Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2020

01-03-2020 | Metastasis

Mouse models of high-risk neuroblastoma

Authors: Alvin Kamili, Caroline Atkinson, Toby N. Trahair, Jamie I. Fletcher

Published in: Cancer and Metastasis Reviews | Issue 1/2020

Login to get access

Abstract

Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Literature
1.
go back to reference Matthay, K. K., Maris, J. M., Schleiermacher, G., Nakagawara, A., Mackall, C. L., Diller, L., & Weiss, W. A. (2016). Neuroblastoma. Nature Reviews Disease Primers, 2, 16078.CrossRefPubMed Matthay, K. K., Maris, J. M., Schleiermacher, G., Nakagawara, A., Mackall, C. L., Diller, L., & Weiss, W. A. (2016). Neuroblastoma. Nature Reviews Disease Primers, 2, 16078.CrossRefPubMed
2.
go back to reference Marshall, G. M., Carter, D. R., Cheung, B. B., Liu, T., Mateos, M. K., Meyerowitz, J. G., & Weiss, W. A. (2014). The prenatal origins of cancer. Nature Reviews Cancer, 14(4), 277–289.CrossRefPubMedPubMedCentral Marshall, G. M., Carter, D. R., Cheung, B. B., Liu, T., Mateos, M. K., Meyerowitz, J. G., & Weiss, W. A. (2014). The prenatal origins of cancer. Nature Reviews Cancer, 14(4), 277–289.CrossRefPubMedPubMedCentral
3.
go back to reference Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D., Carter, S. L., Cibulskis, K., Hanna, M., Kiezun, A., Kim, J., Lawrence, M. S., Lichenstein, L., McKenna, A., Pedamallu, C. S., Ramos, A. H., Shefler, E., Sivachenko, A., Sougnez, C., Stewart, C., Ally, A., Birol, I., Chiu, R., Corbett, R. D., Hirst, M., Jackman, S. D., Kamoh, B., Khodabakshi, A. H., Krzywinski, M., Lo, A., Moore, R. A., Mungall, K. L., Qian, J., Tam, A., Thiessen, N., Zhao, Y., Cole, K. A., Diamond, M., Diskin, S. J., Mosse, Y. P., Wood, A. C., Ji, L., Sposto, R., Badgett, T., London, W. B., Moyer, Y., Gastier-Foster, J. M., Smith, M. A., Guidry Auvil, J. M., Gerhard, D. S., Hogarty, M. D., Jones, S. J., Lander, E. S., Gabriel, S. B., Getz, G., Seeger, R. C., Khan, J., Marra, M. A., Meyerson, M., & Maris, J. M. (2013). The genetic landscape of high-risk neuroblastoma. Nature Genetics, 45(3), 279–284.CrossRefPubMedPubMedCentral Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D., Carter, S. L., Cibulskis, K., Hanna, M., Kiezun, A., Kim, J., Lawrence, M. S., Lichenstein, L., McKenna, A., Pedamallu, C. S., Ramos, A. H., Shefler, E., Sivachenko, A., Sougnez, C., Stewart, C., Ally, A., Birol, I., Chiu, R., Corbett, R. D., Hirst, M., Jackman, S. D., Kamoh, B., Khodabakshi, A. H., Krzywinski, M., Lo, A., Moore, R. A., Mungall, K. L., Qian, J., Tam, A., Thiessen, N., Zhao, Y., Cole, K. A., Diamond, M., Diskin, S. J., Mosse, Y. P., Wood, A. C., Ji, L., Sposto, R., Badgett, T., London, W. B., Moyer, Y., Gastier-Foster, J. M., Smith, M. A., Guidry Auvil, J. M., Gerhard, D. S., Hogarty, M. D., Jones, S. J., Lander, E. S., Gabriel, S. B., Getz, G., Seeger, R. C., Khan, J., Marra, M. A., Meyerson, M., & Maris, J. M. (2013). The genetic landscape of high-risk neuroblastoma. Nature Genetics, 45(3), 279–284.CrossRefPubMedPubMedCentral
4.
go back to reference Grobner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555(7696), 321–327.CrossRefPubMed Grobner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555(7696), 321–327.CrossRefPubMed
5.
go back to reference Ma, X., Liu, Y., Liu, Y., Alexandrov, L. B., Edmonson, M. N., Gawad, C., Zhou, X., Li, Y., Rusch, M. C., Easton, J., Huether, R., Gonzalez-Pena, V., Wilkinson, M. R., Hermida, L. C., Davis, S., Sioson, E., Pounds, S., Cao, X., Ries, R. E., Wang, Z., Chen, X., Dong, L., Diskin, S. J., Smith, M. A., Guidry Auvil, J. M., Meltzer, P. S., Lau, C. C., Perlman, E. J., Maris, J. M., Meshinchi, S., Hunger, S. P., Gerhard, D. S., & Zhang, J. (2018). Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 555(7696), 371–376.CrossRefPubMedPubMedCentral Ma, X., Liu, Y., Liu, Y., Alexandrov, L. B., Edmonson, M. N., Gawad, C., Zhou, X., Li, Y., Rusch, M. C., Easton, J., Huether, R., Gonzalez-Pena, V., Wilkinson, M. R., Hermida, L. C., Davis, S., Sioson, E., Pounds, S., Cao, X., Ries, R. E., Wang, Z., Chen, X., Dong, L., Diskin, S. J., Smith, M. A., Guidry Auvil, J. M., Meltzer, P. S., Lau, C. C., Perlman, E. J., Maris, J. M., Meshinchi, S., Hunger, S. P., Gerhard, D. S., & Zhang, J. (2018). Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 555(7696), 371–376.CrossRefPubMedPubMedCentral
6.
go back to reference Weiss, W., Aldape, K., Mohapatra, G., Feuerstein, B., & Bishop, J. (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. The EMBO Journal, 16, 2985–2995.CrossRefPubMedPubMedCentral Weiss, W., Aldape, K., Mohapatra, G., Feuerstein, B., & Bishop, J. (1997). Targeted expression of MYCN causes neuroblastoma in transgenic mice. The EMBO Journal, 16, 2985–2995.CrossRefPubMedPubMedCentral
7.
go back to reference Heukamp, L. C., Thor, T., Schramm, A., De Preter, K., Kumps, C., De Wilde, B., et al. (2012). Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Science Translational Medicine, 4(141), 141ra191.CrossRef Heukamp, L. C., Thor, T., Schramm, A., De Preter, K., Kumps, C., De Wilde, B., et al. (2012). Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Science Translational Medicine, 4(141), 141ra191.CrossRef
8.
go back to reference Berry, T., Luther, W., Bhatnagar, N., Jamin, Y., Poon, E., Sanda, T., Pei, D., Sharma, B., Vetharoy, W. R., Hallsworth, A., Ahmad, Z., Barker, K., Moreau, L., Webber, H., Wang, W., Liu, Q., Perez-Atayde, A., Rodig, S., Cheung, N. K., Raynaud, F., Hallberg, B., Robinson, S. P., Gray, N. S., Pearson, A. D., Eccles, S. A., Chesler, L., & George, R. E. (2012). The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell, 22(1), 117–130.CrossRefPubMedPubMedCentral Berry, T., Luther, W., Bhatnagar, N., Jamin, Y., Poon, E., Sanda, T., Pei, D., Sharma, B., Vetharoy, W. R., Hallsworth, A., Ahmad, Z., Barker, K., Moreau, L., Webber, H., Wang, W., Liu, Q., Perez-Atayde, A., Rodig, S., Cheung, N. K., Raynaud, F., Hallberg, B., Robinson, S. P., Gray, N. S., Pearson, A. D., Eccles, S. A., Chesler, L., & George, R. E. (2012). The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell, 22(1), 117–130.CrossRefPubMedPubMedCentral
9.
go back to reference Ueda, T., Nakata, Y., Yamasaki, N., Oda, H., Sentani, K., Kanai, A., Onishi, N., Ikeda, K., Sera, Y., Honda, Z. I., Tanaka, K., Sata, M., Ogawa, S., Yasui, W., Saya, H., Takita, J., & Honda, H. (2016). ALK(R1275Q) perturbs extracellular matrix, enhances cell invasion and leads to the development of neuroblastoma in cooperation with MYCN. Oncogene, 35(34), 4447–4458.CrossRefPubMed Ueda, T., Nakata, Y., Yamasaki, N., Oda, H., Sentani, K., Kanai, A., Onishi, N., Ikeda, K., Sera, Y., Honda, Z. I., Tanaka, K., Sata, M., Ogawa, S., Yasui, W., Saya, H., Takita, J., & Honda, H. (2016). ALK(R1275Q) perturbs extracellular matrix, enhances cell invasion and leads to the development of neuroblastoma in cooperation with MYCN. Oncogene, 35(34), 4447–4458.CrossRefPubMed
10.
go back to reference Molenaar, J. J., Domingo-Fernandez, R., Ebus, M. E., Lindner, S., Koster, J., Drabek, K., et al. (2012). LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genetics, 44(11), 1199–1206.CrossRefPubMed Molenaar, J. J., Domingo-Fernandez, R., Ebus, M. E., Lindner, S., Koster, J., Drabek, K., et al. (2012). LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genetics, 44(11), 1199–1206.CrossRefPubMed
11.
go back to reference Hansford, L. M., Thomas, W. D., Keating, J. M., Burkhart, C. A., Peaston, A. E., Norris, M. D., Haber, M., Armati, P. J., Weiss, W. A., & Marshall, G. M. (2004). Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12664–12669.CrossRefPubMedPubMedCentral Hansford, L. M., Thomas, W. D., Keating, J. M., Burkhart, C. A., Peaston, A. E., Norris, M. D., Haber, M., Armati, P. J., Weiss, W. A., & Marshall, G. M. (2004). Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12664–12669.CrossRefPubMedPubMedCentral
12.
go back to reference Alam, G., Cui, H., Shi, H., Yang, L., Ding, J., Mao, L., Maltese, W. A., & Ding, H. F. (2009). MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. The American Journal of Pathology, 175(2), 856–866.CrossRefPubMedPubMedCentral Alam, G., Cui, H., Shi, H., Yang, L., Ding, J., Mao, L., Maltese, W. A., & Ding, H. F. (2009). MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. The American Journal of Pathology, 175(2), 856–866.CrossRefPubMedPubMedCentral
13.
go back to reference Beckwith, J. B., & Perrin, E. V. (1963). Is situ neuroblastomas: a contribution to the natural history of neural crest tumors. The American Journal of Pathology, 43, 1089–1104.PubMedPubMedCentral Beckwith, J. B., & Perrin, E. V. (1963). Is situ neuroblastomas: a contribution to the natural history of neural crest tumors. The American Journal of Pathology, 43, 1089–1104.PubMedPubMedCentral
14.
go back to reference Rasmuson, A., Segerstrom, L., Nethander, M., Finnman, J., Elfman, L. H., Javanmardi, N., et al. (2012). Tumor development, growth characteristics and spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma. PLoS One, 7(12), e51297.CrossRefPubMedPubMedCentral Rasmuson, A., Segerstrom, L., Nethander, M., Finnman, J., Elfman, L. H., Javanmardi, N., et al. (2012). Tumor development, growth characteristics and spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma. PLoS One, 7(12), e51297.CrossRefPubMedPubMedCentral
15.
go back to reference Weiss, W. A., Godfrey, T., Francisco, C., & Bishop, J. M. (2000). Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. Cancer Research, 60(9), 2483–2487.PubMed Weiss, W. A., Godfrey, T., Francisco, C., & Bishop, J. M. (2000). Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. Cancer Research, 60(9), 2483–2487.PubMed
16.
go back to reference Althoff, K., Beckers, A., Bell, E., Nortmeyer, M., Thor, T., Sprussel, A., et al. (2015). A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene, 34(26), 3357–3368.CrossRefPubMed Althoff, K., Beckers, A., Bell, E., Nortmeyer, M., Thor, T., Sprussel, A., et al. (2015). A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene, 34(26), 3357–3368.CrossRefPubMed
17.
go back to reference Hackett, C. S., Hodgson, J. G., Law, M. E., Fridlyand, J., Osoegawa, K., de Jong, P. J., Nowak, N. J., Pinkel, D., Albertson, D. G., Jain, A., Jenkins, R., Gray, J. W., & Weiss, W. A. (2003). Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Research, 63(17), 5266–5273.PubMed Hackett, C. S., Hodgson, J. G., Law, M. E., Fridlyand, J., Osoegawa, K., de Jong, P. J., Nowak, N. J., Pinkel, D., Albertson, D. G., Jain, A., Jenkins, R., Gray, J. W., & Weiss, W. A. (2003). Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Research, 63(17), 5266–5273.PubMed
18.
go back to reference Chesler, L., Goldenberg, D. D., Seales, I. T., Satchi-Fainaro, R., Grimmer, M., Collins, R., Struett, C., Nguyen, K. N., Kim, G., Tihan, T., Bao, Y., Brekken, R. A., Bergers, G., Folkman, J., & Weiss, W. A. (2007). Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Research, 67(19), 9435–9442.CrossRefPubMedPubMedCentral Chesler, L., Goldenberg, D. D., Seales, I. T., Satchi-Fainaro, R., Grimmer, M., Collins, R., Struett, C., Nguyen, K. N., Kim, G., Tihan, T., Bao, Y., Brekken, R. A., Bergers, G., Folkman, J., & Weiss, W. A. (2007). Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. Cancer Research, 67(19), 9435–9442.CrossRefPubMedPubMedCentral
19.
go back to reference Teitz, T., Stanke, J. J., Federico, S., Bradley, C. L., Brennan, R., Zhang, J., Johnson, M. D., Sedlacik, J., Inoue, M., Zhang, Z. M., Frase, S., Rehg, J. E., Hillenbrand, C. M., Finkelstein, D., Calabrese, C., Dyer, M. A., & Lahti, J. M. (2011). Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One, 6(4), e19133.CrossRefPubMedPubMedCentral Teitz, T., Stanke, J. J., Federico, S., Bradley, C. L., Brennan, R., Zhang, J., Johnson, M. D., Sedlacik, J., Inoue, M., Zhang, Z. M., Frase, S., Rehg, J. E., Hillenbrand, C. M., Finkelstein, D., Calabrese, C., Dyer, M. A., & Lahti, J. M. (2011). Preclinical models for neuroblastoma: establishing a baseline for treatment. PLoS One, 6(4), e19133.CrossRefPubMedPubMedCentral
20.
go back to reference Jamin, Y., Tucker, E. R., Poon, E., Popov, S., Vaughan, L., Boult, J. K., Webber, H., Hallsworth, A., Baker, L. C., Jones, C., Koh, D. M., Pearson, A. D., Chesler, L., & Robinson, S. P. (2013). Evaluation of clinically translatable MR imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of neuroblastoma. Radiology, 266(1), 130–140.CrossRefPubMed Jamin, Y., Tucker, E. R., Poon, E., Popov, S., Vaughan, L., Boult, J. K., Webber, H., Hallsworth, A., Baker, L. C., Jones, C., Koh, D. M., Pearson, A. D., Chesler, L., & Robinson, S. P. (2013). Evaluation of clinically translatable MR imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of neuroblastoma. Radiology, 266(1), 130–140.CrossRefPubMed
21.
go back to reference Quarta, C., Cantelli, E., Nanni, C., Ambrosini, V., D'Ambrosio, D., Di Leo, K., et al. (2013). Molecular imaging of neuroblastoma progression in TH-MYCN transgenic mice. Molecular Imaging and Biology, 15(2), 194–202.CrossRefPubMedPubMedCentral Quarta, C., Cantelli, E., Nanni, C., Ambrosini, V., D'Ambrosio, D., Di Leo, K., et al. (2013). Molecular imaging of neuroblastoma progression in TH-MYCN transgenic mice. Molecular Imaging and Biology, 15(2), 194–202.CrossRefPubMedPubMedCentral
22.
go back to reference Accorsi, R., Morowitz, M. J., Charron, M., & Maris, J. M. (2003). Pinhole imaging of 131I-metaiodobenzylguanidine (131I-MIBG) in an animal model of neuroblastoma. Pediatric Radiology, 33(10), 688–692.CrossRefPubMed Accorsi, R., Morowitz, M. J., Charron, M., & Maris, J. M. (2003). Pinhole imaging of 131I-metaiodobenzylguanidine (131I-MIBG) in an animal model of neuroblastoma. Pediatric Radiology, 33(10), 688–692.CrossRefPubMed
23.
go back to reference Chesler, L., Goldenberg, D. D., Collins, R., Grimmer, M., Kim, G. E., Tihan, T., Nguyen, K., Yakovenko, S., Matthay, K. K., & Weiss, W. A. (2008). Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia, 10(11), 1268–1274.CrossRefPubMedPubMedCentral Chesler, L., Goldenberg, D. D., Collins, R., Grimmer, M., Kim, G. E., Tihan, T., Nguyen, K., Yakovenko, S., Matthay, K. K., & Weiss, W. A. (2008). Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia, 10(11), 1268–1274.CrossRefPubMedPubMedCentral
24.
go back to reference Janoueix-Lerosey, I., Lequin, D., Brugieres, L., Ribeiro, A., de Pontual, L., Combaret, V., et al. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 455(7215), 967–970.CrossRefPubMed Janoueix-Lerosey, I., Lequin, D., Brugieres, L., Ribeiro, A., de Pontual, L., Combaret, V., et al. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 455(7215), 967–970.CrossRefPubMed
25.
go back to reference Mosse, Y. P., Laudenslager, M., Longo, L., Cole, K. A., Wood, A., Attiyeh, E. F., et al. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 455(7215), 930–935.CrossRefPubMedPubMedCentral Mosse, Y. P., Laudenslager, M., Longo, L., Cole, K. A., Wood, A., Attiyeh, E. F., et al. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 455(7215), 930–935.CrossRefPubMedPubMedCentral
26.
go back to reference Bresler, S. C., Weiser, D. A., Huwe, P. J., Park, J. H., Krytska, K., Ryles, H., Laudenslager, M., Rappaport, E. F., Wood, A. C., McGrady, P., Hogarty, M. D., London, W. B., Radhakrishnan, R., Lemmon, M. A., & Mossé, Y. P. (2014). ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell, 26(5), 682–694.CrossRefPubMedPubMedCentral Bresler, S. C., Weiser, D. A., Huwe, P. J., Park, J. H., Krytska, K., Ryles, H., Laudenslager, M., Rappaport, E. F., Wood, A. C., McGrady, P., Hogarty, M. D., London, W. B., Radhakrishnan, R., Lemmon, M. A., & Mossé, Y. P. (2014). ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell, 26(5), 682–694.CrossRefPubMedPubMedCentral
27.
go back to reference De Wilde, B., Beckers, A., Lindner, S., Kristina, A., De Preter, K., Depuydt, P., et al. (2018). The mutational landscape of MYCN, Lin28b and ALK(F1174L) driven murine neuroblastoma mimics human disease. Oncotarget, 9(9), 8334–8349.CrossRefPubMed De Wilde, B., Beckers, A., Lindner, S., Kristina, A., De Preter, K., Depuydt, P., et al. (2018). The mutational landscape of MYCN, Lin28b and ALK(F1174L) driven murine neuroblastoma mimics human disease. Oncotarget, 9(9), 8334–8349.CrossRefPubMed
28.
29.
go back to reference Buechner, J., Tomte, E., Haug, B. H., Henriksen, J. R., Lokke, C., Flaegstad, T., et al. (2011). Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. British Journal of Cancer, 105(2), 296–303.CrossRefPubMedPubMedCentral Buechner, J., Tomte, E., Haug, B. H., Henriksen, J. R., Lokke, C., Flaegstad, T., et al. (2011). Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. British Journal of Cancer, 105(2), 296–303.CrossRefPubMedPubMedCentral
30.
go back to reference Diskin, S. J., Capasso, M., Schnepp, R. W., Cole, K. A., Attiyeh, E. F., Hou, C., Diamond, M., Carpenter, E. L., Winter, C., Lee, H., Jagannathan, J., Latorre, V., Iolascon, A., Hakonarson, H., Devoto, M., & Maris, J. M. (2012). Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nature Genetics, 44(10), 1126–1130.CrossRefPubMedPubMedCentral Diskin, S. J., Capasso, M., Schnepp, R. W., Cole, K. A., Attiyeh, E. F., Hou, C., Diamond, M., Carpenter, E. L., Winter, C., Lee, H., Jagannathan, J., Latorre, V., Iolascon, A., Hakonarson, H., Devoto, M., & Maris, J. M. (2012). Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nature Genetics, 44(10), 1126–1130.CrossRefPubMedPubMedCentral
31.
go back to reference Yogev, O., Barker, K., Sikka, A., Almeida, G. S., Hallsworth, A., Smith, L. M., Jamin, Y., Ruddle, R., Koers, A., Webber, H. T., Raynaud, F. I., Popov, S., Jones, C., Petrie, K., Robinson, S. P., Keun, H. C., & Chesler, L. (2016). p53 loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance. Cancer Research, 76(10), 3025–3035.CrossRefPubMed Yogev, O., Barker, K., Sikka, A., Almeida, G. S., Hallsworth, A., Smith, L. M., Jamin, Y., Ruddle, R., Koers, A., Webber, H. T., Raynaud, F. I., Popov, S., Jones, C., Petrie, K., Robinson, S. P., Keun, H. C., & Chesler, L. (2016). p53 loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance. Cancer Research, 76(10), 3025–3035.CrossRefPubMed
32.
go back to reference Chmielecki, J., Bailey, M., He, J., Elvin, J., Vergilio, J. A., Ramkissoon, S., Suh, J., Frampton, G. M., Sun, J. X., Morley, S., Spritz, D., Ali, S., Gay, L., Erlich, R. L., Ross, J. S., Buxhaku, J., Davies, H., Faso, V., Germain, A., Glanville, B., Miller, V. A., Stephens, P. J., Janeway, K. A., Maris, J. M., Meshinchi, S., Pugh, T. J., Shern, J. F., & Lipson, D. (2017). Genomic profiling of a large set of diverse pediatric cancers identifies known and novel mutations across tumor spectra. Cancer Research, 77(2), 509–519.CrossRefPubMed Chmielecki, J., Bailey, M., He, J., Elvin, J., Vergilio, J. A., Ramkissoon, S., Suh, J., Frampton, G. M., Sun, J. X., Morley, S., Spritz, D., Ali, S., Gay, L., Erlich, R. L., Ross, J. S., Buxhaku, J., Davies, H., Faso, V., Germain, A., Glanville, B., Miller, V. A., Stephens, P. J., Janeway, K. A., Maris, J. M., Meshinchi, S., Pugh, T. J., Shern, J. F., & Lipson, D. (2017). Genomic profiling of a large set of diverse pediatric cancers identifies known and novel mutations across tumor spectra. Cancer Research, 77(2), 509–519.CrossRefPubMed
33.
go back to reference Carr-Wilkinson, J., O'Toole, K., Wood, K. M., Challen, C. C., Baker, A. G., Board, J. R., Evans, L., Cole, M., Cheung, N. K., Boos, J., Köhler, G., Leuschner, I., Pearson, A. D., Lunec, J., & Tweddle, D. A. (2010). High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed Neuroblastoma. Clinical Cancer Research, 16(4), 1108–1118.CrossRefPubMedPubMedCentral Carr-Wilkinson, J., O'Toole, K., Wood, K. M., Challen, C. C., Baker, A. G., Board, J. R., Evans, L., Cole, M., Cheung, N. K., Boos, J., Köhler, G., Leuschner, I., Pearson, A. D., Lunec, J., & Tweddle, D. A. (2010). High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed Neuroblastoma. Clinical Cancer Research, 16(4), 1108–1118.CrossRefPubMedPubMedCentral
34.
go back to reference Padovan-Merhar, O. M., Raman, P., Ostrovnaya, I., Kalletla, K., Rubnitz, K. R., Sanford, E. M., Ali, S. M., Miller, V. A., Mossé, Y. P., Granger, M. P., Weiss, B., Maris, J. M., & Modak, S. (2016). Enrichment of targetable mutations in the relapsed neuroblastoma genome. PLoS Genetics, 12(12), e1006501.CrossRefPubMedPubMedCentral Padovan-Merhar, O. M., Raman, P., Ostrovnaya, I., Kalletla, K., Rubnitz, K. R., Sanford, E. M., Ali, S. M., Miller, V. A., Mossé, Y. P., Granger, M. P., Weiss, B., Maris, J. M., & Modak, S. (2016). Enrichment of targetable mutations in the relapsed neuroblastoma genome. PLoS Genetics, 12(12), e1006501.CrossRefPubMedPubMedCentral
35.
go back to reference Eleveld, T. F., Oldridge, D. A., Bernard, V., Koster, J., Daage, L. C., Diskin, S. J., et al. (2015). Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nature Genetics, 47(8), 864–871.CrossRefPubMedPubMedCentral Eleveld, T. F., Oldridge, D. A., Bernard, V., Koster, J., Daage, L. C., Diskin, S. J., et al. (2015). Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nature Genetics, 47(8), 864–871.CrossRefPubMedPubMedCentral
36.
go back to reference Nakamura, T., Iwamura, Y., Kaneko, M., Nakagawa, K., Kawai, K., Mitamura, K., Futagawa, T., & Hayashi, H. (1991). Deletions and rearrangements of the retinoblastoma gene in hepatocellular carcinoma, insulinoma and some neurogenic tumors as found in a study of 121 tumors. Japanese Journal of Clinical Oncology, 21(5), 325–329.PubMed Nakamura, T., Iwamura, Y., Kaneko, M., Nakagawa, K., Kawai, K., Mitamura, K., Futagawa, T., & Hayashi, H. (1991). Deletions and rearrangements of the retinoblastoma gene in hepatocellular carcinoma, insulinoma and some neurogenic tumors as found in a study of 121 tumors. Japanese Journal of Clinical Oncology, 21(5), 325–329.PubMed
37.
go back to reference Chayka, O., Corvetta, D., Dews, M., Caccamo, A. E., Piotrowska, I., Santilli, G., Gibson, S., Sebire, N. J., Himoudi, N., Hogarty, M. D., Anderson, J., Bettuzzi, S., Thomas-Tikhonenko, A., & Sala, A. (2009). Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. Journal of the National Cancer Institute, 101(9), 663–677.CrossRefPubMedPubMedCentral Chayka, O., Corvetta, D., Dews, M., Caccamo, A. E., Piotrowska, I., Santilli, G., Gibson, S., Sebire, N. J., Himoudi, N., Hogarty, M. D., Anderson, J., Bettuzzi, S., Thomas-Tikhonenko, A., & Sala, A. (2009). Clusterin, a haploinsufficient tumor suppressor gene in neuroblastomas. Journal of the National Cancer Institute, 101(9), 663–677.CrossRefPubMedPubMedCentral
38.
go back to reference Teitz, T., Inoue, M., Valentine, M. B., Zhu, K., Rehg, J. E., Zhao, W., Finkelstein, D., Wang, Y. D., Johnson, M. D., Calabrese, C., Rubinstein, M., Hakem, R., Weiss, W. A., & Lahti, J. M. (2013). Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Research, 73(13), 4086–4097.CrossRefPubMedPubMedCentral Teitz, T., Inoue, M., Valentine, M. B., Zhu, K., Rehg, J. E., Zhao, W., Finkelstein, D., Wang, Y. D., Johnson, M. D., Calabrese, C., Rubinstein, M., Hakem, R., Weiss, W. A., & Lahti, J. M. (2013). Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Research, 73(13), 4086–4097.CrossRefPubMedPubMedCentral
39.
go back to reference Grau, E., Martinez, F., Orellana, C., Canete, A., Yanez, Y., Oltra, S., et al. (2011). Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Molecular Carcinogenesis, 50(3), 153–162.CrossRefPubMed Grau, E., Martinez, F., Orellana, C., Canete, A., Yanez, Y., Oltra, S., et al. (2011). Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Molecular Carcinogenesis, 50(3), 153–162.CrossRefPubMed
40.
go back to reference Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., Behm, F. G., Look, A. T., Lahti, J. M., & Kidd, V. J. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Medicine, 6(5), 529–535.CrossRefPubMed Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., Behm, F. G., Look, A. T., Lahti, J. M., & Kidd, V. J. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Medicine, 6(5), 529–535.CrossRefPubMed
41.
go back to reference Stupack, D. G., Teitz, T., Potter, M. D., Mikolon, D., Houghton, P. J., Kidd, V. J., Lahti, J. M., & Cheresh, D. A. (2006). Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature, 439(7072), 95–99.CrossRefPubMed Stupack, D. G., Teitz, T., Potter, M. D., Mikolon, D., Houghton, P. J., Kidd, V. J., Lahti, J. M., & Cheresh, D. A. (2006). Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature, 439(7072), 95–99.CrossRefPubMed
42.
go back to reference Schleiermacher, G., Javanmardi, N., Bernard, V., Leroy, Q., Cappo, J., Rio Frio, T., Pierron, G., Lapouble, E., Combaret, V., Speleman, F., de Wilde, B., Djos, A., Ora, I., Hedborg, F., Träger, C., Holmqvist, B. M., Abrahamsson, J., Peuchmaur, M., Michon, J., Janoueix-Lerosey, I., Kogner, P., Delattre, O., & Martinsson, T. (2014). Emergence of new ALK mutations at relapse of neuroblastoma. Journal of Clinical Oncology, 32(25), 2727–2734.CrossRefPubMed Schleiermacher, G., Javanmardi, N., Bernard, V., Leroy, Q., Cappo, J., Rio Frio, T., Pierron, G., Lapouble, E., Combaret, V., Speleman, F., de Wilde, B., Djos, A., Ora, I., Hedborg, F., Träger, C., Holmqvist, B. M., Abrahamsson, J., Peuchmaur, M., Michon, J., Janoueix-Lerosey, I., Kogner, P., Delattre, O., & Martinsson, T. (2014). Emergence of new ALK mutations at relapse of neuroblastoma. Journal of Clinical Oncology, 32(25), 2727–2734.CrossRefPubMed
43.
go back to reference Suenaga, Y., Islam, S. M., Alagu, J., Kaneko, Y., Kato, M., Tanaka, Y., Kawana, H., Hossain, S., Matsumoto, D., Yamamoto, M., Shoji, W., Itami, M., Shibata, T., Nakamura, Y., Ohira, M., Haraguchi, S., Takatori, A., & Nakagawara, A. (2014). NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3beta resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genetics, 10(1), e1003996.CrossRefPubMedPubMedCentral Suenaga, Y., Islam, S. M., Alagu, J., Kaneko, Y., Kato, M., Tanaka, Y., Kawana, H., Hossain, S., Matsumoto, D., Yamamoto, M., Shoji, W., Itami, M., Shibata, T., Nakamura, Y., Ohira, M., Haraguchi, S., Takatori, A., & Nakagawara, A. (2014). NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3beta resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genetics, 10(1), e1003996.CrossRefPubMedPubMedCentral
44.
go back to reference Chen, Z., Lin, Y., Barbieri, E., Burlingame, S., Hicks, J., Ludwig, A., & Shohet, J. M. (2009). Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia, 11(8), 753–762.CrossRefPubMedPubMedCentral Chen, Z., Lin, Y., Barbieri, E., Burlingame, S., Hicks, J., Ludwig, A., & Shohet, J. M. (2009). Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia, 11(8), 753–762.CrossRefPubMedPubMedCentral
45.
go back to reference Kishida, S., Mu, P., Miyakawa, S., Fujiwara, M., Abe, T., Sakamoto, K., Onishi, A., Nakamura, Y., & Kadomatsu, K. (2013). Midkine promotes neuroblastoma through Notch2 signaling. Cancer Research, 73(4), 1318–1327.CrossRefPubMed Kishida, S., Mu, P., Miyakawa, S., Fujiwara, M., Abe, T., Sakamoto, K., Onishi, A., Nakamura, Y., & Kadomatsu, K. (2013). Midkine promotes neuroblastoma through Notch2 signaling. Cancer Research, 73(4), 1318–1327.CrossRefPubMed
46.
go back to reference Ikematsu, S., Nakagawara, A., Nakamura, Y., Ohira, M., Shinjo, M., Kishida, S., & Kadomatsu, K. (2008). Plasma midkine level is a prognostic factor for human neuroblastoma. Cancer Science, 99(10), 2070–2074.CrossRefPubMed Ikematsu, S., Nakagawara, A., Nakamura, Y., Ohira, M., Shinjo, M., Kishida, S., & Kadomatsu, K. (2008). Plasma midkine level is a prognostic factor for human neuroblastoma. Cancer Science, 99(10), 2070–2074.CrossRefPubMed
47.
go back to reference Dorstyn, L., Puccini, J., Nikolic, A., Shalini, S., Wilson, C. H., Norris, M. D., et al. (2014). An unexpected role for caspase-2 in neuroblastoma. Cell Death & Disease, 5, e1383.CrossRef Dorstyn, L., Puccini, J., Nikolic, A., Shalini, S., Wilson, C. H., Norris, M. D., et al. (2014). An unexpected role for caspase-2 in neuroblastoma. Cell Death & Disease, 5, e1383.CrossRef
48.
go back to reference Burkhart, C. A., Watt, F., Murray, J., Pajic, M., Prokvolit, A., Xue, C., Flemming, C., Smith, J., Purmal, A., Isachenko, N., Komarov, P. G., Gurova, K. V., Sartorelli, A. C., Marshall, G. M., Norris, M. D., Gudkov, A. V., & Haber, M. (2009). Small-molecule multidrug resistance-associated protein 1 inhibitor reversan increases the therapeutic index of chemotherapy in mouse models of neuroblastoma. Cancer Research, 69(16), 6573–6580.CrossRefPubMedPubMedCentral Burkhart, C. A., Watt, F., Murray, J., Pajic, M., Prokvolit, A., Xue, C., Flemming, C., Smith, J., Purmal, A., Isachenko, N., Komarov, P. G., Gurova, K. V., Sartorelli, A. C., Marshall, G. M., Norris, M. D., Gudkov, A. V., & Haber, M. (2009). Small-molecule multidrug resistance-associated protein 1 inhibitor reversan increases the therapeutic index of chemotherapy in mouse models of neuroblastoma. Cancer Research, 69(16), 6573–6580.CrossRefPubMedPubMedCentral
49.
go back to reference Henderson, M. J., Haber, M., Porro, A., Munoz, M. A., Iraci, N., Xue, C., Murray, J., Flemming, C. L., Smith, J., Fletcher, J. I., Gherardi, S., Kwek, C. K., Russell, A. J., Valli, E., London, W. B., Buxton, A. B., Ashton, L. J., Sartorelli, A. C., Cohn, S. L., Schwab, M., Marshall, G. M., Perini, G., & Norris, M. D. (2011). ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. Journal of the National Cancer Institute, 103(16), 1236–1251.CrossRefPubMedPubMedCentral Henderson, M. J., Haber, M., Porro, A., Munoz, M. A., Iraci, N., Xue, C., Murray, J., Flemming, C. L., Smith, J., Fletcher, J. I., Gherardi, S., Kwek, C. K., Russell, A. J., Valli, E., London, W. B., Buxton, A. B., Ashton, L. J., Sartorelli, A. C., Cohn, S. L., Schwab, M., Marshall, G. M., Perini, G., & Norris, M. D. (2011). ABCC multidrug transporters in childhood neuroblastoma: clinical and biological effects independent of cytotoxic drug efflux. Journal of the National Cancer Institute, 103(16), 1236–1251.CrossRefPubMedPubMedCentral
50.
go back to reference Haber, M., Smith, J., Bordow, S. B., Flemming, C., Cohn, S. L., London, W. B., Marshall, G. M., & Norris, M. D. (2006). Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. Journal of Clinical Oncology, 24(10), 1546–1553.CrossRefPubMed Haber, M., Smith, J., Bordow, S. B., Flemming, C., Cohn, S. L., London, W. B., Marshall, G. M., & Norris, M. D. (2006). Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. Journal of Clinical Oncology, 24(10), 1546–1553.CrossRefPubMed
51.
go back to reference Murray, J., Valli, E., Yu, D. M. T., Truong, A. M., Gifford, A. J., Eden, G. L., Gamble, L. D., Hanssen, K. M., Flemming, C. L., Tan, A., Tivnan, A., Allan, S., Saletta, F., Cheung, L., Ruhle, M., Schuetz, J. D., Henderson, M. J., Byrne, J. A., Norris, M. D., Haber, M., & Fletcher, J. I. (2017). Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo. European Journal of Cancer, 83, 132–141.CrossRefPubMedPubMedCentral Murray, J., Valli, E., Yu, D. M. T., Truong, A. M., Gifford, A. J., Eden, G. L., Gamble, L. D., Hanssen, K. M., Flemming, C. L., Tan, A., Tivnan, A., Allan, S., Saletta, F., Cheung, L., Ruhle, M., Schuetz, J. D., Henderson, M. J., Byrne, J. A., Norris, M. D., Haber, M., & Fletcher, J. I. (2017). Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo. European Journal of Cancer, 83, 132–141.CrossRefPubMedPubMedCentral
52.
go back to reference Norris, M. D., Smith, J., Tanabe, K., Tobin, P., Flemming, C., Scheffer, G. L., Wielinga, P., Cohn, S. L., London, W. B., Marshall, G. M., Allen, J. D., & Haber, M. (2005). Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Molecular Cancer Therapeutics, 4(4), 547–553.CrossRefPubMed Norris, M. D., Smith, J., Tanabe, K., Tobin, P., Flemming, C., Scheffer, G. L., Wielinga, P., Cohn, S. L., London, W. B., Marshall, G. M., Allen, J. D., & Haber, M. (2005). Expression of multidrug transporter MRP4/ABCC4 is a marker of poor prognosis in neuroblastoma and confers resistance to irinotecan in vitro. Molecular Cancer Therapeutics, 4(4), 547–553.CrossRefPubMed
53.
go back to reference Hogarty, M. D., Norris, M. D., Davis, K., Liu, X., Evageliou, N. F., Hayes, C. S., Pawel, B., Guo, R., Zhao, H., Sekyere, E., Keating, J., Thomas, W., Cheng, N. C., Murray, J., Smith, J., Sutton, R., Venn, N., London, W. B., Buxton, A., Gilmour, S. K., Marshall, G. M., & Haber, M. (2008). ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Research, 68(23), 9735–9745.CrossRefPubMedPubMedCentral Hogarty, M. D., Norris, M. D., Davis, K., Liu, X., Evageliou, N. F., Hayes, C. S., Pawel, B., Guo, R., Zhao, H., Sekyere, E., Keating, J., Thomas, W., Cheng, N. C., Murray, J., Smith, J., Sutton, R., Venn, N., London, W. B., Buxton, A., Gilmour, S. K., Marshall, G. M., & Haber, M. (2008). ODC1 is a critical determinant of MYCN oncogenesis and a therapeutic target in neuroblastoma. Cancer Research, 68(23), 9735–9745.CrossRefPubMedPubMedCentral
54.
go back to reference Carter, D. R., Murray, J., Cheung, B. B., Gamble, L., Koach, J., Tsang, J., et al. (2015). Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblasstoma. Science Translational Medicine, 7(312), 312ra176.CrossRefPubMedPubMedCentral Carter, D. R., Murray, J., Cheung, B. B., Gamble, L., Koach, J., Tsang, J., et al. (2015). Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblasstoma. Science Translational Medicine, 7(312), 312ra176.CrossRefPubMedPubMedCentral
55.
go back to reference Evageliou, N. F., Haber, M., Vu, A., Laetsch, T. W., Murray, J., Gamble, L. D., Cheng, N. C., Liu, K., Reese, M., Corrigan, K. A., Ziegler, D. S., Webber, H., Hayes, C. S., Pawel, B., Marshall, G. M., Zhao, H., Gilmour, S. K., Norris, M. D., & Hogarty, M. D. (2016). Polyamine antagonist therapies inhibit neuroblastoma initiation and progression. Clinical Cancer Research, 22(17), 4391–4404.CrossRefPubMed Evageliou, N. F., Haber, M., Vu, A., Laetsch, T. W., Murray, J., Gamble, L. D., Cheng, N. C., Liu, K., Reese, M., Corrigan, K. A., Ziegler, D. S., Webber, H., Hayes, C. S., Pawel, B., Marshall, G. M., Zhao, H., Gilmour, S. K., Norris, M. D., & Hogarty, M. D. (2016). Polyamine antagonist therapies inhibit neuroblastoma initiation and progression. Clinical Cancer Research, 22(17), 4391–4404.CrossRefPubMed
56.
go back to reference Gamble, L. D., Purgato, S., Murray, J., Xiao, L., Yu, D. M. T., Hanssen, K. M., et al. (2019). Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Science Translational Medicine, 11(477). Gamble, L. D., Purgato, S., Murray, J., Xiao, L., Yu, D. M. T., Hanssen, K. M., et al. (2019). Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Science Translational Medicine, 11(477).
57.
go back to reference Yogev, O., Almeida, G. S., Barker, K. T., George, S. L., Kwok, C., Campbell, J., Zarowiecki, M., Kleftogiannis, D., Smith, L. M., Hallsworth, A., Berry, P., Möcklinghoff, T., Webber, H. T., Danielson, L. S., Buttery, B., Calton, E. A., da Costa, B. M., Poon, E., Jamin, Y., Lise, S., Veal, G. J., Sebire, N., Robinson, S. P., Anderson, J., & Chesler, L. (2019). In vivo modeling of chemoresistant neuroblastoma provides new insights into chemorefractory disease and metastasis. Cancer Research, 79(20), 5382–5393.CrossRefPubMed Yogev, O., Almeida, G. S., Barker, K. T., George, S. L., Kwok, C., Campbell, J., Zarowiecki, M., Kleftogiannis, D., Smith, L. M., Hallsworth, A., Berry, P., Möcklinghoff, T., Webber, H. T., Danielson, L. S., Buttery, B., Calton, E. A., da Costa, B. M., Poon, E., Jamin, Y., Lise, S., Veal, G. J., Sebire, N., Robinson, S. P., Anderson, J., & Chesler, L. (2019). In vivo modeling of chemoresistant neuroblastoma provides new insights into chemorefractory disease and metastasis. Cancer Research, 79(20), 5382–5393.CrossRefPubMed
58.
go back to reference Liu, T., Tee, A. E., Porro, A., Smith, S. A., Dwarte, T., Liu, P. Y., Iraci, N., Sekyere, E., Haber, M., Norris, M. D., Diolaiti, D., Della Valle, G., Perini, G., & Marshall, G. M. (2007). Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18682–18687.CrossRefPubMedPubMedCentral Liu, T., Tee, A. E., Porro, A., Smith, S. A., Dwarte, T., Liu, P. Y., Iraci, N., Sekyere, E., Haber, M., Norris, M. D., Diolaiti, D., Della Valle, G., Perini, G., & Marshall, G. M. (2007). Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18682–18687.CrossRefPubMedPubMedCentral
59.
go back to reference Waldeck, K., Cullinane, C., Ardley, K., Shortt, J., Martin, B., Tothill, R. W., Li, J., Johnstone, R. W., McArthur, G., Hicks, R. J., & Wood, P. J. (2016). Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. International Journal of Cancer, 139(1), 194–204.CrossRefPubMed Waldeck, K., Cullinane, C., Ardley, K., Shortt, J., Martin, B., Tothill, R. W., Li, J., Johnstone, R. W., McArthur, G., Hicks, R. J., & Wood, P. J. (2016). Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. International Journal of Cancer, 139(1), 194–204.CrossRefPubMed
60.
go back to reference Faisal, A., Vaughan, L., Bavetsias, V., Sun, C., Atrash, B., Avery, S., Jamin, Y., Robinson, S. P., Workman, P., Blagg, J., Raynaud, F. I., Eccles, S. A., Chesler, L., & Linardopoulos, S. (2011). The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Molecular Cancer Therapeutics, 10(11), 2115–2123.CrossRefPubMedPubMedCentral Faisal, A., Vaughan, L., Bavetsias, V., Sun, C., Atrash, B., Avery, S., Jamin, Y., Robinson, S. P., Workman, P., Blagg, J., Raynaud, F. I., Eccles, S. A., Chesler, L., & Linardopoulos, S. (2011). The aurora kinase inhibitor CCT137690 downregulates MYCN and sensitizes MYCN-amplified neuroblastoma in vivo. Molecular Cancer Therapeutics, 10(11), 2115–2123.CrossRefPubMedPubMedCentral
61.
go back to reference Brockmann, M., Poon, E., Berry, T., Carstensen, A., Deubzer, H. E., Rycak, L., Jamin, Y., Thway, K., Robinson, S. P., Roels, F., Witt, O., Fischer, M., Chesler, L., & Eilers, M. (2013). Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell, 24(1), 75–89.CrossRefPubMedPubMedCentral Brockmann, M., Poon, E., Berry, T., Carstensen, A., Deubzer, H. E., Rycak, L., Jamin, Y., Thway, K., Robinson, S. P., Roels, F., Witt, O., Fischer, M., Chesler, L., & Eilers, M. (2013). Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell, 24(1), 75–89.CrossRefPubMedPubMedCentral
62.
go back to reference Puissant, A., Frumm, S. M., Alexe, G., Bassil, C. F., Qi, J., Chanthery, Y. H., Nekritz, E. A., Zeid, R., Gustafson, W. C., Greninger, P., Garnett, M. J., McDermott, U., Benes, C. H., Kung, A. L., Weiss, W. A., Bradner, J. E., & Stegmaier, K. (2013). Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discovery, 3(3), 308–323.CrossRefPubMedPubMedCentral Puissant, A., Frumm, S. M., Alexe, G., Bassil, C. F., Qi, J., Chanthery, Y. H., Nekritz, E. A., Zeid, R., Gustafson, W. C., Greninger, P., Garnett, M. J., McDermott, U., Benes, C. H., Kung, A. L., Weiss, W. A., Bradner, J. E., & Stegmaier, K. (2013). Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discovery, 3(3), 308–323.CrossRefPubMedPubMedCentral
63.
go back to reference Dolman, M. E., Poon, E., Ebus, M. E., den Hartog, I. J., van Noesel, C. J., Jamin, Y., et al. (2015). Cyclin-dependent kinase inhibitor AT7519 as a potential drug for MYCN-dependent neuroblastoma. Clinical Cancer Research, 21(22), 5100–5109.CrossRefPubMedPubMedCentral Dolman, M. E., Poon, E., Ebus, M. E., den Hartog, I. J., van Noesel, C. J., Jamin, Y., et al. (2015). Cyclin-dependent kinase inhibitor AT7519 as a potential drug for MYCN-dependent neuroblastoma. Clinical Cancer Research, 21(22), 5100–5109.CrossRefPubMedPubMedCentral
64.
go back to reference Koach, J., Holien, J. K., Massudi, H., Carter, D. R., Ciampa, O. C., Herath, M., Lim, T., Seneviratne, J. A., Milazzo, G., Murray, J. E., McCarroll, J., Liu, B., Mayoh, C., Keenan, B., Stevenson, B. W., Gorman, M. A., Bell, J. L., Doughty, L., Hüttelmaier, S., Oberthuer, A., Fischer, M., Gifford, A. J., Liu, T., Zhang, X., Zhu, S., Gustafson, W. C., Haber, M., Norris, M. D., Fletcher, J. I., Perini, G., Parker, M. W., Cheung, B. B., & Marshall, G. M. (2019). Drugging MYCN oncogenic signaling through the MYCN-PA2G4 binding interface. Cancer Research, 79(21), 5652–5667.CrossRefPubMed Koach, J., Holien, J. K., Massudi, H., Carter, D. R., Ciampa, O. C., Herath, M., Lim, T., Seneviratne, J. A., Milazzo, G., Murray, J. E., McCarroll, J., Liu, B., Mayoh, C., Keenan, B., Stevenson, B. W., Gorman, M. A., Bell, J. L., Doughty, L., Hüttelmaier, S., Oberthuer, A., Fischer, M., Gifford, A. J., Liu, T., Zhang, X., Zhu, S., Gustafson, W. C., Haber, M., Norris, M. D., Fletcher, J. I., Perini, G., Parker, M. W., Cheung, B. B., & Marshall, G. M. (2019). Drugging MYCN oncogenic signaling through the MYCN-PA2G4 binding interface. Cancer Research, 79(21), 5652–5667.CrossRefPubMed
65.
go back to reference Chesler, L., & Weiss, W. A. (2011). Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Seminars in Cancer Biology, 21(4), 245–255.CrossRefPubMedPubMedCentral Chesler, L., & Weiss, W. A. (2011). Genetically engineered murine models--contribution to our understanding of the genetics, molecular pathology and therapeutic targeting of neuroblastoma. Seminars in Cancer Biology, 21(4), 245–255.CrossRefPubMedPubMedCentral
66.
go back to reference Kiyonari, S., & Kadomatsu, K. (2015). Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opinion on Drug Discovery, 10(1), 53–62.CrossRefPubMed Kiyonari, S., & Kadomatsu, K. (2015). Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opinion on Drug Discovery, 10(1), 53–62.CrossRefPubMed
67.
go back to reference Galluzzi, L., Senovilla, L., Zitvogel, L., & Kroemer, G. (2012). The secret ally: immunostimulation by anticancer drugs. Nature Reviews. Drug Discovery, 11(3), 215–233.CrossRefPubMed Galluzzi, L., Senovilla, L., Zitvogel, L., & Kroemer, G. (2012). The secret ally: immunostimulation by anticancer drugs. Nature Reviews. Drug Discovery, 11(3), 215–233.CrossRefPubMed
68.
go back to reference Kroesen, M., Nierkens, S., Ansems, M., Wassink, M., Orentas, R. J., Boon, L., den Brok, M., Hoogerbrugge, P. M., & Adema, G. J. (2014). A transplantable TH-MYCN transgenic tumor model in C57Bl/6 mice for preclinical immunological studies in neuroblastoma. International Journal of Cancer, 134(6), 1335–1345.CrossRefPubMed Kroesen, M., Nierkens, S., Ansems, M., Wassink, M., Orentas, R. J., Boon, L., den Brok, M., Hoogerbrugge, P. M., & Adema, G. J. (2014). A transplantable TH-MYCN transgenic tumor model in C57Bl/6 mice for preclinical immunological studies in neuroblastoma. International Journal of Cancer, 134(6), 1335–1345.CrossRefPubMed
69.
go back to reference Kroesen, M., Bull, C., Gielen, P. R., Brok, I. C., Armandari, I., Wassink, M., et al. (2016). Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma. Oncoimmunology, 5(6), e1164919.CrossRefPubMedPubMedCentral Kroesen, M., Bull, C., Gielen, P. R., Brok, I. C., Armandari, I., Wassink, M., et al. (2016). Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma. Oncoimmunology, 5(6), e1164919.CrossRefPubMedPubMedCentral
70.
go back to reference Mao, Y., Eissler, N., Blanc, K. L., Johnsen, J. I., Kogner, P., & Kiessling, R. (2016). Targeting suppressive myeloid cells potentiates checkpoint inhibitors to control spontaneous neuroblastoma. Clinical Cancer Research, 22(15), 3849–3859.CrossRefPubMed Mao, Y., Eissler, N., Blanc, K. L., Johnsen, J. I., Kogner, P., & Kiessling, R. (2016). Targeting suppressive myeloid cells potentiates checkpoint inhibitors to control spontaneous neuroblastoma. Clinical Cancer Research, 22(15), 3849–3859.CrossRefPubMed
71.
go back to reference Hidalgo, M., Amant, F., Biankin, A. V., Budinska, E., Byrne, A. T., Caldas, C., et al. (2014). Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery, 4(9), 998–1013.CrossRefPubMedPubMedCentral Hidalgo, M., Amant, F., Biankin, A. V., Budinska, E., Byrne, A. T., Caldas, C., et al. (2014). Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discovery, 4(9), 998–1013.CrossRefPubMedPubMedCentral
72.
go back to reference Hidalgo, M., Bruckheimer, E., Rajeshkumar, N. V., Garrido-Laguna, I., De Oliveira, E., Rubio-Viqueira, B., et al. (2011). A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Molecular Cancer Therapeutics, 10(8), 1311–1316.CrossRefPubMedPubMedCentral Hidalgo, M., Bruckheimer, E., Rajeshkumar, N. V., Garrido-Laguna, I., De Oliveira, E., Rubio-Viqueira, B., et al. (2011). A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Molecular Cancer Therapeutics, 10(8), 1311–1316.CrossRefPubMedPubMedCentral
73.
go back to reference Blattmann, C., Thiemann, M., Stenzinger, A., Roth, E. K., Dittmar, A., Witt, H., et al. (2015). Establishment of a patient-derived orthotopic osteosarcoma mouse model. Journal of Translational Medicine, 13, 136.CrossRefPubMedPubMedCentral Blattmann, C., Thiemann, M., Stenzinger, A., Roth, E. K., Dittmar, A., Witt, H., et al. (2015). Establishment of a patient-derived orthotopic osteosarcoma mouse model. Journal of Translational Medicine, 13, 136.CrossRefPubMedPubMedCentral
74.
go back to reference Kim, M. P., Evans, D. B., Wang, H., Abbruzzese, J. L., Fleming, J. B., & Gallick, G. E. (2009). Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature Protocols, 4(11), 1670–1680.CrossRefPubMedPubMedCentral Kim, M. P., Evans, D. B., Wang, H., Abbruzzese, J. L., Fleming, J. B., & Gallick, G. E. (2009). Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nature Protocols, 4(11), 1670–1680.CrossRefPubMedPubMedCentral
75.
go back to reference Monsma, D. J., Monks, N. R., Cherba, D. M., Dylewski, D., Eugster, E., Jahn, H., et al. (2012). Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. Journal of Translational Medicine, 10, 125.CrossRefPubMedPubMedCentral Monsma, D. J., Monks, N. R., Cherba, D. M., Dylewski, D., Eugster, E., Jahn, H., et al. (2012). Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. Journal of Translational Medicine, 10, 125.CrossRefPubMedPubMedCentral
76.
go back to reference Daniel, V. C., Marchionni, L., Hierman, J. S., Rhodes, J. T., Devereux, W. L., Rudin, C. M., Yung, R., Parmigiani, G., Dorsch, M., Peacock, C. D., & Watkins, D. N. (2009). A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Research, 69(8), 3364–3373.CrossRefPubMedPubMedCentral Daniel, V. C., Marchionni, L., Hierman, J. S., Rhodes, J. T., Devereux, W. L., Rudin, C. M., Yung, R., Parmigiani, G., Dorsch, M., Peacock, C. D., & Watkins, D. N. (2009). A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Research, 69(8), 3364–3373.CrossRefPubMedPubMedCentral
77.
go back to reference Tentler, J. J., Tan, A. C., Weekes, C. D., Jimeno, A., Leong, S., Pitts, T. M., Arcaroli, J. J., Messersmith, W. A., & Eckhardt, S. G. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews. Clinical Oncology, 9(6), 338–350.CrossRefPubMedPubMedCentral Tentler, J. J., Tan, A. C., Weekes, C. D., Jimeno, A., Leong, S., Pitts, T. M., Arcaroli, J. J., Messersmith, W. A., & Eckhardt, S. G. (2012). Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews. Clinical Oncology, 9(6), 338–350.CrossRefPubMedPubMedCentral
78.
go back to reference Tsuchida, Y., Yokomori, K., Iwanaka, T., & Saito, S. (1984). Nude mouse xenograft study for treatment of neuroblastoma: effects of chemotherapeutic agents and surgery on tumor growth and cell kinetics. Journal of Pediatric Surgery, 19(1), 72–76.CrossRefPubMed Tsuchida, Y., Yokomori, K., Iwanaka, T., & Saito, S. (1984). Nude mouse xenograft study for treatment of neuroblastoma: effects of chemotherapeutic agents and surgery on tumor growth and cell kinetics. Journal of Pediatric Surgery, 19(1), 72–76.CrossRefPubMed
79.
go back to reference Tsuchida, Y., Kanda, N., Shimatake, H., Kaneko, Y., & Notomi, T. (1988). Clinical significance of gene amplification studied in human neuroblastoma xenografts: relationship with tumor growth rate, chemotherapeutic sensitivities and levels of neuron-specific enolase. Experimental Cell Biology, 56(5), 277–284.PubMed Tsuchida, Y., Kanda, N., Shimatake, H., Kaneko, Y., & Notomi, T. (1988). Clinical significance of gene amplification studied in human neuroblastoma xenografts: relationship with tumor growth rate, chemotherapeutic sensitivities and levels of neuron-specific enolase. Experimental Cell Biology, 56(5), 277–284.PubMed
80.
go back to reference George, B. A., Yanik, G., Wells, R. J., Martin, L. W., Soukup, S., Ballard, E. T., Gartside, P. S., & Lampkin, B. C. (1993). Growth patterns of human neuroblastoma xenografts and their relationship to treatment outcome. Cancer, 72(11), 3331–3339.CrossRefPubMed George, B. A., Yanik, G., Wells, R. J., Martin, L. W., Soukup, S., Ballard, E. T., Gartside, P. S., & Lampkin, B. C. (1993). Growth patterns of human neuroblastoma xenografts and their relationship to treatment outcome. Cancer, 72(11), 3331–3339.CrossRefPubMed
81.
go back to reference Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431.CrossRefPubMedPubMedCentral Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431.CrossRefPubMedPubMedCentral
82.
go back to reference Zarzosa, P., Navarro, N., Giralt, I., Molist, C., Almazan-Moga, A., Vidal, I., et al. (2017). Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clinical & Translational Oncology, 19(1), 44–50.CrossRef Zarzosa, P., Navarro, N., Giralt, I., Molist, C., Almazan-Moga, A., Vidal, I., et al. (2017). Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clinical & Translational Oncology, 19(1), 44–50.CrossRef
83.
go back to reference Stewart, E., Federico, S. M., Chen, X., Shelat, A. A., Bradley, C., Gordon, B., Karlstrom, A., Twarog, N. R., Clay, M. R., Bahrami, A., Freeman 3rd, B. B., Xu, B., Zhou, X., Wu, J., Honnell, V., Ocarz, M., Blankenship, K., Dapper, J., Mardis, E. R., Wilson, R. K., Downing, J., Zhang, J., Easton, J., Pappo, A., & Dyer, M. A. (2017). Orthotopic patient-derived xenografts of paediatric solid tumours. Nature, 549(7670), 96–100.CrossRefPubMedPubMedCentral Stewart, E., Federico, S. M., Chen, X., Shelat, A. A., Bradley, C., Gordon, B., Karlstrom, A., Twarog, N. R., Clay, M. R., Bahrami, A., Freeman 3rd, B. B., Xu, B., Zhou, X., Wu, J., Honnell, V., Ocarz, M., Blankenship, K., Dapper, J., Mardis, E. R., Wilson, R. K., Downing, J., Zhang, J., Easton, J., Pappo, A., & Dyer, M. A. (2017). Orthotopic patient-derived xenografts of paediatric solid tumours. Nature, 549(7670), 96–100.CrossRefPubMedPubMedCentral
84.
go back to reference Kamili, A., Gifford, A. J., Li, N., Mayoh, C., Chow, S., Failes, T. W., et al. (2020). Accelerating development of high-risk neuroblastoma patient-derived xenograft models for pre-clinical testing and personalised therapy. British Journal of Cancer. https://doi.org/10.1038/s41416-019-0682-4. Kamili, A., Gifford, A. J., Li, N., Mayoh, C., Chow, S., Failes, T. W., et al. (2020). Accelerating development of high-risk neuroblastoma patient-derived xenograft models for pre-clinical testing and personalised therapy. British Journal of Cancer. https://​doi.​org/​10.​1038/​s41416-019-0682-4.
85.
go back to reference Rokita, J. L., Rathi, K. S., Cardenas, M. F., Upton, K. A., Jayaseelan, J., Cross, K. L., et al. (2019). Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design. Cell Reports, 29(6), 1675–1689.e1679.CrossRefPubMedPubMedCentral Rokita, J. L., Rathi, K. S., Cardenas, M. F., Upton, K. A., Jayaseelan, J., Cross, K. L., et al. (2019). Genomic profiling of childhood tumor patient-derived xenograft models to enable rational clinical trial design. Cell Reports, 29(6), 1675–1689.e1679.CrossRefPubMedPubMedCentral
86.
go back to reference Ito, R., Katano, I., Kawai, K., Hirata, H., Ogura, T., Kamisako, T., Eto, T., & Ito, M. (2009). Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation, 87(11), 1654–1658.CrossRefPubMed Ito, R., Katano, I., Kawai, K., Hirata, H., Ogura, T., Kamisako, T., Eto, T., & Ito, M. (2009). Highly sensitive model for xenogenic GVHD using severe immunodeficient NOG mice. Transplantation, 87(11), 1654–1658.CrossRefPubMed
87.
go back to reference Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., Mathews, J., O'Halloran, T. V., Wei, J. J., & Mazar, A. P. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia, 17(9), 735–741.CrossRefPubMedPubMedCentral Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., Mathews, J., O'Halloran, T. V., Wei, J. J., & Mazar, A. P. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. Neoplasia, 17(9), 735–741.CrossRefPubMedPubMedCentral
88.
go back to reference Zhang, L., Liu, Y., Wang, X., Tang, Z., Li, S., Hu, Y., et al. (2015). The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Scientific Reports, 5, 9447.CrossRefPubMedPubMedCentral Zhang, L., Liu, Y., Wang, X., Tang, Z., Li, S., Hu, Y., et al. (2015). The extent of inflammatory infiltration in primary cancer tissues is associated with lymphomagenesis in immunodeficient mice. Scientific Reports, 5, 9447.CrossRefPubMedPubMedCentral
89.
go back to reference Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate, 75(6), 585–592.CrossRefPubMed Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate, 75(6), 585–592.CrossRefPubMed
90.
go back to reference Braekeveldt, N., Wigerup, C., Gisselsson, D., Mohlin, S., Merselius, M., Beckman, S., Jonson, T., Börjesson, A., Backman, T., Tadeo, I., Berbegall, A. P., Ora, I., Navarro, S., Noguera, R., Påhlman, S., & Bexell, D. (2015). Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. International Journal of Cancer, 136(5), E252–E261.CrossRefPubMed Braekeveldt, N., Wigerup, C., Gisselsson, D., Mohlin, S., Merselius, M., Beckman, S., Jonson, T., Börjesson, A., Backman, T., Tadeo, I., Berbegall, A. P., Ora, I., Navarro, S., Noguera, R., Påhlman, S., & Bexell, D. (2015). Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. International Journal of Cancer, 136(5), E252–E261.CrossRefPubMed
91.
go back to reference Read, M., Liu, D., Duong, C. P., Cullinane, C., Murray, W. K., Fennell, C. M., Shortt, J., Westerman, D., Burton, P., Clemons, N. J., & Phillips, W. A. (2016). Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Annals of Surgical Oncology, 23(1), 305–311.CrossRefPubMed Read, M., Liu, D., Duong, C. P., Cullinane, C., Murray, W. K., Fennell, C. M., Shortt, J., Westerman, D., Burton, P., Clemons, N. J., & Phillips, W. A. (2016). Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Annals of Surgical Oncology, 23(1), 305–311.CrossRefPubMed
92.
go back to reference Khanna, C., Jaboin, J. J., Drakos, E., Tsokos, M., & Thiele, C. J. (2002). Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo, 16(2), 77–85.PubMed Khanna, C., Jaboin, J. J., Drakos, E., Tsokos, M., & Thiele, C. J. (2002). Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo, 16(2), 77–85.PubMed
93.
go back to reference Braekeveldt, N., & Bexell, D. (2018). Patient-derived xenografts as preclinical neuroblastoma models. Cell and Tissue Research, 372(2), 233–243.CrossRefPubMed Braekeveldt, N., & Bexell, D. (2018). Patient-derived xenografts as preclinical neuroblastoma models. Cell and Tissue Research, 372(2), 233–243.CrossRefPubMed
94.
go back to reference Talmadge, J. E., Singh, R. K., Fidler, I. J., & Raz, A. (2007). Murine models to evaluate novel and conventional therapeutic strategies for cancer. The American Journal of Pathology, 170(3), 793–804.CrossRefPubMedPubMedCentral Talmadge, J. E., Singh, R. K., Fidler, I. J., & Raz, A. (2007). Murine models to evaluate novel and conventional therapeutic strategies for cancer. The American Journal of Pathology, 170(3), 793–804.CrossRefPubMedPubMedCentral
95.
go back to reference Braekeveldt, N., Wigerup, C., Tadeo, I., Beckman, S., Sanden, C., Jonsson, J., et al. (2016). Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours. Cancer Letters, 375(2), 384–389.CrossRefPubMed Braekeveldt, N., Wigerup, C., Tadeo, I., Beckman, S., Sanden, C., Jonsson, J., et al. (2016). Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours. Cancer Letters, 375(2), 384–389.CrossRefPubMed
96.
go back to reference Singh, Z. (2016). Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnology, Science and Applications, 9, 15–28.CrossRefPubMedPubMedCentral Singh, Z. (2016). Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnology, Science and Applications, 9, 15–28.CrossRefPubMedPubMedCentral
97.
go back to reference de la Fuente, A., Alonso-Alconada, L., Costa, C., Cueva, J., Garcia-Caballero, T., Lopez-Lopez, R., et al. (2015). M-trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. Journal of the National Cancer Institute, 107(9). de la Fuente, A., Alonso-Alconada, L., Costa, C., Cueva, J., Garcia-Caballero, T., Lopez-Lopez, R., et al. (2015). M-trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. Journal of the National Cancer Institute, 107(9).
98.
go back to reference Dong, Z., Imai, A., Krishnamurthy, S., Zhang, Z., Zeitlin, B. D., & Nor, J. E. (2013). Xenograft tumors vascularized with murine blood vessels may overestimate the effect of anti-tumor drugs: a pilot study. PLoS One, 8(12), e84236.CrossRefPubMedPubMedCentral Dong, Z., Imai, A., Krishnamurthy, S., Zhang, Z., Zeitlin, B. D., & Nor, J. E. (2013). Xenograft tumors vascularized with murine blood vessels may overestimate the effect of anti-tumor drugs: a pilot study. PLoS One, 8(12), e84236.CrossRefPubMedPubMedCentral
99.
go back to reference Rubio-Viqueira, B., & Hidalgo, M. (2009). Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clinical Pharmacology and Therapeutics, 85(2), 217–221.CrossRefPubMed Rubio-Viqueira, B., & Hidalgo, M. (2009). Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clinical Pharmacology and Therapeutics, 85(2), 217–221.CrossRefPubMed
100.
go back to reference Stewart, E., Shelat, A., Bradley, C., Chen, X., Federico, S., Thiagarajan, S., Shirinifard, A., Bahrami, A., Pappo, A., Qu, C., Finkelstein, D., Sablauer, A., & Dyer, M. A. (2015). Development and characterization of a human orthotopic neuroblastoma xenograft. Developmental Biology, 407(2), 344–355.CrossRefPubMedPubMedCentral Stewart, E., Shelat, A., Bradley, C., Chen, X., Federico, S., Thiagarajan, S., Shirinifard, A., Bahrami, A., Pappo, A., Qu, C., Finkelstein, D., Sablauer, A., & Dyer, M. A. (2015). Development and characterization of a human orthotopic neuroblastoma xenograft. Developmental Biology, 407(2), 344–355.CrossRefPubMedPubMedCentral
101.
go back to reference Fuchs, D., Christofferson, R., Stridsberg, M., Lindhagen, E., & Azarbayjani, F. (2009). Regression of orthotopic neuroblastoma in mice by targeting the endothelial and tumor cell compartments. Journal of Translational Medicine, 7, 16.CrossRefPubMedPubMedCentral Fuchs, D., Christofferson, R., Stridsberg, M., Lindhagen, E., & Azarbayjani, F. (2009). Regression of orthotopic neuroblastoma in mice by targeting the endothelial and tumor cell compartments. Journal of Translational Medicine, 7, 16.CrossRefPubMedPubMedCentral
102.
go back to reference Svensson, A., Backman, U., Jonsson, E., Larsson, R., & Christofferson, R. (2002). CHS 828 inhibits neuroblastoma growth in mice alone and in combination with antiangiogenic drugs. Pediatric Research, 51(5), 607–611.CrossRefPubMed Svensson, A., Backman, U., Jonsson, E., Larsson, R., & Christofferson, R. (2002). CHS 828 inhibits neuroblastoma growth in mice alone and in combination with antiangiogenic drugs. Pediatric Research, 51(5), 607–611.CrossRefPubMed
103.
go back to reference Henriksson, K. C., Almgren, M. A., Thurlow, R., Varki, N. M., & Chang, C. L. (2004). A fluorescent orthotopic mouse model for reliable measurement and genetic modulation of human neuroblastoma metastasis. Clinical & Experimental Metastasis, 21(6), 563–570.CrossRef Henriksson, K. C., Almgren, M. A., Thurlow, R., Varki, N. M., & Chang, C. L. (2004). A fluorescent orthotopic mouse model for reliable measurement and genetic modulation of human neuroblastoma metastasis. Clinical & Experimental Metastasis, 21(6), 563–570.CrossRef
104.
go back to reference Dickson, P. V., Hamner, B., Ng, C. Y., Hall, M. M., Zhou, J., Hargrove, P. W., McCarville, M., & Davidoff, A. M. (2007). In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma. Journal of Pediatric Surgery, 42(7), 1172–1179.CrossRefPubMed Dickson, P. V., Hamner, B., Ng, C. Y., Hall, M. M., Zhou, J., Hargrove, P. W., McCarville, M., & Davidoff, A. M. (2007). In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma. Journal of Pediatric Surgery, 42(7), 1172–1179.CrossRefPubMed
105.
go back to reference Daudigeos-Dubus, E., LE, D. L., Rouffiac, V., Bawa, O., Leguerney, I., Opolon, P., et al. (2014). Establishment and characterization of new orthotopic and metastatic neuroblastoma models. In Vivo, 28(4), 425–434.PubMed Daudigeos-Dubus, E., LE, D. L., Rouffiac, V., Bawa, O., Leguerney, I., Opolon, P., et al. (2014). Establishment and characterization of new orthotopic and metastatic neuroblastoma models. In Vivo, 28(4), 425–434.PubMed
106.
go back to reference Abbasi, M. R., Rifatbegovic, F., Brunner, C., Mann, G., Ziegler, A., Potschger, U., et al. (2017). Impact of disseminated neuroblastoma cells on the identification of the relapse-seeding clone. Clinical Cancer Research, 23(15), 4224–4232.CrossRefPubMedPubMedCentral Abbasi, M. R., Rifatbegovic, F., Brunner, C., Mann, G., Ziegler, A., Potschger, U., et al. (2017). Impact of disseminated neuroblastoma cells on the identification of the relapse-seeding clone. Clinical Cancer Research, 23(15), 4224–4232.CrossRefPubMedPubMedCentral
107.
go back to reference DuBois, S. G., Kalika, Y., Lukens, J. N., Brodeur, G. M., Seeger, R. C., Atkinson, J. B., et al. (1999). Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of Pediatric Hematology/Oncology, 21(3), 181–189.CrossRefPubMed DuBois, S. G., Kalika, Y., Lukens, J. N., Brodeur, G. M., Seeger, R. C., Atkinson, J. B., et al. (1999). Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of Pediatric Hematology/Oncology, 21(3), 181–189.CrossRefPubMed
108.
go back to reference Kramer, K., Kushner, B., Heller, G., & Cheung, N. K. (2001). Neuroblastoma metastatic to the central nervous system. The memorial Sloan-Kettering cancer center experience and a literature review. Cancer, 91(8), 1510–1519.CrossRefPubMed Kramer, K., Kushner, B., Heller, G., & Cheung, N. K. (2001). Neuroblastoma metastatic to the central nervous system. The memorial Sloan-Kettering cancer center experience and a literature review. Cancer, 91(8), 1510–1519.CrossRefPubMed
109.
go back to reference Morgenstern, D. A., London, W. B., Stephens, D., Volchenboum, S. L., Simon, T., Nakagawara, A., Shimada, H., Schleiermacher, G., Matthay, K. K., Cohn, S. L., Pearson, A. D., & Irwin, M. S. (2016). Prognostic significance of pattern and burden of metastatic disease in patients with stage 4 neuroblastoma: a study from the iInternational Neuroblastoma Risk Group database. European Journal of Cancer, 65, 1–10.CrossRefPubMed Morgenstern, D. A., London, W. B., Stephens, D., Volchenboum, S. L., Simon, T., Nakagawara, A., Shimada, H., Schleiermacher, G., Matthay, K. K., Cohn, S. L., Pearson, A. D., & Irwin, M. S. (2016). Prognostic significance of pattern and burden of metastatic disease in patients with stage 4 neuroblastoma: a study from the iInternational Neuroblastoma Risk Group database. European Journal of Cancer, 65, 1–10.CrossRefPubMed
110.
go back to reference Almgren, M. A., Henriksson, K. C., Fujimoto, J., & Chang, C. L. (2004). Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma. Molecular Cancer Research, 2(7), 387–394.PubMed Almgren, M. A., Henriksson, K. C., Fujimoto, J., & Chang, C. L. (2004). Nucleoside diphosphate kinase A/nm23-H1 promotes metastasis of NB69-derived human neuroblastoma. Molecular Cancer Research, 2(7), 387–394.PubMed
111.
go back to reference Hanna, C., Kwok, L., Finlay-Schultz, J., Sartorius, C. A., & Cittelly, D. M. (2016). Labeling of breast Cancer patient-derived Xenografts with traceable reporters for tumor growth and metastasis studies. Journal of Visualized Experiments, 117. Hanna, C., Kwok, L., Finlay-Schultz, J., Sartorius, C. A., & Cittelly, D. M. (2016). Labeling of breast Cancer patient-derived Xenografts with traceable reporters for tumor growth and metastasis studies. Journal of Visualized Experiments, 117.
112.
go back to reference Jackson, J. R., Kim, Y., Seeger, R. C., & Kim, E. S. (2016). A novel minimal residual disease model of neuroblastoma in mice. Journal of Pediatric Surgery, 51(6), 991–994.CrossRefPubMed Jackson, J. R., Kim, Y., Seeger, R. C., & Kim, E. S. (2016). A novel minimal residual disease model of neuroblastoma in mice. Journal of Pediatric Surgery, 51(6), 991–994.CrossRefPubMed
113.
go back to reference Barry, W. E., Jackson, J. R., Asuelime, G. E., Wu, H. W., Sun, J., Wan, Z., Malvar, J., Sheard, M. A., Wang, L., Seeger, R. C., & Kim, E. S. (2019). Activated natural killer cells in combination with anti-GD2 antibody dinutuximab improve survival of mice after surgical resection of primary neuroblastoma. Clinical Cancer Research, 25(1), 325–333.CrossRefPubMed Barry, W. E., Jackson, J. R., Asuelime, G. E., Wu, H. W., Sun, J., Wan, Z., Malvar, J., Sheard, M. A., Wang, L., Seeger, R. C., & Kim, E. S. (2019). Activated natural killer cells in combination with anti-GD2 antibody dinutuximab improve survival of mice after surgical resection of primary neuroblastoma. Clinical Cancer Research, 25(1), 325–333.CrossRefPubMed
114.
go back to reference Bogenmann, E. (1996). A metastatic neuroblastoma model in SCID mice. International Journal of Cancer, 67(3), 379–385.CrossRefPubMed Bogenmann, E. (1996). A metastatic neuroblastoma model in SCID mice. International Journal of Cancer, 67(3), 379–385.CrossRefPubMed
115.
go back to reference Zhang, L., Smith, K. M., Chong, A. L., Stempak, D., Yeger, H., Marrano, P., Thorner, P. S., Irwin, M. S., Kaplan, D. R., & Baruchel, S. (2009). In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia, 11(5), 426–435.CrossRefPubMedPubMedCentral Zhang, L., Smith, K. M., Chong, A. L., Stempak, D., Yeger, H., Marrano, P., Thorner, P. S., Irwin, M. S., Kaplan, D. R., & Baruchel, S. (2009). In vivo antitumor and antimetastatic activity of sunitinib in preclinical neuroblastoma mouse model. Neoplasia, 11(5), 426–435.CrossRefPubMedPubMedCentral
116.
go back to reference Muhlethaler-Mottet, A., Liberman, J., Ascencao, K., Flahaut, M., Balmas Bourloud, K., Yan, P., et al. (2015). The CXCR4/CXCR7/CXCL12 axis is involved in a secondary but complex control of neuroblastoma metastatic cell homing. PLoS One, 10(5), e0125616.CrossRefPubMedPubMedCentral Muhlethaler-Mottet, A., Liberman, J., Ascencao, K., Flahaut, M., Balmas Bourloud, K., Yan, P., et al. (2015). The CXCR4/CXCR7/CXCL12 axis is involved in a secondary but complex control of neuroblastoma metastatic cell homing. PLoS One, 10(5), e0125616.CrossRefPubMedPubMedCentral
117.
go back to reference Seong, B. K., Fathers, K. E., Hallett, R., Yung, C. K., Stein, L. D., Mouaaz, S., Kee, L., Hawkins, C. E., Irwin, M. S., & Kaplan, D. R. (2017). A metastatic mouse model identifies genes that regulate neuroblastoma metastasis. Cancer Research, 77(3), 696–706.CrossRefPubMed Seong, B. K., Fathers, K. E., Hallett, R., Yung, C. K., Stein, L. D., Mouaaz, S., Kee, L., Hawkins, C. E., Irwin, M. S., & Kaplan, D. R. (2017). A metastatic mouse model identifies genes that regulate neuroblastoma metastasis. Cancer Research, 77(3), 696–706.CrossRefPubMed
118.
go back to reference Kuchimaru, T., Kataoka, N., Nakagawa, K., Isozaki, T., Miyabara, H., Minegishi, M., Kadonosono, T., & Kizaka-Kondoh, S. (2018). A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nature Communications, 9(1), 2981.CrossRefPubMedPubMedCentral Kuchimaru, T., Kataoka, N., Nakagawa, K., Isozaki, T., Miyabara, H., Minegishi, M., Kadonosono, T., & Kizaka-Kondoh, S. (2018). A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nature Communications, 9(1), 2981.CrossRefPubMedPubMedCentral
119.
go back to reference Lee, S., Qiao, J., Paul, P., O'Connor, K. L., Evers, M. B., & Chung, D. H. (2012). FAK is a critical regulator of neuroblastoma liver metastasis. Oncotarget, 3(12), 1576–1587.CrossRefPubMedPubMedCentral Lee, S., Qiao, J., Paul, P., O'Connor, K. L., Evers, M. B., & Chung, D. H. (2012). FAK is a critical regulator of neuroblastoma liver metastasis. Oncotarget, 3(12), 1576–1587.CrossRefPubMedPubMedCentral
120.
go back to reference Qiao, J., Kang, J., Ishola, T. A., Rychahou, P. G., Evers, B. M., & Chung, D. H. (2008). Gastrin-releasing peptide receptor silencing suppresses the tumorigenesis and metastatic potential of neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12891–12896.CrossRefPubMedPubMedCentral Qiao, J., Kang, J., Ishola, T. A., Rychahou, P. G., Evers, B. M., & Chung, D. H. (2008). Gastrin-releasing peptide receptor silencing suppresses the tumorigenesis and metastatic potential of neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 12891–12896.CrossRefPubMedPubMedCentral
121.
go back to reference Sohara, Y., Shimada, H., Scadeng, M., Pollack, H., Yamada, S., Ye, W., Reynolds, C. P., & DeClerck, Y. (2003). Lytic bone lesions in human neuroblastoma xenograft involve osteoclast recruitment and are inhibited by bisphosphonate. Cancer Research, 63(12), 3026–3031.PubMed Sohara, Y., Shimada, H., Scadeng, M., Pollack, H., Yamada, S., Ye, W., Reynolds, C. P., & DeClerck, Y. (2003). Lytic bone lesions in human neuroblastoma xenograft involve osteoclast recruitment and are inhibited by bisphosphonate. Cancer Research, 63(12), 3026–3031.PubMed
122.
go back to reference Zhao, H., Cai, W., Li, S., Da, Z., Sun, H., Ma, L., et al. (2012). Establishment and characterization of xenograft models of human neuroblastoma bone metastasis. Child's Nervous System, 28(12), 2047–2054.CrossRefPubMed Zhao, H., Cai, W., Li, S., Da, Z., Sun, H., Ma, L., et al. (2012). Establishment and characterization of xenograft models of human neuroblastoma bone metastasis. Child's Nervous System, 28(12), 2047–2054.CrossRefPubMed
123.
go back to reference Mohlin, S., Hamidian, A., von Stedingk, K., Bridges, E., Wigerup, C., Bexell, D., & Påhlman, S. (2015). PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. Cancer Research, 75(21), 4617–4628.CrossRefPubMed Mohlin, S., Hamidian, A., von Stedingk, K., Bridges, E., Wigerup, C., Bexell, D., & Påhlman, S. (2015). PI3K-mTORC2 but not PI3K-mTORC1 regulates transcription of HIF2A/EPAS1 and vascularization in neuroblastoma. Cancer Research, 75(21), 4617–4628.CrossRefPubMed
124.
go back to reference Infarinato, N. R., Park, J. H., Krytska, K., Ryles, H. T., Sano, R., Szigety, K. M., Li, Y., Zou, H. Y., Lee, N. V., Smeal, T., Lemmon, M. A., & Mossé, Y. P. (2016). The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in ALK-driven Neuroblastoma. Cancer Discovery, 6(1), 96–107.CrossRefPubMed Infarinato, N. R., Park, J. H., Krytska, K., Ryles, H. T., Sano, R., Szigety, K. M., Li, Y., Zou, H. Y., Lee, N. V., Smeal, T., Lemmon, M. A., & Mossé, Y. P. (2016). The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in ALK-driven Neuroblastoma. Cancer Discovery, 6(1), 96–107.CrossRefPubMed
125.
go back to reference Krytska, K., Ryles, H. T., Sano, R., Raman, P., Infarinato, N. R., Hansel, T. D., Makena, M. R., Song, M. M., Reynolds, C. P., & Mossé, Y. P. (2016). Crizotinib synergizes with chemotherapy in preclinical models of neuroblastoma. Clinical Cancer Research, 22(4), 948–960.CrossRefPubMed Krytska, K., Ryles, H. T., Sano, R., Raman, P., Infarinato, N. R., Hansel, T. D., Makena, M. R., Song, M. M., Reynolds, C. P., & Mossé, Y. P. (2016). Crizotinib synergizes with chemotherapy in preclinical models of neuroblastoma. Clinical Cancer Research, 22(4), 948–960.CrossRefPubMed
126.
go back to reference Houghton, P. J., Morton, C. L., Tucker, C., Payne, D., Favours, E., Cole, C., Gorlick, R., Kolb, E. A., Zhang, W., Lock, R., Carol, H., Tajbakhsh, M., Reynolds, C. P., Maris, J. M., Courtright, J., Keir, S. T., Friedman, H. S., Stopford, C., Zeidner, J., Wu, J., Liu, T., Billups, C. A., Khan, J., Ansher, S., Zhang, J., & Smith, M. A. (2007). The pediatric preclinical testing program: description of models and early testing results. Pediatric Blood & Cancer, 49(7), 928–940.CrossRef Houghton, P. J., Morton, C. L., Tucker, C., Payne, D., Favours, E., Cole, C., Gorlick, R., Kolb, E. A., Zhang, W., Lock, R., Carol, H., Tajbakhsh, M., Reynolds, C. P., Maris, J. M., Courtright, J., Keir, S. T., Friedman, H. S., Stopford, C., Zeidner, J., Wu, J., Liu, T., Billups, C. A., Khan, J., Ansher, S., Zhang, J., & Smith, M. A. (2007). The pediatric preclinical testing program: description of models and early testing results. Pediatric Blood & Cancer, 49(7), 928–940.CrossRef
127.
go back to reference Townsend, E. C., Murakami, M. A., Christodoulou, A., Christie, A. L., Koster, J., DeSouza, T. A., et al. (2016). The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell, 29(4), 574–586.CrossRefPubMedPubMedCentral Townsend, E. C., Murakami, M. A., Christodoulou, A., Christie, A. L., Koster, J., DeSouza, T. A., et al. (2016). The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell, 29(4), 574–586.CrossRefPubMedPubMedCentral
128.
go back to reference Stewart, E., Federico, S., Karlstrom, A., Shelat, A., Sablauer, A., Pappo, A., & Dyer, M. A. (2016). The childhood solid tumor network: a new resource for the developmental biology and oncology research communities. Developmental Biology, 411(2), 287–293.CrossRefPubMed Stewart, E., Federico, S., Karlstrom, A., Shelat, A., Sablauer, A., Pappo, A., & Dyer, M. A. (2016). The childhood solid tumor network: a new resource for the developmental biology and oncology research communities. Developmental Biology, 411(2), 287–293.CrossRefPubMed
129.
go back to reference Murphy, B., Yin, H., Maris, J. M., Kolb, E. A., Gorlick, R., Reynolds, C. P., Kang, M. H., Keir, S. T., Kurmasheva, R. T., Dvorchik, I., Wu, J., Billups, C. A., Boateng, N., Smith, M. A., Lock, R. B., & Houghton, P. J. (2016). Evaluation of alternative in vivo drug screening methodology: a single mouse analysis. Cancer Research, 76(19), 5798–5809.CrossRefPubMedPubMedCentral Murphy, B., Yin, H., Maris, J. M., Kolb, E. A., Gorlick, R., Reynolds, C. P., Kang, M. H., Keir, S. T., Kurmasheva, R. T., Dvorchik, I., Wu, J., Billups, C. A., Boateng, N., Smith, M. A., Lock, R. B., & Houghton, P. J. (2016). Evaluation of alternative in vivo drug screening methodology: a single mouse analysis. Cancer Research, 76(19), 5798–5809.CrossRefPubMedPubMedCentral
130.
go back to reference Meehan, T. F., Conte, N., Goldstein, T., Inghirami, G., Murakami, M. A., Brabetz, S., Gu, Z., Wiser, J. A., Dunn, P., Begley, D. A., Krupke, D. M., Bertotti, A., Bruna, A., Brush, M. H., Byrne, A. T., Caldas, C., Christie, A. L., Clark, D. A., Dowst, H., Dry, J. R., Doroshow, J. H., Duchamp, O., Evrard, Y. A., Ferretti, S., Frese, K. K., Goodwin, N. C., Greenawalt, D., Haendel, M. A., Hermans, E., Houghton, P. J., Jonkers, J., Kemper, K., Khor, T. O., Lewis, M. T., Lloyd, K. C. K., Mason, J., Medico, E., Neuhauser, S. B., Olson, J. M., Peeper, D. S., Rueda, O. M., Seong, J. K., Trusolino, L., Vinolo, E., Wechsler-Reya, R. J., Weinstock, D. M., Welm, A., Weroha, S. J., Amant, F., Pfister, S. M., Kool, M., Parkinson, H., Butte, A. J., & Bult, C. J. (2017). PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Research, 77(21), e62–e66.CrossRefPubMedPubMedCentral Meehan, T. F., Conte, N., Goldstein, T., Inghirami, G., Murakami, M. A., Brabetz, S., Gu, Z., Wiser, J. A., Dunn, P., Begley, D. A., Krupke, D. M., Bertotti, A., Bruna, A., Brush, M. H., Byrne, A. T., Caldas, C., Christie, A. L., Clark, D. A., Dowst, H., Dry, J. R., Doroshow, J. H., Duchamp, O., Evrard, Y. A., Ferretti, S., Frese, K. K., Goodwin, N. C., Greenawalt, D., Haendel, M. A., Hermans, E., Houghton, P. J., Jonkers, J., Kemper, K., Khor, T. O., Lewis, M. T., Lloyd, K. C. K., Mason, J., Medico, E., Neuhauser, S. B., Olson, J. M., Peeper, D. S., Rueda, O. M., Seong, J. K., Trusolino, L., Vinolo, E., Wechsler-Reya, R. J., Weinstock, D. M., Welm, A., Weroha, S. J., Amant, F., Pfister, S. M., Kool, M., Parkinson, H., Butte, A. J., & Bult, C. J. (2017). PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Research, 77(21), e62–e66.CrossRefPubMedPubMedCentral
Metadata
Title
Mouse models of high-risk neuroblastoma
Authors
Alvin Kamili
Caroline Atkinson
Toby N. Trahair
Jamie I. Fletcher
Publication date
01-03-2020
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2020
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09855-0

Other articles of this Issue 1/2020

Cancer and Metastasis Reviews 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine