Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2023

Open Access 02-09-2023 | Metastasis | Review

Epigenetic control of pancreatic cancer metastasis

Authors: Lukas Krauß, Carolin Schneider, Elisabeth Hessmann, Dieter Saur, Günter Schneider

Published in: Cancer and Metastasis Reviews | Issue 4/2023

Login to get access

Abstract

Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.
Literature
6.
go back to reference Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones, K., Quek, K., Quinn, M. C., Robertson, A. J., Fadlullah, M. Z., Bruxner, T. J., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., & Grimmond, S. M. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), 495–501. https://doi.org/10.1038/nature14169CrossRefPubMedPubMedCentral Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones, K., Quek, K., Quinn, M. C., Robertson, A. J., Fadlullah, M. Z., Bruxner, T. J., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., & Grimmond, S. M. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), 495–501. https://​doi.​org/​10.​1038/​nature14169CrossRefPubMedPubMedCentral
7.
go back to reference Nguyen, B., Fong, C., Luthra, A., Smith, S. A., DiNatale, R. G., Nandakumar, S., Walch, H., Chatila, W. K., Madupuri, R., Kundra, R., Bielski, C. M., Mastrogiacomo, B., Donoghue, M. T. A., Boire, A., Chandarlapaty, S., Ganesh, K., Harding, J. J., Iacobuzio-Donahue, C. A., Razavi, P., & Schultz, N. (2022). Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 185(3), 563–575 e511. https://doi.org/10.1016/j.cell.2022.01.003CrossRefPubMedPubMedCentral Nguyen, B., Fong, C., Luthra, A., Smith, S. A., DiNatale, R. G., Nandakumar, S., Walch, H., Chatila, W. K., Madupuri, R., Kundra, R., Bielski, C. M., Mastrogiacomo, B., Donoghue, M. T. A., Boire, A., Chandarlapaty, S., Ganesh, K., Harding, J. J., Iacobuzio-Donahue, C. A., Razavi, P., & Schultz, N. (2022). Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 185(3), 563–575 e511. https://​doi.​org/​10.​1016/​j.​cell.​2022.​01.​003CrossRefPubMedPubMedCentral
8.
go back to reference Connor, A. A., Denroche, R. E., Jang, G. H., Lemire, M., Zhang, A., Chan-Seng-Yue, M., Wilson, G., Grant, R. C., Merico, D., Lungu, I., Bartlett, J. M. S., Chadwick, D., Liang, S. B., Eagles, J., Mbabaali, F., Miller, J. K., Krzyzanowski, P., Armstrong, H., Luo, X., & Gallinger, S. (2019). Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell, 35(2), 267–282 e267. https://doi.org/10.1016/j.ccell.2018.12.010CrossRefPubMedPubMedCentral Connor, A. A., Denroche, R. E., Jang, G. H., Lemire, M., Zhang, A., Chan-Seng-Yue, M., Wilson, G., Grant, R. C., Merico, D., Lungu, I., Bartlett, J. M. S., Chadwick, D., Liang, S. B., Eagles, J., Mbabaali, F., Miller, J. K., Krzyzanowski, P., Armstrong, H., Luo, X., & Gallinger, S. (2019). Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell, 35(2), 267–282 e267. https://​doi.​org/​10.​1016/​j.​ccell.​2018.​12.​010CrossRefPubMedPubMedCentral
9.
go back to reference Makohon-Moore, A. P., Zhang, M., Reiter, J. G., Bozic, I., Allen, B., Kundu, D., Chatterjee, K., Wong, F., Jiao, Y., Kohutek, Z. A., Hong, J., Attiyeh, M., Javier, B., Wood, L. D., Hruban, R. H., Nowak, M. A., Papadopoulos, N., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2017). Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nature Genetics, 49(3), 358–366. https://doi.org/10.1038/ng.3764CrossRefPubMedPubMedCentral Makohon-Moore, A. P., Zhang, M., Reiter, J. G., Bozic, I., Allen, B., Kundu, D., Chatterjee, K., Wong, F., Jiao, Y., Kohutek, Z. A., Hong, J., Attiyeh, M., Javier, B., Wood, L. D., Hruban, R. H., Nowak, M. A., Papadopoulos, N., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2017). Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nature Genetics, 49(3), 358–366. https://​doi.​org/​10.​1038/​ng.​3764CrossRefPubMedPubMedCentral
10.
go back to reference McDonald, O. G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S. J., Warmoes, M. O., Word, A. E., Carrer, A., Salz, T. H., Natsume, S., Stauffer, K. M., Makohon-Moore, A., Zhong, Y., Wu, H., Wellen, K. E., Locasale, J. W., Iacobuzio-Donahue, C. A., & Feinberg, A. P. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nature Genetics, 49(3), 367–376. https://doi.org/10.1038/ng.3753CrossRefPubMedPubMedCentral McDonald, O. G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S. J., Warmoes, M. O., Word, A. E., Carrer, A., Salz, T. H., Natsume, S., Stauffer, K. M., Makohon-Moore, A., Zhong, Y., Wu, H., Wellen, K. E., Locasale, J. W., Iacobuzio-Donahue, C. A., & Feinberg, A. P. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nature Genetics, 49(3), 367–376. https://​doi.​org/​10.​1038/​ng.​3753CrossRefPubMedPubMedCentral
11.
go back to reference Mueller, S., Engleitner, T., Maresch, R., Zukowska, M., Lange, S., Kaltenbacher, T., Konukiewitz, B., Ollinger, R., Zwiebel, M., Strong, A., Yen, H. Y., Banerjee, R., Louzada, S., Fu, B., Seidler, B., Gotzfried, J., Schuck, K., Hassan, Z., Arbeiter, A., & Rad, R. (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 554(7690), 62–68. https://doi.org/10.1038/nature25459CrossRefPubMedPubMedCentral Mueller, S., Engleitner, T., Maresch, R., Zukowska, M., Lange, S., Kaltenbacher, T., Konukiewitz, B., Ollinger, R., Zwiebel, M., Strong, A., Yen, H. Y., Banerjee, R., Louzada, S., Fu, B., Seidler, B., Gotzfried, J., Schuck, K., Hassan, Z., Arbeiter, A., & Rad, R. (2018). Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature, 554(7690), 62–68. https://​doi.​org/​10.​1038/​nature25459CrossRefPubMedPubMedCentral
12.
go back to reference Chan-Seng-Yue, M., Kim, J. C., Wilson, G. W., Ng, K., Figueroa, E. F., O'Kane, G. M., Connor, A. A., Denroche, R. E., Grant, R. C., McLeod, J., Wilson, J. M., Jang, G. H., Zhang, A., Dodd, A., Liang, S. B., Borgida, A., Chadwick, D., Kalimuthu, S., Lungu, I., & Notta, F. (2020). Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nature Genetics, 52(2), 231–240. https://doi.org/10.1038/s41588-019-0566-9CrossRefPubMed Chan-Seng-Yue, M., Kim, J. C., Wilson, G. W., Ng, K., Figueroa, E. F., O'Kane, G. M., Connor, A. A., Denroche, R. E., Grant, R. C., McLeod, J., Wilson, J. M., Jang, G. H., Zhang, A., Dodd, A., Liang, S. B., Borgida, A., Chadwick, D., Kalimuthu, S., Lungu, I., & Notta, F. (2020). Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nature Genetics, 52(2), 231–240. https://​doi.​org/​10.​1038/​s41588-019-0566-9CrossRefPubMed
13.
go back to reference Maddipati, R., Norgard, R. J., Baslan, T., Rathi, K. S., Zhang, A., Saeid, A., Higashihara, T., Wu, F., Kumar, A., Annamalai, V., Bhattacharya, S., Raman, P., Adkisson, C. A., Pitarresi, J. R., Wengyn, M. D., Yamazoe, T., Li, J., Balli, D., LaRiviere, M. J., & Stanger, B. Z. (2022). MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer Discovery, 12(2), 542–561. https://doi.org/10.1158/2159-8290.CD-20-1826CrossRefPubMed Maddipati, R., Norgard, R. J., Baslan, T., Rathi, K. S., Zhang, A., Saeid, A., Higashihara, T., Wu, F., Kumar, A., Annamalai, V., Bhattacharya, S., Raman, P., Adkisson, C. A., Pitarresi, J. R., Wengyn, M. D., Yamazoe, T., Li, J., Balli, D., LaRiviere, M. J., & Stanger, B. Z. (2022). MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer Discovery, 12(2), 542–561. https://​doi.​org/​10.​1158/​2159-8290.​CD-20-1826CrossRefPubMed
14.
go back to reference Brar, G., Blais, E. M., Joseph Bender, R., Brody, J. R., Sohal, D., Madhavan, S., Picozzi, V. J., Hendifar, A. E., Chung, V. M., Halverson, D., Mikhail, S., Matrisian, L. M., Rahib, L., Petricoin, E., & Pishvaian, M. J. (2019). Multi-omic molecular comparison of primary versus metastatic pancreatic tumours. British Journal of Cancer, 121(3), 264–270. https://doi.org/10.1038/s41416-019-0507-5CrossRefPubMedPubMedCentral Brar, G., Blais, E. M., Joseph Bender, R., Brody, J. R., Sohal, D., Madhavan, S., Picozzi, V. J., Hendifar, A. E., Chung, V. M., Halverson, D., Mikhail, S., Matrisian, L. M., Rahib, L., Petricoin, E., & Pishvaian, M. J. (2019). Multi-omic molecular comparison of primary versus metastatic pancreatic tumours. British Journal of Cancer, 121(3), 264–270. https://​doi.​org/​10.​1038/​s41416-019-0507-5CrossRefPubMedPubMedCentral
15.
go back to reference Burdziak, C., Alonso-Curbelo, D., Walle, T., Reyes, J., Barriga, F. M., Haviv, D., Xie, Y., Zhao, Z., Zhao, C. J., Chen, H. A., Chaudhary, O., Masilionis, I., Choo, Z. N., Gao, V., Luan, W., Wuest, A., Ho, Y. J., Wei, Y., Quail, D. F., & Pe’er, D. (2023). Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science, 380(6645), eadd5327. https://doi.org/10.1126/science.add5327CrossRefPubMedPubMedCentral Burdziak, C., Alonso-Curbelo, D., Walle, T., Reyes, J., Barriga, F. M., Haviv, D., Xie, Y., Zhao, Z., Zhao, C. J., Chen, H. A., Chaudhary, O., Masilionis, I., Choo, Z. N., Gao, V., Luan, W., Wuest, A., Ho, Y. J., Wei, Y., Quail, D. F., & Pe’er, D. (2023). Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science, 380(6645), eadd5327. https://​doi.​org/​10.​1126/​science.​add5327CrossRefPubMedPubMedCentral
16.
go back to reference Roe, J. S., Hwang, C. I., Somerville, T. D. D., Milazzo, J. P., Lee, E. J., Da Silva, B., Maiorino, L., Tiriac, H., Young, C. M., Miyabayashi, K., Filippini, D., Creighton, B., Burkhart, R. A., Buscaglia, J. M., Kim, E. J., Grem, J. L., Lazenby, A. J., Grunkemeyer, J. A., Hollingsworth, M. A., & Vakoc, C. R. (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170(5), 875–888 e820. https://doi.org/10.1016/j.cell.2017.07.007CrossRefPubMedPubMedCentral Roe, J. S., Hwang, C. I., Somerville, T. D. D., Milazzo, J. P., Lee, E. J., Da Silva, B., Maiorino, L., Tiriac, H., Young, C. M., Miyabayashi, K., Filippini, D., Creighton, B., Burkhart, R. A., Buscaglia, J. M., Kim, E. J., Grem, J. L., Lazenby, A. J., Grunkemeyer, J. A., Hollingsworth, M. A., & Vakoc, C. R. (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170(5), 875–888 e820. https://​doi.​org/​10.​1016/​j.​cell.​2017.​07.​007CrossRefPubMedPubMedCentral
20.
go back to reference Krebs, A. M., Mitschke, J., Lasierra Losada, M., Schmalhofer, O., Boerries, M., Busch, H., Boettcher, M., Mougiakakos, D., Reichardt, W., Bronsert, P., Brunton, V. G., Pilarsky, C., Winkler, T. H., Brabletz, S., Stemmler, M. P., & Brabletz, T. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://doi.org/10.1038/ncb3513CrossRefPubMed Krebs, A. M., Mitschke, J., Lasierra Losada, M., Schmalhofer, O., Boerries, M., Busch, H., Boettcher, M., Mougiakakos, D., Reichardt, W., Bronsert, P., Brunton, V. G., Pilarsky, C., Winkler, T. H., Brabletz, S., Stemmler, M. P., & Brabletz, T. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://​doi.​org/​10.​1038/​ncb3513CrossRefPubMed
21.
go back to reference Takano, S., Reichert, M., Bakir, B., Das, K. K., Nishida, T., Miyazaki, M., Heeg, S., Collins, M. A., Marchand, B., Hicks, P. D., Maitra, A., & Rustgi, A. K. (2016). Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization. Genes & Development, 30(2), 233–247. https://doi.org/10.1101/gad.263327.115CrossRef Takano, S., Reichert, M., Bakir, B., Das, K. K., Nishida, T., Miyazaki, M., Heeg, S., Collins, M. A., Marchand, B., Hicks, P. D., Maitra, A., & Rustgi, A. K. (2016). Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization. Genes & Development, 30(2), 233–247. https://​doi.​org/​10.​1101/​gad.​263327.​115CrossRef
22.
go back to reference Dai, C., Rennhack, J. P., Arnoff, T. E., Thaker, M., Younger, S. T., Doench, J. G., Huang, A. Y., Yang, A., Aguirre, A. J., Wang, B., Mun, E., O'Connell, J. T., Huang, Y., Labella, K., Talamas, J. A., Li, J., Ilic, N., Hwang, J., Hong, A. L., & Hahn, W. C. (2021). SMAD4 represses FOSL1 expression and pancreatic cancer metastatic colonization. Cell Reports, 36(4), 109443. https://doi.org/10.1016/j.celrep.2021.109443CrossRefPubMed Dai, C., Rennhack, J. P., Arnoff, T. E., Thaker, M., Younger, S. T., Doench, J. G., Huang, A. Y., Yang, A., Aguirre, A. J., Wang, B., Mun, E., O'Connell, J. T., Huang, Y., Labella, K., Talamas, J. A., Li, J., Ilic, N., Hwang, J., Hong, A. L., & Hahn, W. C. (2021). SMAD4 represses FOSL1 expression and pancreatic cancer metastatic colonization. Cell Reports, 36(4), 109443. https://​doi.​org/​10.​1016/​j.​celrep.​2021.​109443CrossRefPubMed
23.
go back to reference Schneeweis, C., Diersch, S., Hassan, Z., Krauss, L., Schneider, C., Lucarelli, D., Falcomata, C., Steiger, K., Ollinger, R., Kramer, O. H., Arlt, A., Grade, M., Schmidt-Supprian, M., Hessmann, E., Wirth, M., Rad, R., Reichert, M., Saur, D., & Schneider, G. (2022). AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cellular and Molecular Life Sciences, 80(1), 12. https://doi.org/10.1007/s00018-022-04638-yCrossRefPubMedPubMedCentral Schneeweis, C., Diersch, S., Hassan, Z., Krauss, L., Schneider, C., Lucarelli, D., Falcomata, C., Steiger, K., Ollinger, R., Kramer, O. H., Arlt, A., Grade, M., Schmidt-Supprian, M., Hessmann, E., Wirth, M., Rad, R., Reichert, M., Saur, D., & Schneider, G. (2022). AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cellular and Molecular Life Sciences, 80(1), 12. https://​doi.​org/​10.​1007/​s00018-022-04638-yCrossRefPubMedPubMedCentral
27.
go back to reference Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18(22), 6339–6347. https://doi.org/10.1158/1078-0432.CCR-12-1215CrossRefPubMedPubMedCentral Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18(22), 6339–6347. https://​doi.​org/​10.​1158/​1078-0432.​CCR-12-1215CrossRefPubMedPubMedCentral
28.
29.
go back to reference Krauss, L., Urban, B. C., Hastreiter, S., Schneider, C., Wenzel, P., Hassan, Z., Wirth, M., Lankes, K., Terrasi, A., Klement, C., Cernilogar, F. M., Ollinger, R., de Andrade Kratzig, N., Engleitner, T., Schmid, R. M., Steiger, K., Rad, R., Kramer, O. H., Reichert, M., & Schneider, G. (2022). HDAC2 facilitates pancreatic cancer metastasis. Cancer Research, 82(4), 695–707. https://doi.org/10.1158/0008-5472.CAN-20-3209CrossRefPubMed Krauss, L., Urban, B. C., Hastreiter, S., Schneider, C., Wenzel, P., Hassan, Z., Wirth, M., Lankes, K., Terrasi, A., Klement, C., Cernilogar, F. M., Ollinger, R., de Andrade Kratzig, N., Engleitner, T., Schmid, R. M., Steiger, K., Rad, R., Kramer, O. H., Reichert, M., & Schneider, G. (2022). HDAC2 facilitates pancreatic cancer metastasis. Cancer Research, 82(4), 695–707. https://​doi.​org/​10.​1158/​0008-5472.​CAN-20-3209CrossRefPubMed
31.
go back to reference Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., Yu, W. H., Rehman, S. K., Hsu, J. L., Lee, H. H., Liu, M., Chen, C. T., Yu, D., & Hung, M. C. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–323. https://doi.org/10.1038/ncb2173CrossRefPubMedPubMedCentral Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., Yu, W. H., Rehman, S. K., Hsu, J. L., Lee, H. H., Liu, M., Chen, C. T., Yu, D., & Hung, M. C. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–323. https://​doi.​org/​10.​1038/​ncb2173CrossRefPubMedPubMedCentral
33.
go back to reference Semaan, A., Bernard, V., Kim, D. U., Lee, J. J., Huang, J., Kamyabi, N., Stephens, B. M., Qiao, W., Varadhachary, G. R., Katz, M. H., Shen, Y., San Lucas, F. A., Gascoyne, P., Alvarez, H. A., Maitra, A., & Guerrero, P. A. (2021). Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. British Journal of Cancer, 124(12), 1970–1977. https://doi.org/10.1038/s41416-021-01350-9CrossRefPubMedPubMedCentral Semaan, A., Bernard, V., Kim, D. U., Lee, J. J., Huang, J., Kamyabi, N., Stephens, B. M., Qiao, W., Varadhachary, G. R., Katz, M. H., Shen, Y., San Lucas, F. A., Gascoyne, P., Alvarez, H. A., Maitra, A., & Guerrero, P. A. (2021). Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. British Journal of Cancer, 124(12), 1970–1977. https://​doi.​org/​10.​1038/​s41416-021-01350-9CrossRefPubMedPubMedCentral
37.
go back to reference Lan, L., Evan, T., Li, H., Hussain, A., Ruiz, E. J., Zaw Thin, M., Ferreira, R. M. M., Ps, H., Riising, E. M., Zen, Y., Almagro, J., Ng, K. W., Soro-Barrio, P., Nelson, J., Koifman, G., Carvalho, J., Nye, E. L., He, Y., Zhang, C., & Behrens, A. (2022). GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature, 607(7917), 163–168. https://doi.org/10.1038/s41586-022-04888-7CrossRefPubMed Lan, L., Evan, T., Li, H., Hussain, A., Ruiz, E. J., Zaw Thin, M., Ferreira, R. M. M., Ps, H., Riising, E. M., Zen, Y., Almagro, J., Ng, K. W., Soro-Barrio, P., Nelson, J., Koifman, G., Carvalho, J., Nye, E. L., He, Y., Zhang, C., & Behrens, A. (2022). GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature, 607(7917), 163–168. https://​doi.​org/​10.​1038/​s41586-022-04888-7CrossRefPubMed
39.
go back to reference Patil, S., Forster, T., Reutlinger, K., Kopp, W., Versemann, L., Spitalieri, J., Gaedcke, J., Strobel, P., Singh, S. K., Ellenrieder, V., Neesse, A., & Hessmann, E. (2021). Chromatin-independent interplay of NFATc1 and EZH2 in pancreatic cancer. Cells, 10(12). https://doi.org/10.3390/cells10123463 Patil, S., Forster, T., Reutlinger, K., Kopp, W., Versemann, L., Spitalieri, J., Gaedcke, J., Strobel, P., Singh, S. K., Ellenrieder, V., Neesse, A., & Hessmann, E. (2021). Chromatin-independent interplay of NFATc1 and EZH2 in pancreatic cancer. Cells, 10(12). https://​doi.​org/​10.​3390/​cells10123463
40.
go back to reference Lomberk, G., Blum, Y., Nicolle, R., Nair, A., Gaonkar, K. S., Marisa, L., Mathison, A., Sun, Z., Yan, H., Elarouci, N., Armenoult, L., Ayadi, M., Ordog, T., Lee, J. H., Oliver, G., Klee, E., Moutardier, V., Gayet, O., Bian, B., & Urrutia, R. (2018). Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nature Communications, 9(1), 1978. https://doi.org/10.1038/s41467-018-04383-6CrossRefPubMedPubMedCentral Lomberk, G., Blum, Y., Nicolle, R., Nair, A., Gaonkar, K. S., Marisa, L., Mathison, A., Sun, Z., Yan, H., Elarouci, N., Armenoult, L., Ayadi, M., Ordog, T., Lee, J. H., Oliver, G., Klee, E., Moutardier, V., Gayet, O., Bian, B., & Urrutia, R. (2018). Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nature Communications, 9(1), 1978. https://​doi.​org/​10.​1038/​s41467-018-04383-6CrossRefPubMedPubMedCentral
42.
go back to reference Espinet, E., Gu, Z., Imbusch, C. D., Giese, N. A., Buscher, M., Safavi, M., Weisenburger, S., Klein, C., Vogel, V., Falcone, M., Insua-Rodriguez, J., Reitberger, M., Thiel, V., Kossi, S. O., Muckenhuber, A., Sarai, K., Lee, A. Y. L., Backx, E., Zarei, S., & Trumpp, A. (2021). Aggressive PDACs show hypomethylation of repetitive elements and the execution of an intrinsic IFN program linked to a ductal cell of origin. Cancer Discovery, 11(3), 638–659. https://doi.org/10.1158/2159-8290.CD-20-1202CrossRefPubMed Espinet, E., Gu, Z., Imbusch, C. D., Giese, N. A., Buscher, M., Safavi, M., Weisenburger, S., Klein, C., Vogel, V., Falcone, M., Insua-Rodriguez, J., Reitberger, M., Thiel, V., Kossi, S. O., Muckenhuber, A., Sarai, K., Lee, A. Y. L., Backx, E., Zarei, S., & Trumpp, A. (2021). Aggressive PDACs show hypomethylation of repetitive elements and the execution of an intrinsic IFN program linked to a ductal cell of origin. Cancer Discovery, 11(3), 638–659. https://​doi.​org/​10.​1158/​2159-8290.​CD-20-1202CrossRefPubMed
44.
go back to reference Hamdan, F. H., Abdelrahman, A. M., Kutschat, A. P., Wang, X., Ekstrom, T. L., Jalan-Sakrikar, N., Wegner Wippel, C., Taheri, N., Tamon, L., Kopp, W., Aggrey-Fynn, J., Bhagwate, A. V., Alva-Ruiz, R., Lynch, I., Yonkus, J., Kosinsky, R. L., Gaedcke, J., Hahn, S. A., Siveke, J. T., & Johnsen, S. A. (2023). Interactive enhancer hubs (iHUBs) mediate transcriptional reprogramming and adaptive resistance in pancreatic cancer. Gut, 72(6), 1174–1185. https://doi.org/10.1136/gutjnl-2022-328154CrossRefPubMed Hamdan, F. H., Abdelrahman, A. M., Kutschat, A. P., Wang, X., Ekstrom, T. L., Jalan-Sakrikar, N., Wegner Wippel, C., Taheri, N., Tamon, L., Kopp, W., Aggrey-Fynn, J., Bhagwate, A. V., Alva-Ruiz, R., Lynch, I., Yonkus, J., Kosinsky, R. L., Gaedcke, J., Hahn, S. A., Siveke, J. T., & Johnsen, S. A. (2023). Interactive enhancer hubs (iHUBs) mediate transcriptional reprogramming and adaptive resistance in pancreatic cancer. Gut, 72(6), 1174–1185. https://​doi.​org/​10.​1136/​gutjnl-2022-328154CrossRefPubMed
54.
go back to reference Winter, G. E., Mayer, A., Buckley, D. L., Erb, M. A., Roderick, J. E., Vittori, S., Reyes, J. M., di Iulio, J., Souza, A., Ott, C. J., Roberts, J. M., Zeid, R., Scott, T. G., Paulk, J., Lachance, K., Olson, C. M., Dastjerdi, S., Bauer, S., Lin, C. Y., & Bradner, J. E. (2017). BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Molecular Cell, 67(1), 5–18 e19. https://doi.org/10.1016/j.molcel.2017.06.004CrossRefPubMedPubMedCentral Winter, G. E., Mayer, A., Buckley, D. L., Erb, M. A., Roderick, J. E., Vittori, S., Reyes, J. M., di Iulio, J., Souza, A., Ott, C. J., Roberts, J. M., Zeid, R., Scott, T. G., Paulk, J., Lachance, K., Olson, C. M., Dastjerdi, S., Bauer, S., Lin, C. Y., & Bradner, J. E. (2017). BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Molecular Cell, 67(1), 5–18 e19. https://​doi.​org/​10.​1016/​j.​molcel.​2017.​06.​004CrossRefPubMedPubMedCentral
56.
go back to reference Mazur, P. K., Herner, A., Mello, S. S., Wirth, M., Hausmann, S., Sanchez-Rivera, F. J., Lofgren, S. M., Kuschma, T., Hahn, S. A., Vangala, D., Trajkovic-Arsic, M., Gupta, A., Heid, I., Noel, P. B., Braren, R., Erkan, M., Kleeff, J., Sipos, B., Sayles, L. C., & Siveke, J. T. (2015). Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 21(10), 1163–1171. https://doi.org/10.1038/nm.3952CrossRefPubMedPubMedCentral Mazur, P. K., Herner, A., Mello, S. S., Wirth, M., Hausmann, S., Sanchez-Rivera, F. J., Lofgren, S. M., Kuschma, T., Hahn, S. A., Vangala, D., Trajkovic-Arsic, M., Gupta, A., Heid, I., Noel, P. B., Braren, R., Erkan, M., Kleeff, J., Sipos, B., Sayles, L. C., & Siveke, J. T. (2015). Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 21(10), 1163–1171. https://​doi.​org/​10.​1038/​nm.​3952CrossRefPubMedPubMedCentral
57.
go back to reference Bian, B., Bigonnet, M., Gayet, O., Loncle, C., Maignan, A., Gilabert, M., Moutardier, V., Garcia, S., Turrini, O., Delpero, J. R., Giovannini, M., Grandval, P., Gasmi, M., Ouaissi, M., Secq, V., Poizat, F., Nicolle, R., Blum, Y., Marisa, L., & Iovanna, J. (2017). Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: Implications for individualized medicine efforts. EMBO Molecular Medicine, 9(4), 482–497. https://doi.org/10.15252/emmm.201606975CrossRefPubMedPubMedCentral Bian, B., Bigonnet, M., Gayet, O., Loncle, C., Maignan, A., Gilabert, M., Moutardier, V., Garcia, S., Turrini, O., Delpero, J. R., Giovannini, M., Grandval, P., Gasmi, M., Ouaissi, M., Secq, V., Poizat, F., Nicolle, R., Blum, Y., Marisa, L., & Iovanna, J. (2017). Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: Implications for individualized medicine efforts. EMBO Molecular Medicine, 9(4), 482–497. https://​doi.​org/​10.​15252/​emmm.​201606975CrossRefPubMedPubMedCentral
58.
go back to reference Zanconato, F., Battilana, G., Forcato, M., Filippi, L., Azzolin, L., Manfrin, A., Quaranta, E., Di Biagio, D., Sigismondo, G., Guzzardo, V., Lejeune, P., Haendler, B., Krijgsveld, J., Fassan, M., Bicciato, S., Cordenonsi, M., & Piccolo, S. (2018). Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nature Medicine, 24(10), 1599–1610. https://doi.org/10.1038/s41591-018-0158-8CrossRefPubMedPubMedCentral Zanconato, F., Battilana, G., Forcato, M., Filippi, L., Azzolin, L., Manfrin, A., Quaranta, E., Di Biagio, D., Sigismondo, G., Guzzardo, V., Lejeune, P., Haendler, B., Krijgsveld, J., Fassan, M., Bicciato, S., Cordenonsi, M., & Piccolo, S. (2018). Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nature Medicine, 24(10), 1599–1610. https://​doi.​org/​10.​1038/​s41591-018-0158-8CrossRefPubMedPubMedCentral
60.
go back to reference Tu, M., Klein, L., Espinet, E., Georgomanolis, T., Wegwitz, F., Li, X., Urbach, L., Danieli-Mackay, A., Kuffer, S., Bojarczuk, K., Mizi, A., Gunesdogan, U., Chapuy, B., Gu, Z., Neesse, A., Kishore, U., Strobel, P., Hessmann, E., Hahn, S. A., & Singh, S. K. (2021). TNF-alpha-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nature Cancer, 2(11), 1185–1203. https://doi.org/10.1038/s43018-021-00258-wCrossRefPubMed Tu, M., Klein, L., Espinet, E., Georgomanolis, T., Wegwitz, F., Li, X., Urbach, L., Danieli-Mackay, A., Kuffer, S., Bojarczuk, K., Mizi, A., Gunesdogan, U., Chapuy, B., Gu, Z., Neesse, A., Kishore, U., Strobel, P., Hessmann, E., Hahn, S. A., & Singh, S. K. (2021). TNF-alpha-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer. Nature Cancer, 2(11), 1185–1203. https://​doi.​org/​10.​1038/​s43018-021-00258-wCrossRefPubMed
62.
go back to reference Scarpa, A., Chang, D. K., Nones, K., Corbo, V., Patch, A. M., Bailey, P., Lawlor, R. T., Johns, A. L., Miller, D. K., Mafficini, A., Rusev, B., Scardoni, M., Antonello, D., Barbi, S., Sikora, K. O., Cingarlini, S., Vicentini, C., McKay, S., Quinn, M. C., & Grimmond, S. M. (2017). Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), 65–71. https://doi.org/10.1038/nature21063CrossRefPubMed Scarpa, A., Chang, D. K., Nones, K., Corbo, V., Patch, A. M., Bailey, P., Lawlor, R. T., Johns, A. L., Miller, D. K., Mafficini, A., Rusev, B., Scardoni, M., Antonello, D., Barbi, S., Sikora, K. O., Cingarlini, S., Vicentini, C., McKay, S., Quinn, M. C., & Grimmond, S. M. (2017). Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), 65–71. https://​doi.​org/​10.​1038/​nature21063CrossRefPubMed
63.
go back to reference Jiao, Y., Shi, C., Edil, B. H., de Wilde, R. F., Klimstra, D. S., Maitra, A., Schulick, R. D., Tang, L. H., Wolfgang, C. L., Choti, M. A., Velculescu, V. E., Diaz, L. A., Jr., Vogelstein, B., Kinzler, K. W., Hruban, R. H., & Papadopoulos, N. (2011). DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science, 331(6021), 1199–1203. https://doi.org/10.1126/science.1200609CrossRefPubMedPubMedCentral Jiao, Y., Shi, C., Edil, B. H., de Wilde, R. F., Klimstra, D. S., Maitra, A., Schulick, R. D., Tang, L. H., Wolfgang, C. L., Choti, M. A., Velculescu, V. E., Diaz, L. A., Jr., Vogelstein, B., Kinzler, K. W., Hruban, R. H., & Papadopoulos, N. (2011). DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science, 331(6021), 1199–1203. https://​doi.​org/​10.​1126/​science.​1200609CrossRefPubMedPubMedCentral
64.
go back to reference Hackeng, W. M., Brosens, L. A., Poruk, K. E., Noe, M., Hosoda, W., Poling, J. S., Rizzo, A., Campbell-Thompson, M., Atkinson, M. A., Konukiewitz, B., Kloppel, G., Heaphy, C. M., Meeker, A. K., & Wood, L. D. (2016). Aberrant menin expression is an early event in pancreatic neuroendocrine tumorigenesis. Human Pathology, 56, 93–100. https://doi.org/10.1016/j.humpath.2016.06.006CrossRefPubMed Hackeng, W. M., Brosens, L. A., Poruk, K. E., Noe, M., Hosoda, W., Poling, J. S., Rizzo, A., Campbell-Thompson, M., Atkinson, M. A., Konukiewitz, B., Kloppel, G., Heaphy, C. M., Meeker, A. K., & Wood, L. D. (2016). Aberrant menin expression is an early event in pancreatic neuroendocrine tumorigenesis. Human Pathology, 56, 93–100. https://​doi.​org/​10.​1016/​j.​humpath.​2016.​06.​006CrossRefPubMed
66.
go back to reference Xu, J., Ye, Z., Zhuo, Q., Gao, H., Qin, Y., Lou, X., Zhang, W., Wang, F., Wang, Y., Jing, D., Fan, G., Zhang, Y., Chen, X., Chen, J., Xu, X., Yu, X., & Ji, S. (2023). MEN1 degradation induced by neddylation and the CUL4B-DCAF7 axis promotes pancreatic neuroendocrine tumor progression. Cancer Research, 83(13), 2226–2247. https://doi.org/10.1158/0008-5472.CAN-22-3599CrossRefPubMed Xu, J., Ye, Z., Zhuo, Q., Gao, H., Qin, Y., Lou, X., Zhang, W., Wang, F., Wang, Y., Jing, D., Fan, G., Zhang, Y., Chen, X., Chen, J., Xu, X., Yu, X., & Ji, S. (2023). MEN1 degradation induced by neddylation and the CUL4B-DCAF7 axis promotes pancreatic neuroendocrine tumor progression. Cancer Research, 83(13), 2226–2247. https://​doi.​org/​10.​1158/​0008-5472.​CAN-22-3599CrossRefPubMed
67.
go back to reference Yi, Z., Wei, S., Jin, L., Jeyarajan, S., Yang, J., Gu, Y., Kim, H. S., Schechter, S., Lu, S., Paulsen, M. T., Bedi, K., Narayanan, I. V., Ljungman, M., Crawford, H. C., Pasca di Magliano, M., Ge, K., Dou, Y., & Shi, J. (2022). KDM6A regulates cell plasticity and pancreatic cancer progression by noncanonical activin pathway. Cellular and Molecular Gastroenterology and Hepatology, 13(2), 643–667. https://doi.org/10.1016/j.jcmgh.2021.09.014CrossRefPubMed Yi, Z., Wei, S., Jin, L., Jeyarajan, S., Yang, J., Gu, Y., Kim, H. S., Schechter, S., Lu, S., Paulsen, M. T., Bedi, K., Narayanan, I. V., Ljungman, M., Crawford, H. C., Pasca di Magliano, M., Ge, K., Dou, Y., & Shi, J. (2022). KDM6A regulates cell plasticity and pancreatic cancer progression by noncanonical activin pathway. Cellular and Molecular Gastroenterology and Hepatology, 13(2), 643–667. https://​doi.​org/​10.​1016/​j.​jcmgh.​2021.​09.​014CrossRefPubMed
68.
go back to reference Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., Miller, D. K., Christ, A. N., Bruxner, T. J., Quinn, M. C., Nourse, C., Murtaugh, L. C., Harliwong, I., Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L., Holmes, O., & Grimmond, S. M. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), 47–52. https://doi.org/10.1038/nature16965CrossRefPubMed Bailey, P., Chang, D. K., Nones, K., Johns, A. L., Patch, A. M., Gingras, M. C., Miller, D. K., Christ, A. N., Bruxner, T. J., Quinn, M. C., Nourse, C., Murtaugh, L. C., Harliwong, I., Idrisoglu, S., Manning, S., Nourbakhsh, E., Wani, S., Fink, L., Holmes, O., & Grimmond, S. M. (2016). Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), 47–52. https://​doi.​org/​10.​1038/​nature16965CrossRefPubMed
69.
go back to reference Krauss, L., Urban, B. C., Hastreiter, S., Schneider, C., Wenzel, P., Hassan, Z., Wirth, M., Lankes, K., Terrasi, A., Klement, C., Cernilogar, F. M., Ollinger, R., de Andrade Kratzig, N., Engleitner, T., Schmid, R. M., Steiger, K., Rad, R., Kramer, O. H., Reichert, M., & Schneider, G. (2021). HDAC2 facilitates pancreatic cancer metastasis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-20-3209 Krauss, L., Urban, B. C., Hastreiter, S., Schneider, C., Wenzel, P., Hassan, Z., Wirth, M., Lankes, K., Terrasi, A., Klement, C., Cernilogar, F. M., Ollinger, R., de Andrade Kratzig, N., Engleitner, T., Schmid, R. M., Steiger, K., Rad, R., Kramer, O. H., Reichert, M., & Schneider, G. (2021). HDAC2 facilitates pancreatic cancer metastasis. Cancer Research. https://​doi.​org/​10.​1158/​0008-5472.​CAN-20-3209
70.
go back to reference Patil, S., Steuber, B., Kopp, W., Kari, V., Urbach, L., Wang, X., Kuffer, S., Bohnenberger, H., Spyropoulou, D., Zhang, Z., Versemann, L., Bosherz, M. S., Brunner, M., Gaedcke, J., Strobel, P., Zhang, J. S., Neesse, A., Ellenrieder, V., Singh, S. K., & Hessmann, E. (2020). EZH2 regulates pancreatic cancer subtype identity and tumor progression via transcriptional repression of GATA6. Cancer Research, 80(21), 4620–4632. https://doi.org/10.1158/0008-5472.CAN-20-0672CrossRefPubMed Patil, S., Steuber, B., Kopp, W., Kari, V., Urbach, L., Wang, X., Kuffer, S., Bohnenberger, H., Spyropoulou, D., Zhang, Z., Versemann, L., Bosherz, M. S., Brunner, M., Gaedcke, J., Strobel, P., Zhang, J. S., Neesse, A., Ellenrieder, V., Singh, S. K., & Hessmann, E. (2020). EZH2 regulates pancreatic cancer subtype identity and tumor progression via transcriptional repression of GATA6. Cancer Research, 80(21), 4620–4632. https://​doi.​org/​10.​1158/​0008-5472.​CAN-20-0672CrossRefPubMed
71.
go back to reference Dandawate, P., Ghosh, C., Palaniyandi, K., Paul, S., Rawal, S., Pradhan, R., Sayed, A. A. A., Choudhury, S., Standing, D., Subramaniam, D., Padhye, S. B., Gunewardena, S., Thomas, S. M., Neil, M. O., Tawfik, O., Welch, D. R., Jensen, R. A., Maliski, S., Weir, S., & Dhar, A. (2019). The histone demethylase KDM3A, increased in human pancreatic tumors, regulates expression of DCLK1 and promotes tumorigenesis in mice. Gastroenterology, 157(6), 1646–1659 e1611. https://doi.org/10.1053/j.gastro.2019.08.018CrossRefPubMed Dandawate, P., Ghosh, C., Palaniyandi, K., Paul, S., Rawal, S., Pradhan, R., Sayed, A. A. A., Choudhury, S., Standing, D., Subramaniam, D., Padhye, S. B., Gunewardena, S., Thomas, S. M., Neil, M. O., Tawfik, O., Welch, D. R., Jensen, R. A., Maliski, S., Weir, S., & Dhar, A. (2019). The histone demethylase KDM3A, increased in human pancreatic tumors, regulates expression of DCLK1 and promotes tumorigenesis in mice. Gastroenterology, 157(6), 1646–1659 e1611. https://​doi.​org/​10.​1053/​j.​gastro.​2019.​08.​018CrossRefPubMed
72.
go back to reference Kalisz, M., Bernardo, E., Beucher, A., Maestro, M. A., Del Pozo, N., Millan, I., Haeberle, L., Schlensog, M., Safi, S. A., Knoefel, W. T., Grau, V., de Vas, M., Shpargel, K. B., Vaquero, E., Magnuson, T., Ortega, S., Esposito, I., Real, F. X., & Ferrer, J. (2020). HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. The EMBO Journal, 39(9), e102808. https://doi.org/10.15252/embj.2019102808CrossRefPubMedPubMedCentral Kalisz, M., Bernardo, E., Beucher, A., Maestro, M. A., Del Pozo, N., Millan, I., Haeberle, L., Schlensog, M., Safi, S. A., Knoefel, W. T., Grau, V., de Vas, M., Shpargel, K. B., Vaquero, E., Magnuson, T., Ortega, S., Esposito, I., Real, F. X., & Ferrer, J. (2020). HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. The EMBO Journal, 39(9), e102808. https://​doi.​org/​10.​15252/​embj.​2019102808CrossRefPubMedPubMedCentral
74.
go back to reference Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095CrossRefPubMed Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://​doi.​org/​10.​1158/​2159-8290.​CD-12-0095CrossRefPubMed
76.
go back to reference Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S., Kouzarides, T., & Schreiber, S. L. (2002). Methylation of histone H3 Lys 4 in coding regions of active genes. Proceedings of the National Academy of Sciences, 99(13), 8695–8700. https://doi.org/10.1073/pnas.082249499CrossRef Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J. S., Kouzarides, T., & Schreiber, S. L. (2002). Methylation of histone H3 Lys 4 in coding regions of active genes. Proceedings of the National Academy of Sciences, 99(13), 8695–8700. https://​doi.​org/​10.​1073/​pnas.​082249499CrossRef
77.
78.
go back to reference Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E., & Ren, B. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genetics, 39(3), 311–318. https://doi.org/10.1038/ng1966CrossRefPubMed Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E., & Ren, B. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genetics, 39(3), 311–318. https://​doi.​org/​10.​1038/​ng1966CrossRefPubMed
79.
go back to reference Sausen, M., Phallen, J., Adleff, V., Jones, S., Leary, R. J., Barrett, M. T., Anagnostou, V., Parpart-Li, S., Murphy, D., Kay Li, Q., Hruban, C. A., Scharpf, R., White, J. R., O’Dwyer, P. J., Allen, P. J., Eshleman, J. R., Thompson, C. B., Klimstra, D. S., Linehan, D. C., & Velculescu, V. E. (2015). Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nature Communications, 6, 7686. https://doi.org/10.1038/ncomms8686CrossRefPubMed Sausen, M., Phallen, J., Adleff, V., Jones, S., Leary, R. J., Barrett, M. T., Anagnostou, V., Parpart-Li, S., Murphy, D., Kay Li, Q., Hruban, C. A., Scharpf, R., White, J. R., O’Dwyer, P. J., Allen, P. J., Eshleman, J. R., Thompson, C. B., Klimstra, D. S., Linehan, D. C., & Velculescu, V. E. (2015). Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nature Communications, 6, 7686. https://​doi.​org/​10.​1038/​ncomms8686CrossRefPubMed
83.
go back to reference Revia, S., Seretny, A., Wendler, L., Banito, A., Eckert, C., Breuer, K., Mayakonda, A., Lutsik, P., Evert, M., Ribback, S., Gallage, S., Chikh Bakri, I., Breuhahn, K., Schirmacher, P., Heinrich, S., Gaida, M. M., Heikenwalder, M., Calvisi, D. F., Plass, C., & Tschaharganeh, D. F. (2022). Histone H3K27 demethylase KDM6A is an epigenetic gatekeeper of mTORC1 signalling in cancer. Gut, 71(8), 1613–1628. https://doi.org/10.1136/gutjnl-2021-325405CrossRefPubMed Revia, S., Seretny, A., Wendler, L., Banito, A., Eckert, C., Breuer, K., Mayakonda, A., Lutsik, P., Evert, M., Ribback, S., Gallage, S., Chikh Bakri, I., Breuhahn, K., Schirmacher, P., Heinrich, S., Gaida, M. M., Heikenwalder, M., Calvisi, D. F., Plass, C., & Tschaharganeh, D. F. (2022). Histone H3K27 demethylase KDM6A is an epigenetic gatekeeper of mTORC1 signalling in cancer. Gut, 71(8), 1613–1628. https://​doi.​org/​10.​1136/​gutjnl-2021-325405CrossRefPubMed
84.
go back to reference Watanabe, S., Shimada, S., Akiyama, Y., Ishikawa, Y., Ogura, T., Ogawa, K., Ono, H., Mitsunori, Y., Ban, D., Kudo, A., Yamaoka, S., Tanabe, M., & Tanaka, S. (2019). Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. International Journal of Cancer, 145(1), 192–205. https://doi.org/10.1002/ijc.32072CrossRefPubMed Watanabe, S., Shimada, S., Akiyama, Y., Ishikawa, Y., Ogura, T., Ogawa, K., Ono, H., Mitsunori, Y., Ban, D., Kudo, A., Yamaoka, S., Tanabe, M., & Tanaka, S. (2019). Loss of KDM6A characterizes a poor prognostic subtype of human pancreatic cancer and potentiates HDAC inhibitor lethality. International Journal of Cancer, 145(1), 192–205. https://​doi.​org/​10.​1002/​ijc.​32072CrossRefPubMed
86.
87.
go back to reference Martinelli, P., Pau, C.-d. S., & E., Cox, T., Sainz, B., Jr., Dusetti, N., Greenhalf, W., Rinaldi, L., Costello, E., Ghaneh, P., Malats, N., Buchler, M., Pajic, M., Biankin, A. V., Iovanna, J., Neoptolemos, J., & Real, F. X. (2017). GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut, 66(9), 1665–1676. https://doi.org/10.1136/gutjnl-2015-311256CrossRefPubMed Martinelli, P., Pau, C.-d. S., & E., Cox, T., Sainz, B., Jr., Dusetti, N., Greenhalf, W., Rinaldi, L., Costello, E., Ghaneh, P., Malats, N., Buchler, M., Pajic, M., Biankin, A. V., Iovanna, J., Neoptolemos, J., & Real, F. X. (2017). GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut, 66(9), 1665–1676. https://​doi.​org/​10.​1136/​gutjnl-2015-311256CrossRefPubMed
88.
go back to reference Versemann, L., Patil, S., Steuber, B., Zhang, Z., Kopp, W., Krawczyk, H. E., Kaulfuss, S., Wollnik, B., Strobel, P., Neesse, A., Singh, S. K., Ellenrieder, V., & Hessmann, E. (2022). TP53-status-dependent oncogenic EZH2 activity in pancreatic cancer. Cancers (Basel), 14(14). https://doi.org/10.3390/cancers14143451 Versemann, L., Patil, S., Steuber, B., Zhang, Z., Kopp, W., Krawczyk, H. E., Kaulfuss, S., Wollnik, B., Strobel, P., Neesse, A., Singh, S. K., Ellenrieder, V., & Hessmann, E. (2022). TP53-status-dependent oncogenic EZH2 activity in pancreatic cancer. Cancers (Basel), 14(14). https://​doi.​org/​10.​3390/​cancers14143451
89.
go back to reference Chibaya, L., Murphy, K. C., DeMarco, K. D., Gopalan, S., Liu, H., Parikh, C. N., Lopez-Diaz, Y., Faulkner, M., Li, J., Morris, J. P., Ho, Y. J., Chana, S. K., Simon, J., Luan, W., Kulick, A., de Stanchina, E., Simin, K., Zhu, L. J., Fazzio, T. G., & Ruscetti, M. (2023). EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nature Cancer. https://doi.org/10.1038/s43018-023-00553-8 Chibaya, L., Murphy, K. C., DeMarco, K. D., Gopalan, S., Liu, H., Parikh, C. N., Lopez-Diaz, Y., Faulkner, M., Li, J., Morris, J. P., Ho, Y. J., Chana, S. K., Simon, J., Luan, W., Kulick, A., de Stanchina, E., Simin, K., Zhu, L. J., Fazzio, T. G., & Ruscetti, M. (2023). EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance. Nature Cancer. https://​doi.​org/​10.​1038/​s43018-023-00553-8
91.
go back to reference Koutsioumpa, M., Hatziapostolou, M., Polytarchou, C., Tolosa, E. J., Almada, L. L., Mahurkar-Joshi, S., Williams, J., Tirado-Rodriguez, A. B., Huerta-Yepez, S., Karavias, D., Kourea, H., Poultsides, G. A., Struhl, K., Dawson, D. W., Donahue, T. R., Fernandez-Zapico, M. E., & Iliopoulos, D. (2019). Lysine methyltransferase 2D regulates pancreatic carcinogenesis through metabolic reprogramming. Gut, 68(7), 1271–1286. https://doi.org/10.1136/gutjnl-2017-315690CrossRefPubMed Koutsioumpa, M., Hatziapostolou, M., Polytarchou, C., Tolosa, E. J., Almada, L. L., Mahurkar-Joshi, S., Williams, J., Tirado-Rodriguez, A. B., Huerta-Yepez, S., Karavias, D., Kourea, H., Poultsides, G. A., Struhl, K., Dawson, D. W., Donahue, T. R., Fernandez-Zapico, M. E., & Iliopoulos, D. (2019). Lysine methyltransferase 2D regulates pancreatic carcinogenesis through metabolic reprogramming. Gut, 68(7), 1271–1286. https://​doi.​org/​10.​1136/​gutjnl-2017-315690CrossRefPubMed
92.
go back to reference Lu, S., Kim, H. S., Cao, Y., Bedi, K., Zhao, L., Narayanan, I. V., Magnuson, B., Gu, Y., Yang, J., Yi, Z., Babaniamansour, S., Shameon, S., Xu, C., Paulsen, M. T., Qiu, P., Jeyarajan, S., Ljungman, M., Thomas, D., Dou, Y., & Shi, J. (2023). KMT2D links TGF-beta signaling to noncanonical activin pathway and regulates pancreatic cancer cell plasticity. International Journal of Cancer. https://doi.org/10.1002/ijc.34528 Lu, S., Kim, H. S., Cao, Y., Bedi, K., Zhao, L., Narayanan, I. V., Magnuson, B., Gu, Y., Yang, J., Yi, Z., Babaniamansour, S., Shameon, S., Xu, C., Paulsen, M. T., Qiu, P., Jeyarajan, S., Ljungman, M., Thomas, D., Dou, Y., & Shi, J. (2023). KMT2D links TGF-beta signaling to noncanonical activin pathway and regulates pancreatic cancer cell plasticity. International Journal of Cancer. https://​doi.​org/​10.​1002/​ijc.​34528
93.
go back to reference Li, W., Wu, L., Jia, H., Lin, Z., Zhong, R., Li, Y., Jiang, C., Liu, S., Zhou, X., & Zhang, E. (2021). The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cellular & Molecular Biology Letters, 26(1), 45. https://doi.org/10.1186/s11658-021-00292-7CrossRef Li, W., Wu, L., Jia, H., Lin, Z., Zhong, R., Li, Y., Jiang, C., Liu, S., Zhou, X., & Zhang, E. (2021). The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cellular & Molecular Biology Letters, 26(1), 45. https://​doi.​org/​10.​1186/​s11658-021-00292-7CrossRef
94.
go back to reference Yang, G., Yuan, Y., Yuan, H., Wang, J., Yun, H., Geng, Y., Zhao, M., Li, L., Weng, Y., Liu, Z., Feng, J., Bu, Y., Liu, L., Wang, B., & Zhang, X. (2021). Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Reports, 22(2), e50967. https://doi.org/10.15252/embr.202050967CrossRefPubMed Yang, G., Yuan, Y., Yuan, H., Wang, J., Yun, H., Geng, Y., Zhao, M., Li, L., Weng, Y., Liu, Z., Feng, J., Bu, Y., Liu, L., Wang, B., & Zhang, X. (2021). Histone acetyltransferase 1 is a succinyltransferase for histones and non-histones and promotes tumorigenesis. EMBO Reports, 22(2), e50967. https://​doi.​org/​10.​15252/​embr.​202050967CrossRefPubMed
97.
101.
102.
go back to reference Zhong, Z., Harmston, N., Wood, K. C., Madan, B., & Virshup, D. M. (2022). A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. The Journal of Clinical Investigation, 132(12). https://doi.org/10.1172/JCI156305 Zhong, Z., Harmston, N., Wood, K. C., Madan, B., & Virshup, D. M. (2022). A p300/GATA6 axis determines differentiation and Wnt dependency in pancreatic cancer models. The Journal of Clinical Investigation, 132(12). https://​doi.​org/​10.​1172/​JCI156305
106.
go back to reference Hao, H. X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., Lei, H., Mickanin, C., Liu, D., Ruffner, H., Mao, X., Ma, Q., Zamponi, R., Bouwmeester, T., Finan, P. M., Kirschner, M. W., Porter, J. A., Serluca, F. C., & Cong, F. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485(7397), 195–200. https://doi.org/10.1038/nature11019CrossRefPubMed Hao, H. X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., Lei, H., Mickanin, C., Liu, D., Ruffner, H., Mao, X., Ma, Q., Zamponi, R., Bouwmeester, T., Finan, P. M., Kirschner, M. W., Porter, J. A., Serluca, F. C., & Cong, F. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485(7397), 195–200. https://​doi.​org/​10.​1038/​nature11019CrossRefPubMed
107.
go back to reference Koo, B. K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., van Es, J. H., Mohammed, S., Heck, A. J., Maurice, M. M., & Clevers, H. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488(7413), 665–669. https://doi.org/10.1038/nature11308CrossRefPubMed Koo, B. K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., van Es, J. H., Mohammed, S., Heck, A. J., Maurice, M. M., & Clevers, H. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488(7413), 665–669. https://​doi.​org/​10.​1038/​nature11308CrossRefPubMed
108.
go back to reference Jiang, X., Hao, H. X., Growney, J. D., Woolfenden, S., Bottiglio, C., Ng, N., Lu, B., Hsieh, M. H., Bagdasarian, L., Meyer, R., Smith, T. R., Avello, M., Charlat, O., Xie, Y., Porter, J. A., Pan, S., Liu, J., McLaughlin, M. E., & Cong, F. (2013). Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12649–12654. https://doi.org/10.1073/pnas.1307218110CrossRefPubMedPubMedCentral Jiang, X., Hao, H. X., Growney, J. D., Woolfenden, S., Bottiglio, C., Ng, N., Lu, B., Hsieh, M. H., Bagdasarian, L., Meyer, R., Smith, T. R., Avello, M., Charlat, O., Xie, Y., Porter, J. A., Pan, S., Liu, J., McLaughlin, M. E., & Cong, F. (2013). Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12649–12654. https://​doi.​org/​10.​1073/​pnas.​1307218110CrossRefPubMedPubMedCentral
109.
go back to reference Mees, S. T., Mardin, W. A., Wendel, C., Baeumer, N., Willscher, E., Senninger, N., Schleicher, C., Colombo-Benkmann, M., & Haier, J. (2010). EP300--a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. International Journal of Cancer, 126(1), 114–124. https://doi.org/10.1002/ijc.24695CrossRefPubMed Mees, S. T., Mardin, W. A., Wendel, C., Baeumer, N., Willscher, E., Senninger, N., Schleicher, C., Colombo-Benkmann, M., & Haier, J. (2010). EP300--a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. International Journal of Cancer, 126(1), 114–124. https://​doi.​org/​10.​1002/​ijc.​24695CrossRefPubMed
113.
114.
go back to reference Weissmueller, S., Manchado, E., Saborowski, M., Morris, J. P., Wagenblast, E., Davis, C. A., Moon, S. H., Pfister, N. T., Tschaharganeh, D. F., Kitzing, T., Aust, D., Markert, E. K., Wu, J., Grimmond, S. M., Pilarsky, C., Prives, C., Biankin, A. V., & Lowe, S. W. (2014). Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell, 157(2), 382–394. https://doi.org/10.1016/j.cell.2014.01.066CrossRefPubMedPubMedCentral Weissmueller, S., Manchado, E., Saborowski, M., Morris, J. P., Wagenblast, E., Davis, C. A., Moon, S. H., Pfister, N. T., Tschaharganeh, D. F., Kitzing, T., Aust, D., Markert, E. K., Wu, J., Grimmond, S. M., Pilarsky, C., Prives, C., Biankin, A. V., & Lowe, S. W. (2014). Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell, 157(2), 382–394. https://​doi.​org/​10.​1016/​j.​cell.​2014.​01.​066CrossRefPubMedPubMedCentral
116.
go back to reference Principe, D. R., Xiong, R., Li, Y., Pham, T. N. D., Kamath, S. D., Dubrovskyi, O., Ratia, K., Huang, F., Zhao, J., Shen, Z., Thummuri, D., Daohong, Z., Underwood, P. W., Trevino, J., Munshi, H. G., Thatcher, G. R. J., & Rana, A. (2022). XP-524 is a dual-BET/EP300 inhibitor that represses oncogenic KRAS and potentiates immune checkpoint inhibition in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 119(4). https://doi.org/10.1073/pnas.2116764119 Principe, D. R., Xiong, R., Li, Y., Pham, T. N. D., Kamath, S. D., Dubrovskyi, O., Ratia, K., Huang, F., Zhao, J., Shen, Z., Thummuri, D., Daohong, Z., Underwood, P. W., Trevino, J., Munshi, H. G., Thatcher, G. R. J., & Rana, A. (2022). XP-524 is a dual-BET/EP300 inhibitor that represses oncogenic KRAS and potentiates immune checkpoint inhibition in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 119(4). https://​doi.​org/​10.​1073/​pnas.​2116764119
117.
go back to reference Fan, P., Zhao, J., Meng, Z., Wu, H., Wang, B., Wu, H., & Jin, X. (2019). Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 47. https://doi.org/10.1186/s13046-019-1044-zCrossRef Fan, P., Zhao, J., Meng, Z., Wu, H., Wang, B., Wu, H., & Jin, X. (2019). Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 47. https://​doi.​org/​10.​1186/​s13046-019-1044-zCrossRef
125.
go back to reference Shi, X., Hong, T., Walter, K. L., Ewalt, M., Michishita, E., Hung, T., Carney, D., Pena, P., Lan, F., Kaadige, M. R., Lacoste, N., Cayrou, C., Davrazou, F., Saha, A., Cairns, B. R., Ayer, D. E., Kutateladze, T. G., Shi, Y., Cote, J., & Gozani, O. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098), 96–99. https://doi.org/10.1038/nature04835CrossRefPubMedPubMedCentral Shi, X., Hong, T., Walter, K. L., Ewalt, M., Michishita, E., Hung, T., Carney, D., Pena, P., Lan, F., Kaadige, M. R., Lacoste, N., Cayrou, C., Davrazou, F., Saha, A., Cairns, B. R., Ayer, D. E., Kutateladze, T. G., Shi, Y., Cote, J., & Gozani, O. (2006). ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature, 442(7098), 96–99. https://​doi.​org/​10.​1038/​nature04835CrossRefPubMedPubMedCentral
126.
132.
go back to reference von Burstin, J., Eser, S., Paul, M. C., Seidler, B., Brandl, M., Messer, M., von Werder, A., Schmidt, A., Mages, J., Pagel, P., Schnieke, A., Schmid, R. M., Schneider, G., & Saur, D. (2009). E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology, 137(1), 361–371. https://doi.org/10.1053/j.gastro.2009.04.004CrossRef von Burstin, J., Eser, S., Paul, M. C., Seidler, B., Brandl, M., Messer, M., von Werder, A., Schmidt, A., Mages, J., Pagel, P., Schnieke, A., Schmid, R. M., Schneider, G., & Saur, D. (2009). E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology, 137(1), 361–371. https://​doi.​org/​10.​1053/​j.​gastro.​2009.​04.​004CrossRef
133.
go back to reference Mishra, V. K., Wegwitz, F., Kosinsky, R. L., Sen, M., Baumgartner, R., Wulff, T., Siveke, J. T., Schildhaus, H. U., Najafova, Z., Kari, V., Kohlhof, H., Hessmann, E., & Johnsen, S. A. (2017). Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner. Nucleic Acids Research, 45(11), 6334–6349. https://doi.org/10.1093/nar/gkx212CrossRefPubMedPubMedCentral Mishra, V. K., Wegwitz, F., Kosinsky, R. L., Sen, M., Baumgartner, R., Wulff, T., Siveke, J. T., Schildhaus, H. U., Najafova, Z., Kari, V., Kohlhof, H., Hessmann, E., & Johnsen, S. A. (2017). Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner. Nucleic Acids Research, 45(11), 6334–6349. https://​doi.​org/​10.​1093/​nar/​gkx212CrossRefPubMedPubMedCentral
135.
140.
go back to reference Ghandi, M., Huang, F. W., Jane-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., 3rd, Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., Rothberg, M. V., Paolella, B. R., & Sellers, W. R. (2019). Next-generation characterization of the cancer cell line encyclopedia. Nature, 569(7757), 503–508. https://doi.org/10.1038/s41586-019-1186-3CrossRefPubMedPubMedCentral Ghandi, M., Huang, F. W., Jane-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., 3rd, Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., Rothberg, M. V., Paolella, B. R., & Sellers, W. R. (2019). Next-generation characterization of the cancer cell line encyclopedia. Nature, 569(7757), 503–508. https://​doi.​org/​10.​1038/​s41586-019-1186-3CrossRefPubMedPubMedCentral
143.
go back to reference Lechner, S., Malgapo, M. I. P., Gratz, C., Steimbach, R. R., Baron, A., Ruther, P., Nadal, S., Stumpf, C., Loos, C., Ku, X., Prokofeva, P., Lautenbacher, L., Heimburg, T., Wurf, V., Meng, C., Wilhelm, M., Sippl, W., Kleigrewe, K., Pauling, J. K., & Medard, G. (2022). Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology, 18(8), 812–820. https://doi.org/10.1038/s41589-022-01015-5CrossRefPubMedPubMedCentral Lechner, S., Malgapo, M. I. P., Gratz, C., Steimbach, R. R., Baron, A., Ruther, P., Nadal, S., Stumpf, C., Loos, C., Ku, X., Prokofeva, P., Lautenbacher, L., Heimburg, T., Wurf, V., Meng, C., Wilhelm, M., Sippl, W., Kleigrewe, K., Pauling, J. K., & Medard, G. (2022). Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology, 18(8), 812–820. https://​doi.​org/​10.​1038/​s41589-022-01015-5CrossRefPubMedPubMedCentral
147.
go back to reference Kantarjian, H., Issa, J. P., Rosenfeld, C. S., Bennett, J. M., Albitar, M., DiPersio, J., Klimek, V., Slack, J., de Castro, C., Ravandi, F., Helmer, R., 3rd, Shen, L., Nimer, S. D., Leavitt, R., Raza, A., & Saba, H. (2006). Decitabine improves patient outcomes in myelodysplastic syndromes: Results of a phase III randomized study. Cancer, 106(8), 1794–1803. https://doi.org/10.1002/cncr.21792CrossRefPubMed Kantarjian, H., Issa, J. P., Rosenfeld, C. S., Bennett, J. M., Albitar, M., DiPersio, J., Klimek, V., Slack, J., de Castro, C., Ravandi, F., Helmer, R., 3rd, Shen, L., Nimer, S. D., Leavitt, R., Raza, A., & Saba, H. (2006). Decitabine improves patient outcomes in myelodysplastic syndromes: Results of a phase III randomized study. Cancer, 106(8), 1794–1803. https://​doi.​org/​10.​1002/​cncr.​21792CrossRefPubMed
153.
go back to reference Heumann, T. R., Baretti, M., Sugar, E. A., Durham, J. N., Linden, S., Lopez-Vidal, T. Y., Leatherman, J., Cope, L., Sharma, A., Weekes, C. D., O'Dwyer, P. J., Reiss, K. A., Monga, D. K., Ahuja, N., & Azad, N. S. (2022). A randomized, phase II trial of oral azacitidine (CC-486) in patients with resected pancreatic adenocarcinoma at high risk for recurrence. Clinical Epigenetics, 14(1), 166. https://doi.org/10.1186/s13148-022-01367-8CrossRefPubMedPubMedCentral Heumann, T. R., Baretti, M., Sugar, E. A., Durham, J. N., Linden, S., Lopez-Vidal, T. Y., Leatherman, J., Cope, L., Sharma, A., Weekes, C. D., O'Dwyer, P. J., Reiss, K. A., Monga, D. K., Ahuja, N., & Azad, N. S. (2022). A randomized, phase II trial of oral azacitidine (CC-486) in patients with resected pancreatic adenocarcinoma at high risk for recurrence. Clinical Epigenetics, 14(1), 166. https://​doi.​org/​10.​1186/​s13148-022-01367-8CrossRefPubMedPubMedCentral
155.
go back to reference Jo, J. H., Jung, D. E., Lee, H. S., Park, S. B., Chung, M. J., Park, J. Y., Bang, S., Park, S. W., Cho, S., & Song, S. Y. (2022). A phase I/II study of ivaltinostat combined with gemcitabine and erlotinib in patients with untreated locally advanced or metastatic pancreatic adenocarcinoma. International Journal of Cancer, 151(9), 1565–1577. https://doi.org/10.1002/ijc.34144CrossRefPubMedPubMedCentral Jo, J. H., Jung, D. E., Lee, H. S., Park, S. B., Chung, M. J., Park, J. Y., Bang, S., Park, S. W., Cho, S., & Song, S. Y. (2022). A phase I/II study of ivaltinostat combined with gemcitabine and erlotinib in patients with untreated locally advanced or metastatic pancreatic adenocarcinoma. International Journal of Cancer, 151(9), 1565–1577. https://​doi.​org/​10.​1002/​ijc.​34144CrossRefPubMedPubMedCentral
156.
157.
go back to reference Fernandes Neto, J. M., Nadal, E., Bosdriesz, E., Ooft, S. N., Farre, L., McLean, C., Klarenbeek, S., Jurgens, A., Hagen, H., Wang, L., Felip, E., Martinez-Marti, A., Vidal, A., Voest, E., Wessels, L. F. A., van Tellingen, O., Villanueva, A., & Bernards, R. (2020). Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours. Nature Communications, 11(1), 3157. https://doi.org/10.1038/s41467-020-16952-9CrossRefPubMedPubMedCentral Fernandes Neto, J. M., Nadal, E., Bosdriesz, E., Ooft, S. N., Farre, L., McLean, C., Klarenbeek, S., Jurgens, A., Hagen, H., Wang, L., Felip, E., Martinez-Marti, A., Vidal, A., Voest, E., Wessels, L. F. A., van Tellingen, O., Villanueva, A., & Bernards, R. (2020). Multiple low dose therapy as an effective strategy to treat EGFR inhibitor-resistant NSCLC tumours. Nature Communications, 11(1), 3157. https://​doi.​org/​10.​1038/​s41467-020-16952-9CrossRefPubMedPubMedCentral
158.
go back to reference Ozkan-Dagliyan, I., Diehl, J. N., George, S. D., Schaefer, A., Papke, B., Klotz-Noack, K., Waters, A. M., Goodwin, C. M., Gautam, P., Pierobon, M., Peng, S., Gilbert, T. S. K., Lin, K. H., Dagliyan, O., Wennerberg, K., Petricoin, E. F., 3rd, Tran, N. L., Bhagwat, S. V., Tiu, R. V., & Der, C. J. (2020). Low-dose vertical inhibition of the RAF-MEK-ERK cascade causes apoptotic death of KRAS mutant cancers. Cell Reports, 31(11), 107764. https://doi.org/10.1016/j.celrep.2020.107764CrossRefPubMed Ozkan-Dagliyan, I., Diehl, J. N., George, S. D., Schaefer, A., Papke, B., Klotz-Noack, K., Waters, A. M., Goodwin, C. M., Gautam, P., Pierobon, M., Peng, S., Gilbert, T. S. K., Lin, K. H., Dagliyan, O., Wennerberg, K., Petricoin, E. F., 3rd, Tran, N. L., Bhagwat, S. V., Tiu, R. V., & Der, C. J. (2020). Low-dose vertical inhibition of the RAF-MEK-ERK cascade causes apoptotic death of KRAS mutant cancers. Cell Reports, 31(11), 107764. https://​doi.​org/​10.​1016/​j.​celrep.​2020.​107764CrossRefPubMed
160.
go back to reference Connolly, R. M., Laille, E., Vaishampayan, U., Chung, V., Kelly, K., Dowlati, A., Alese, O. B., Harvey, R. D., Haluska, P., Siu, L. L., Kummar, S., Piekarz, R., Ivy, S. P., Anders, N. M., Downs, M., O’Connor, A., Scardina, A., Saunders, J., Rosner, G. L., & Team, E.-S. (2020). Phase I and pharmacokinetic study of romidepsin in patients with cancer and hepatic dysfunction: A national cancer institute organ dysfunction working group study. Clinical Cancer Research, 26(20), 5329–5337. https://doi.org/10.1158/1078-0432.CCR-20-1412CrossRefPubMedPubMedCentral Connolly, R. M., Laille, E., Vaishampayan, U., Chung, V., Kelly, K., Dowlati, A., Alese, O. B., Harvey, R. D., Haluska, P., Siu, L. L., Kummar, S., Piekarz, R., Ivy, S. P., Anders, N. M., Downs, M., O’Connor, A., Scardina, A., Saunders, J., Rosner, G. L., & Team, E.-S. (2020). Phase I and pharmacokinetic study of romidepsin in patients with cancer and hepatic dysfunction: A national cancer institute organ dysfunction working group study. Clinical Cancer Research, 26(20), 5329–5337. https://​doi.​org/​10.​1158/​1078-0432.​CCR-20-1412CrossRefPubMedPubMedCentral
162.
go back to reference Gounder, M., Schoffski, P., Jones, R. L., Agulnik, M., Cote, G. M., Villalobos, V. M., Attia, S., Chugh, R., Chen, T. W., Jahan, T., Loggers, E. T., Gupta, A., Italiano, A., Demetri, G. D., Ratan, R., Davis, L. E., Mir, O., Dileo, P., Van Tine, B. A., & Stacchiotti, S. (2020). Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: An international, open-label, phase 2 basket study. The Lancet Oncology, 21(11), 1423–1432. https://doi.org/10.1016/S1470-2045(20)30451-4CrossRefPubMed Gounder, M., Schoffski, P., Jones, R. L., Agulnik, M., Cote, G. M., Villalobos, V. M., Attia, S., Chugh, R., Chen, T. W., Jahan, T., Loggers, E. T., Gupta, A., Italiano, A., Demetri, G. D., Ratan, R., Davis, L. E., Mir, O., Dileo, P., Van Tine, B. A., & Stacchiotti, S. (2020). Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: An international, open-label, phase 2 basket study. The Lancet Oncology, 21(11), 1423–1432. https://​doi.​org/​10.​1016/​S1470-2045(20)30451-4CrossRefPubMed
163.
go back to reference Sohal, D., Krishnamurthi, S., Tohme, R., Gu, X., Lindner, D., Landowski, T. H., Pink, J., Radivoyevitch, T., Fada, S., Lee, Z., Shepard, D., Khorana, A., & Saunthararajah, Y. (2020). A pilot clinical trial of the cytidine deaminase inhibitor tetrahydrouridine combined with decitabine to target DNMT1 in advanced, chemorefractory pancreatic cancer. American Journal of Cancer Research, 10(9), 3047–3060 https://www.ncbi.nlm.nih.gov/pubmed/33042633PubMedPubMedCentral Sohal, D., Krishnamurthi, S., Tohme, R., Gu, X., Lindner, D., Landowski, T. H., Pink, J., Radivoyevitch, T., Fada, S., Lee, Z., Shepard, D., Khorana, A., & Saunthararajah, Y. (2020). A pilot clinical trial of the cytidine deaminase inhibitor tetrahydrouridine combined with decitabine to target DNMT1 in advanced, chemorefractory pancreatic cancer. American Journal of Cancer Research, 10(9), 3047–3060 https://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​33042633PubMedPubMedCentral
Metadata
Title
Epigenetic control of pancreatic cancer metastasis
Authors
Lukas Krauß
Carolin Schneider
Elisabeth Hessmann
Dieter Saur
Günter Schneider
Publication date
02-09-2023
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2023
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10132-z

Other articles of this Issue 4/2023

Cancer and Metastasis Reviews 4/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine