Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2021

01-03-2021 | Metastasis | Non-Thematic Review

Interaction between adipose tissue and cancer cells: role for cancer progression

Authors: Jean-François Dumas, Lucie Brisson

Published in: Cancer and Metastasis Reviews | Issue 1/2021

Login to get access

Abstract

Environment surrounding tumours are now recognized to play an important role in tumour development and progression. Among the cells found in the tumour environment, adipocytes from adipose tissue establish a vicious cycle with cancer cells to promote cancer survival, proliferation, metastasis and treatment resistance. This cycle is particularly of interest in the context of obesity, which has been found as a cancer risk factor. Cancers cells can reprogram adipocyte physiology leading to an “activated” phenotype characterized by delipidation and secretion of inflammatory adipokines. The adipocyte secretions then influence tumour growth and metastasis which has been mainly attributed to interleukin 6 (IL-6) or leptin but also to the release of fatty acids which are able to change cancer cell metabolism and signalling pathways. The aim of this review is to report recent advances in the understanding of the molecular mechanisms linking adipose tissue with cancer progression in order to propose new therapeutic strategies based on pharmacological or nutritional intervention.
Literature
5.
go back to reference Proenca, A. R., Sertie, R. A., Oliveira, A. C., Campana, A. B., Caminhotto, R. O., Chimin, P., & Lima, F. B. (2014). New concepts in white adipose tissue physiology. Brazilian Journal of Medical and Biological Research, 47(3), 192–205.CrossRef Proenca, A. R., Sertie, R. A., Oliveira, A. C., Campana, A. B., Caminhotto, R. O., Chimin, P., & Lima, F. B. (2014). New concepts in white adipose tissue physiology. Brazilian Journal of Medical and Biological Research, 47(3), 192–205.CrossRef
12.
go back to reference Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang, Y. Y., Meulle, A., Salles, B., le Gonidec, S., Garrido, I., Escourrou, G., Valet, P., & Muller, C. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. https://doi.org/10.1158/0008-5472.CAN-10-3323.CrossRefPubMed Dirat, B., Bochet, L., Dabek, M., Daviaud, D., Dauvillier, S., Majed, B., Wang, Y. Y., Meulle, A., Salles, B., le Gonidec, S., Garrido, I., Escourrou, G., Valet, P., & Muller, C. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. https://​doi.​org/​10.​1158/​0008-5472.​CAN-10-3323.CrossRefPubMed
13.
go back to reference Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., Romero, I. L., Carey, M. S., Mills, G. B., Hotamisligil, G. S., Yamada, S. D., Peter, M. E., Gwin, K., & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://doi.org/10.1038/nm.2492.CrossRefPubMedPubMedCentral Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., Romero, I. L., Carey, M. S., Mills, G. B., Hotamisligil, G. S., Yamada, S. D., Peter, M. E., Gwin, K., & Lengyel, E. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. https://​doi.​org/​10.​1038/​nm.​2492.CrossRefPubMedPubMedCentral
16.
go back to reference Hu, W., Ru, Z., Zhou, Y., Xiao, W., Sun, R., Zhang, S., Gao, Y., Li, X., Zhang, X., & Yang, H. (2019). Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864(8), 1091–1102. https://doi.org/10.1016/j.bbalip.2019.04.006.CrossRefPubMed Hu, W., Ru, Z., Zhou, Y., Xiao, W., Sun, R., Zhang, S., Gao, Y., Li, X., Zhang, X., & Yang, H. (2019). Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864(8), 1091–1102. https://​doi.​org/​10.​1016/​j.​bbalip.​2019.​04.​006.CrossRefPubMed
20.
go back to reference Wu, Q., Li, J., Li, Z., Sun, S., Zhu, S., Wang, L., et al. (2019). Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. Journal of Experimental & Clinical Cancer Research: CR, 38. https://doi.org/10.1186/s13046-019-1210-3. Wu, Q., Li, J., Li, Z., Sun, S., Zhu, S., Wang, L., et al. (2019). Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. Journal of Experimental & Clinical Cancer Research: CR, 38. https://​doi.​org/​10.​1186/​s13046-019-1210-3.
