
47.
go back to reference Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V, Sedlinsky C. Effect of metformin on bone marrow progenitor cell differentiation. in vivo and in vitro studies. J Bone Miner Res. 2010;25(2):211–21.CrossRefPubMed Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V, Sedlinsky C. Effect of metformin on bone marrow progenitor cell differentiation. in vivo and in vitro studies. J Bone Miner Res. 2010;25(2):211–21.CrossRefPubMed
48.
go back to reference Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, Takagi T, Yunoki K, Miyoshi T, Hirata K, Yoshikawa J, Ito H. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol. 2014;13:110.CrossRefPubMedPubMedCentral Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, Takagi T, Yunoki K, Miyoshi T, Hirata K, Yoshikawa J, Ito H. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol. 2014;13:110.CrossRefPubMedPubMedCentral
49.
go back to reference Kotlinowski J, Grochot-Przeczek A, Taha H, Kozakowska M, Pilecki B, Skrzypek K, Bartelik A, Derlacz R, Horrevoets AJ, Pap A, Nagy L, Dulak J, Jozkowicz A. PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovasc Diabetol. 2014;13:150.PubMedPubMedCentral Kotlinowski J, Grochot-Przeczek A, Taha H, Kozakowska M, Pilecki B, Skrzypek K, Bartelik A, Derlacz R, Horrevoets AJ, Pap A, Nagy L, Dulak J, Jozkowicz A. PPARγ activation but not PPARγ haplodeficiency affects proangiogenic potential of endothelial cells and bone marrow-derived progenitors. Cardiovasc Diabetol. 2014;13:150.PubMedPubMedCentral
50.
go back to reference Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.CrossRefPubMed Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 2009;16(2):209–21.CrossRefPubMed
51.
go back to reference Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol. 2013;169(2):290–303.CrossRefPubMedPubMedCentral Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol. 2013;169(2):290–303.CrossRefPubMedPubMedCentral
52.
go back to reference Lu C, Zhang J, Zhang D, Uzan G, Li M. EPCs in vascular repair: how can we clear the hurdles between bench and bedside. Front Biosci (Landmark Ed). 2013;19:34–48.CrossRef Lu C, Zhang J, Zhang D, Uzan G, Li M. EPCs in vascular repair: how can we clear the hurdles between bench and bedside. Front Biosci (Landmark Ed). 2013;19:34–48.CrossRef
53.
go back to reference Werner CM, Schirmer SH, Gensch C, Pavlickova V, Pöss J, Wright MB, et al. The dual PPAR/agonist aleglitazar increase the number and function of endothelial progenitor cells: implications for vascular function and atherogenesis. Br J Pharmacol. 2014;171(10):2685–703.CrossRefPubMedPubMedCentral Werner CM, Schirmer SH, Gensch C, Pavlickova V, Pöss J, Wright MB, et al. The dual PPAR/agonist aleglitazar increase the number and function of endothelial progenitor cells: implications for vascular function and atherogenesis. Br J Pharmacol. 2014;171(10):2685–703.CrossRefPubMedPubMedCentral
54.
go back to reference Westerweel PE, Teraa M, Rafii S, Jaspers JE, White IA, Hooper AT, et al. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One. 2013;8(3):e60357.CrossRefPubMedPubMedCentral Westerweel PE, Teraa M, Rafii S, Jaspers JE, White IA, Hooper AT, et al. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One. 2013;8(3):e60357.CrossRefPubMedPubMedCentral
55.
go back to reference Pradan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med. 2009;11:e2.CrossRef Pradan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med. 2009;11:e2.CrossRef
56.
go back to reference Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest. 2010;120(12):4207–19.CrossRefPubMedPubMedCentral Marrotte EJ, Chen DD, Hakim JS, Chen AF. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. J Clin Invest. 2010;120(12):4207–19.CrossRefPubMedPubMedCentral
57.
go back to reference Thum T, Fraccarollo D, Schultheiss M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56(3):666–74.CrossRefPubMed Thum T, Fraccarollo D, Schultheiss M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56(3):666–74.CrossRefPubMed
58.
go back to reference Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23:1185–9.CrossRefPubMed Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003;23:1185–9.CrossRefPubMed
59.
go back to reference Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328–41.CrossRefPubMed Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328–41.CrossRefPubMed
60.
go back to reference Lin JT, Chen HM, Chiu CH, Liang YJ. AMP-activated protein kinase activators in diabetic ulcers: from animal studies to Phase II drugs under investigation. Expert Opin Investig Drugs. 2014;23(9):1253–65.CrossRefPubMed Lin JT, Chen HM, Chiu CH, Liang YJ. AMP-activated protein kinase activators in diabetic ulcers: from animal studies to Phase II drugs under investigation. Expert Opin Investig Drugs. 2014;23(9):1253–65.CrossRefPubMed
61.
go back to reference Eriksson L, Nyström T. Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis. Cardiovasc Diabetol. 2014;13:152.CrossRefPubMedPubMedCentral Eriksson L, Nyström T. Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis. Cardiovasc Diabetol. 2014;13:152.CrossRefPubMedPubMedCentral
Metadata
Title
Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice
Authors
Jia-Wen Yu
Ya-Ping Deng
Xue Han
Guo-Fei Ren
Jian Cai
Guo-Jun Jiang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2016
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-016-0408-3

Other articles of this Issue 1/2016

Cardiovascular Diabetology 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.