25.
go back to reference Shafat, M. S., Oellerich, T., Mohr, S., Robinson, S. D., Edwards, D. R., Marlein, C. R., Piddock, R. E., Fenech, M., Zaitseva, L., Abdul-Aziz, A., Turner, J., Watkins, J. A., Lawes, M., Bowles, K. M., & Rushworth, S. A. (2017). Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 129(10), 1320–1332. https://doi.org/10.1182/blood-2016-08-734798.CrossRefPubMed Shafat, M. S., Oellerich, T., Mohr, S., Robinson, S. D., Edwards, D. R., Marlein, C. R., Piddock, R. E., Fenech, M., Zaitseva, L., Abdul-Aziz, A., Turner, J., Watkins, J. A., Lawes, M., Bowles, K. M., & Rushworth, S. A. (2017). Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 129(10), 1320–1332. https://​doi.​org/​10.​1182/​blood-2016-08-734798.CrossRefPubMed
27.
go back to reference Bochet, L., Lehuede, C., Dauvillier, S., Wang, Y. Y., Dirat, B., Laurent, V., Dray, C., Guiet, R., Maridonneau-Parini, I., le Gonidec, S., Couderc, B., Escourrou, G., Valet, P., & Muller, C. (2013). Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Research, 73(18), 5657–5668. https://doi.org/10.1158/0008-5472.CAN-13-0530.CrossRefPubMed Bochet, L., Lehuede, C., Dauvillier, S., Wang, Y. Y., Dirat, B., Laurent, V., Dray, C., Guiet, R., Maridonneau-Parini, I., le Gonidec, S., Couderc, B., Escourrou, G., Valet, P., & Muller, C. (2013). Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Research, 73(18), 5657–5668. https://​doi.​org/​10.​1158/​0008-5472.​CAN-13-0530.CrossRefPubMed
28.
go back to reference Lu, W., Wan, Y., Li, Z., Zhu, B., Yin, C., Liu, H., Yang, S., Zhai, Y., Yu, Y., Wei, Y., & Shi, J. (2018). Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. Journal of Experimental & Clinical Cancer Research, 37(1), 66. https://doi.org/10.1186/s13046-018-0738-y.CrossRef Lu, W., Wan, Y., Li, Z., Zhu, B., Yin, C., Liu, H., Yang, S., Zhai, Y., Yu, Y., Wei, Y., & Shi, J. (2018). Growth differentiation factor 15 contributes to marrow adipocyte remodeling in response to the growth of leukemic cells. Journal of Experimental & Clinical Cancer Research, 37(1), 66. https://​doi.​org/​10.​1186/​s13046-018-0738-y.CrossRef
29.
go back to reference Herroon, M. K., Diedrich, J. D., Rajagurubandara, E., Martin, C., Maddipati, K. R., Kim, S., Heath, E. I., Granneman, J., & Podgorski, I. (2019). Prostate tumor cell-derived IL1beta induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms. Molecular Cancer Research, 17(12), 2508–2521. https://doi.org/10.1158/1541-7786.MCR-19-0540.CrossRefPubMed Herroon, M. K., Diedrich, J. D., Rajagurubandara, E., Martin, C., Maddipati, K. R., Kim, S., Heath, E. I., Granneman, J., & Podgorski, I. (2019). Prostate tumor cell-derived IL1beta induces an inflammatory phenotype in bone marrow adipocytes and reduces sensitivity to docetaxel via lipolysis-dependent mechanisms. Molecular Cancer Research, 17(12), 2508–2521. https://​doi.​org/​10.​1158/​1541-7786.​MCR-19-0540.CrossRefPubMed
30.
go back to reference Santander, A. M., Lopez-Ocejo, O., Casas, O., Agostini, T., Sanchez, L., Lamas-Basulto, E., et al. (2015). Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers (Basel), 7(1), 143–178. https://doi.org/10.3390/cancers7010143.CrossRef Santander, A. M., Lopez-Ocejo, O., Casas, O., Agostini, T., Sanchez, L., Lamas-Basulto, E., et al. (2015). Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers (Basel), 7(1), 143–178. https://​doi.​org/​10.​3390/​cancers7010143.CrossRef
32.
go back to reference Xu, L., Shen, M., Chen, X., Zhu, R., Yang, D. R., Tsai, Y., Keng, P. C., Chen, Y., & Lee, S. O. (2018). Adipocytes affect castration-resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PD-L1/NKG2D ligand levels in tumor cells. Prostate, 78(5), 353–364. https://doi.org/10.1002/pros.23479.CrossRefPubMed Xu, L., Shen, M., Chen, X., Zhu, R., Yang, D. R., Tsai, Y., Keng, P. C., Chen, Y., & Lee, S. O. (2018). Adipocytes affect castration-resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PD-L1/NKG2D ligand levels in tumor cells. Prostate, 78(5), 353–364. https://​doi.​org/​10.​1002/​pros.​23479.CrossRefPubMed
40.
go back to reference Strong, A. L., Ohlstein, J. F., Biagas, B. A., Rhodes, L. V., Pei, D. T., Tucker, H. A., Llamas, C., Bowles, A. C., Dutreil, M. F., Zhang, S., Gimble, J. M., Burow, M. E., & Bunnell, B. A. (2015). Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Research, 17, 112. https://doi.org/10.1186/s13058-015-0622-z.CrossRefPubMed Strong, A. L., Ohlstein, J. F., Biagas, B. A., Rhodes, L. V., Pei, D. T., Tucker, H. A., Llamas, C., Bowles, A. C., Dutreil, M. F., Zhang, S., Gimble, J. M., Burow, M. E., & Bunnell, B. A. (2015). Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Research, 17, 112. https://​doi.​org/​10.​1186/​s13058-015-0622-z.CrossRefPubMed
42.
go back to reference Chi, M., Chen, J., Ye, Y., Tseng, H. Y., Lai, F., Tay, K. H., Jin, L., Guo, S. T., Jiang, C. C., & Zhang, X. D. (2014). Adipocytes contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. Current Medicinal Chemistry, 21(10), 1255–1267.CrossRef Chi, M., Chen, J., Ye, Y., Tseng, H. Y., Lai, F., Tay, K. H., Jin, L., Guo, S. T., Jiang, C. C., & Zhang, X. D. (2014). Adipocytes contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. Current Medicinal Chemistry, 21(10), 1255–1267.CrossRef
52.
go back to reference He, J. Y., Wei, X. H., Li, S. J., Liu, Y., Hu, H. L., Li, Z. Z., Kuang, X. H., Wang, L., Shi, X., Yuan, S. T., & Sun, L. (2018). Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Communication and Signaling: CCS, 16(1), 100. https://doi.org/10.1186/s12964-018-0309-z.CrossRefPubMed He, J. Y., Wei, X. H., Li, S. J., Liu, Y., Hu, H. L., Li, Z. Z., Kuang, X. H., Wang, L., Shi, X., Yuan, S. T., & Sun, L. (2018). Adipocyte-derived IL-6 and leptin promote breast cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Communication and Signaling: CCS, 16(1), 100. https://​doi.​org/​10.​1186/​s12964-018-0309-z.CrossRefPubMed
54.
go back to reference Wang, C. H., Wang, P. J., Hsieh, Y. C., Lo, S., Lee, Y. C., Chen, Y. C., Tsai, C. H., Chiu, W. C., Chu-Sung Hu, S., Lu, C. W., Yang, Y. F., Chiu, C. C., Ou-Yang, F., Wang, Y. M., Hou, M. F., & Yuan, S. S. (2018). Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene, 37(5), 589–600. https://doi.org/10.1038/onc.2017.357.CrossRefPubMed Wang, C. H., Wang, P. J., Hsieh, Y. C., Lo, S., Lee, Y. C., Chen, Y. C., Tsai, C. H., Chiu, W. C., Chu-Sung Hu, S., Lu, C. W., Yang, Y. F., Chiu, C. C., Ou-Yang, F., Wang, Y. M., Hou, M. F., & Yuan, S. S. (2018). Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene, 37(5), 589–600. https://​doi.​org/​10.​1038/​onc.​2017.​357.CrossRefPubMed
56.
go back to reference Drew, B. G., Hamidi, H., Zhou, Z., Villanueva, C. J., Krum, S. A., Calkin, A. C., Parks, B. W., Ribas, V., Kalajian, N. Y., Phun, J., Daraei, P., Christofk, H. R., Hewitt, S. C., Korach, K. S., Tontonoz, P., Lusis, A. J., Slamon, D. J., Hurvitz, S. A., & Hevener, A. L. (2015). Estrogen receptor (ER)alpha-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression. The Journal of Biological Chemistry, 290(9), 5566–5581. https://doi.org/10.1074/jbc.M114.606459.CrossRefPubMed Drew, B. G., Hamidi, H., Zhou, Z., Villanueva, C. J., Krum, S. A., Calkin, A. C., Parks, B. W., Ribas, V., Kalajian, N. Y., Phun, J., Daraei, P., Christofk, H. R., Hewitt, S. C., Korach, K. S., Tontonoz, P., Lusis, A. J., Slamon, D. J., Hurvitz, S. A., & Hevener, A. L. (2015). Estrogen receptor (ER)alpha-regulated lipocalin 2 expression in adipose tissue links obesity with breast cancer progression. The Journal of Biological Chemistry, 290(9), 5566–5581. https://​doi.​org/​10.​1074/​jbc.​M114.​606459.CrossRefPubMed
58.
65.
go back to reference Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., Moro, C., Soldan, V., Dalle, S., Balor, S., Golzio, M., Burlet-Schiltz, O., Valet, P., Muller, C., & Nieto, L. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651.CrossRefPubMed Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., LeGonidec, S., Moro, C., Soldan, V., Dalle, S., Balor, S., Golzio, M., Burlet-Schiltz, O., Valet, P., Muller, C., & Nieto, L. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Research, 76(14), 4051–4057. https://​doi.​org/​10.​1158/​0008-5472.​CAN-16-0651.CrossRefPubMed
68.
go back to reference Au Yeung, C. L., Co, N. N., Tsuruga, T., Yeung, T. L., Kwan, S. Y., Leung, C. S., Li, Y., Lu, E. S., Kwan, K., Wong, K. K., Schmandt, R., Lu, K. H., & Mok, S. C. (2016). Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nature Communications, 7, 11150. https://doi.org/10.1038/ncomms11150.CrossRefPubMedPubMedCentral Au Yeung, C. L., Co, N. N., Tsuruga, T., Yeung, T. L., Kwan, S. Y., Leung, C. S., Li, Y., Lu, E. S., Kwan, K., Wong, K. K., Schmandt, R., Lu, K. H., & Mok, S. C. (2016). Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nature Communications, 7, 11150. https://​doi.​org/​10.​1038/​ncomms11150.CrossRefPubMedPubMedCentral
72.
go back to reference Wen, Y. A., Xing, X., Harris, J. W., Zaytseva, Y. Y., Mitov, M. I., Napier, D. L., Weiss, H. L., Mark Evers, B., & Gao, T. (2017). Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death & Disease, 8(2), e2593. https://doi.org/10.1038/cddis.2017.21.CrossRef Wen, Y. A., Xing, X., Harris, J. W., Zaytseva, Y. Y., Mitov, M. I., Napier, D. L., Weiss, H. L., Mark Evers, B., & Gao, T. (2017). Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death & Disease, 8(2), e2593. https://​doi.​org/​10.​1038/​cddis.​2017.​21.CrossRef
76.
go back to reference Bensaad, K., Favaro, E., Lewis, C. A., Peck, B., Lord, S., Collins, J. M., Pinnick, K. E., Wigfield, S., Buffa, F. M., Li, J. L., Zhang, Q., Wakelam, M. J. O., Karpe, F., Schulze, A., & Harris, A. L. (2014). Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Reports, 9(1), 349–365. https://doi.org/10.1016/j.celrep.2014.08.056.CrossRefPubMed Bensaad, K., Favaro, E., Lewis, C. A., Peck, B., Lord, S., Collins, J. M., Pinnick, K. E., Wigfield, S., Buffa, F. M., Li, J. L., Zhang, Q., Wakelam, M. J. O., Karpe, F., Schulze, A., & Harris, A. L. (2014). Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Reports, 9(1), 349–365. https://​doi.​org/​10.​1016/​j.​celrep.​2014.​08.​056.CrossRefPubMed
78.
79.
go back to reference Balaban, S., Shearer, R. F., Lee, L. S., van Geldermalsen, M., Schreuder, M., Shtein, H. C., Cairns, R., Thomas, K. C., Fazakerley, D. J., Grewal, T., Holst, J., Saunders, D. N., & Hoy, A. J. (2017). Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab, 5, 1. https://doi.org/10.1186/s40170-016-0163-7.CrossRefPubMedPubMedCentral Balaban, S., Shearer, R. F., Lee, L. S., van Geldermalsen, M., Schreuder, M., Shtein, H. C., Cairns, R., Thomas, K. C., Fazakerley, D. J., Grewal, T., Holst, J., Saunders, D. N., & Hoy, A. J. (2017). Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab, 5, 1. https://​doi.​org/​10.​1186/​s40170-016-0163-7.CrossRefPubMedPubMedCentral
81.
go back to reference Miranda, F., Mannion, D., Liu, S., Zheng, Y., Mangala, L. S., Redondo, C., Herrero-Gonzalez, S., Xu, R., Taylor, C., Chedom, D. F., Karaminejadranjbar, M., Albukhari, A., Jiang, D., Pradeep, S., Rodriguez-Aguayo, C., Lopez-Berestein, G., Salah, E., Abdul Azeez, K. R., Elkins, J. M., Campo, L., Myers, K. A., Klotz, D., Bivona, S., Dhar, S., Bast Jr., R. C., Saya, H., Choi, H. G., Gray, N. S., Fischer, R., Kessler, B. M., Yau, C., Sood, A. K., Motohara, T., Knapp, S., & Ahmed, A. A. (2016). Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell, 30(2), 273–289. https://doi.org/10.1016/j.ccell.2016.06.020.CrossRefPubMed Miranda, F., Mannion, D., Liu, S., Zheng, Y., Mangala, L. S., Redondo, C., Herrero-Gonzalez, S., Xu, R., Taylor, C., Chedom, D. F., Karaminejadranjbar, M., Albukhari, A., Jiang, D., Pradeep, S., Rodriguez-Aguayo, C., Lopez-Berestein, G., Salah, E., Abdul Azeez, K. R., Elkins, J. M., Campo, L., Myers, K. A., Klotz, D., Bivona, S., Dhar, S., Bast Jr., R. C., Saya, H., Choi, H. G., Gray, N. S., Fischer, R., Kessler, B. M., Yau, C., Sood, A. K., Motohara, T., Knapp, S., & Ahmed, A. A. (2016). Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell, 30(2), 273–289. https://​doi.​org/​10.​1016/​j.​ccell.​2016.​06.​020.CrossRefPubMed
82.
go back to reference Tabe, Y., Yamamoto, S., Saitoh, K., Sekihara, K., Monma, N., Ikeo, K., Mogushi, K., Shikami, M., Ruvolo, V., Ishizawa, J., Hail Jr., N., Kazuno, S., Igarashi, M., Matsushita, H., Yamanaka, Y., Arai, H., Nagaoka, I., Miida, T., Hayashizaki, Y., Konopleva, M., & Andreeff, M. (2017). Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Research, 77(6), 1453–1464. https://doi.org/10.1158/0008-5472.CAN-16-1645.CrossRefPubMedPubMedCentral Tabe, Y., Yamamoto, S., Saitoh, K., Sekihara, K., Monma, N., Ikeo, K., Mogushi, K., Shikami, M., Ruvolo, V., Ishizawa, J., Hail Jr., N., Kazuno, S., Igarashi, M., Matsushita, H., Yamanaka, Y., Arai, H., Nagaoka, I., Miida, T., Hayashizaki, Y., Konopleva, M., & Andreeff, M. (2017). Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Research, 77(6), 1453–1464. https://​doi.​org/​10.​1158/​0008-5472.​CAN-16-1645.CrossRefPubMedPubMedCentral
90.
go back to reference Gharpure, K. M., Pradeep, S., Sans, M., Rupaimoole, R., Ivan, C., Wu, S. Y., Bayraktar, E., Nagaraja, A. S., Mangala, L. S., Zhang, X., Haemmerle, M., Hu, W., Rodriguez-Aguayo, C., McGuire, M., Mak, C. S. L., Chen, X., Tran, M. A., Villar-Prados, A., Pena, G. A., Kondetimmanahalli, R., Nini, R., Koppula, P., Ram, P., Liu, J., Lopez-Berestein, G., Baggerly, K., S. Eberlin, L., & Sood, A. K. (2018). FABP4 as a key determinant of metastatic potential of ovarian cancer. Nature Communications, 9(1), 2923. https://doi.org/10.1038/s41467-018-04987-y.CrossRefPubMedPubMedCentral Gharpure, K. M., Pradeep, S., Sans, M., Rupaimoole, R., Ivan, C., Wu, S. Y., Bayraktar, E., Nagaraja, A. S., Mangala, L. S., Zhang, X., Haemmerle, M., Hu, W., Rodriguez-Aguayo, C., McGuire, M., Mak, C. S. L., Chen, X., Tran, M. A., Villar-Prados, A., Pena, G. A., Kondetimmanahalli, R., Nini, R., Koppula, P., Ram, P., Liu, J., Lopez-Berestein, G., Baggerly, K., S. Eberlin, L., & Sood, A. K. (2018). FABP4 as a key determinant of metastatic potential of ovarian cancer. Nature Communications, 9(1), 2923. https://​doi.​org/​10.​1038/​s41467-018-04987-y.CrossRefPubMedPubMedCentral
93.
go back to reference Zaoui, M., Morel, M., Ferrand, N., Fellahi, S., Bastard, J. P., Lamaziere, A., et al. (2019). Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel), 11(12). https://doi.org/10.3390/cancers11122012. Zaoui, M., Morel, M., Ferrand, N., Fellahi, S., Bastard, J. P., Lamaziere, A., et al. (2019). Breast-associated adipocytes secretome induce fatty acid uptake and invasiveness in breast cancer cells via CD36 independently of body mass index, menopausal status and mammary density. Cancers (Basel), 11(12). https://​doi.​org/​10.​3390/​cancers11122012.
95.
go back to reference Yan, F., Shen, N., Pang, J. X., Zhang, Y. W., Rao, E. Y., Bode, A. M., Al-Kali, A., Zhang, D. E., Litzow, M. R., Li, B., & Liu, S. J. (2017). Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia, 31(6), 1434–1442. https://doi.org/10.1038/leu.2016.349.CrossRefPubMed Yan, F., Shen, N., Pang, J. X., Zhang, Y. W., Rao, E. Y., Bode, A. M., Al-Kali, A., Zhang, D. E., Litzow, M. R., Li, B., & Liu, S. J. (2017). Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia, 31(6), 1434–1442. https://​doi.​org/​10.​1038/​leu.​2016.​349.CrossRefPubMed
98.
go back to reference Hilvo, M., Denkert, C., Lehtinen, L., Muller, B., Brockmoller, S., Seppanen-Laakso, T., Budczies, J., Bucher, E., Yetukuri, L., Castillo, S., Berg, E., Nygren, H., Sysi-Aho, M., Griffin, J. L., Fiehn, O., Loibl, S., Richter-Ehrenstein, C., Radke, C., Hyotylainen, T., Kallioniemi, O., Iljin, K., & Oresic, M. (2011). Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Research, 71(9), 3236–3245. https://doi.org/10.1158/0008-5472.CAN-10-3894.CrossRefPubMed Hilvo, M., Denkert, C., Lehtinen, L., Muller, B., Brockmoller, S., Seppanen-Laakso, T., Budczies, J., Bucher, E., Yetukuri, L., Castillo, S., Berg, E., Nygren, H., Sysi-Aho, M., Griffin, J. L., Fiehn, O., Loibl, S., Richter-Ehrenstein, C., Radke, C., Hyotylainen, T., Kallioniemi, O., Iljin, K., & Oresic, M. (2011). Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Research, 71(9), 3236–3245. https://​doi.​org/​10.​1158/​0008-5472.​CAN-10-3894.CrossRefPubMed
101.
go back to reference Watt, M. J., Clark, A. K., Selth, L. A., Haynes, V. R., Lister, N., Rebello, R., Porter, L. H., Niranjan, B., Whitby, S. T., Lo, J., Huang, C., Schittenhelm, R. B., Anderson, K. E., Furic, L., Wijayaratne, P. R., Matzaris, M., Montgomery, M. K., Papargiris, M., Norden, S., Febbraio, M., Risbridger, G. P., Frydenberg, M., Nomura, D. K., & Taylor, R. A. (2019). Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 11(478), eaau5758. https://doi.org/10.1126/scitranslmed.aau5758.CrossRefPubMed Watt, M. J., Clark, A. K., Selth, L. A., Haynes, V. R., Lister, N., Rebello, R., Porter, L. H., Niranjan, B., Whitby, S. T., Lo, J., Huang, C., Schittenhelm, R. B., Anderson, K. E., Furic, L., Wijayaratne, P. R., Matzaris, M., Montgomery, M. K., Papargiris, M., Norden, S., Febbraio, M., Risbridger, G. P., Frydenberg, M., Nomura, D. K., & Taylor, R. A. (2019). Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Science Translational Medicine, 11(478), eaau5758. https://​doi.​org/​10.​1126/​scitranslmed.​aau5758.CrossRefPubMed
102.
104.
go back to reference Volden, P. A., Skor, M. N., Johnson, M. B., Singh, P., Patel, F. N., McClintock, M. K., Brady, M. J., & Conzen, S. D. (2016). Mammary adipose tissue-derived lysophospholipids promote estrogen receptor-negative mammary epithelial cell proliferation. Cancer Prevention Research (Philadelphia, Pa.), 9(5), 367–378. https://doi.org/10.1158/1940-6207.CAPR-15-0107.CrossRef Volden, P. A., Skor, M. N., Johnson, M. B., Singh, P., Patel, F. N., McClintock, M. K., Brady, M. J., & Conzen, S. D. (2016). Mammary adipose tissue-derived lysophospholipids promote estrogen receptor-negative mammary epithelial cell proliferation. Cancer Prevention Research (Philadelphia, Pa.), 9(5), 367–378. https://​doi.​org/​10.​1158/​1940-6207.​CAPR-15-0107.CrossRef
106.
go back to reference Figiel, S., Pinault, M., Domingo, I., Guimaraes, C., Guibon, R., Besson, P., Tavernier, E., Blanchet, P., Multigner, L., Bruyère, F., Haillot, O., Mathieu, R., Vincendeau, S., Rioux-Leclercq, N., Lebdai, S., Azzouzi, A. R., Perrouin-Verbe, M. A., Fournier, G., Doucet, L., Rigaud, J., Renaudin, K., Mahéo, K., & Fromont, G. (2018). Fatty acid profile in peri-prostatic adipose tissue and prostate cancer aggressiveness in African-Caribbean and Caucasian patients. European Journal of Cancer, 91, 107–115. https://doi.org/10.1016/j.ejca.2017.12.017.CrossRefPubMed Figiel, S., Pinault, M., Domingo, I., Guimaraes, C., Guibon, R., Besson, P., Tavernier, E., Blanchet, P., Multigner, L., Bruyère, F., Haillot, O., Mathieu, R., Vincendeau, S., Rioux-Leclercq, N., Lebdai, S., Azzouzi, A. R., Perrouin-Verbe, M. A., Fournier, G., Doucet, L., Rigaud, J., Renaudin, K., Mahéo, K., & Fromont, G. (2018). Fatty acid profile in peri-prostatic adipose tissue and prostate cancer aggressiveness in African-Caribbean and Caucasian patients. European Journal of Cancer, 91, 107–115. https://​doi.​org/​10.​1016/​j.​ejca.​2017.​12.​017.CrossRefPubMed
108.
go back to reference Figiel, S., Bery, F., Chantome, A., Fontaine, D., Pasqualin, C., Maupoil, V., et al. (2019). A novel calcium-mediated EMT pathway controlled by lipids: an opportunity for prostate cancer adjuvant therapy. Cancers (Basel), 11(11). https://doi.org/10.3390/cancers11111814. Figiel, S., Bery, F., Chantome, A., Fontaine, D., Pasqualin, C., Maupoil, V., et al. (2019). A novel calcium-mediated EMT pathway controlled by lipids: an opportunity for prostate cancer adjuvant therapy. Cancers (Basel), 11(11). https://​doi.​org/​10.​3390/​cancers11111814.
114.
Metadata
Title
Interaction between adipose tissue and cancer cells: role for cancer progression
Authors
Jean-François Dumas
Lucie Brisson
Publication date
01-03-2021
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2021
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09934-2

Other articles of this Issue 1/2021

Cancer and Metastasis Reviews 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine