Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya

Authors: Mwathi Jane Wamaitha, Deepti Nigam, Solomon Maina, Francesca Stomeo, Anne Wangai, Joyce Njoki Njuguna, Timothy A. Holton, Bramwel W. Wanjala, Mark Wamalwa, Tanui Lucas, Appolinaire Djikeng, Hernan Garcia-Ruiz

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA.

Methods

We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties.

Results

Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus.

Conclusion

Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smale M, Byerlee D, Jayne T. Maize revolutions in sub-Saharan Africa. In An African Green Revolution. Keijiro Otsuka and Donald F. Larson (editors). London: Springer; 2011. Smale M, Byerlee D, Jayne T. Maize revolutions in sub-Saharan Africa. In An African Green Revolution. Keijiro Otsuka and Donald F. Larson (editors). London: Springer; 2011.
3.
go back to reference Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. Agriculture Economics Division. Food and Agriculture Organization of the United Nations. ESA Working paper No. 12-03. Rome, Italy. 2012. Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. Agriculture Economics Division. Food and Agriculture Organization of the United Nations. ESA Working paper No. 12-03. Rome, Italy. 2012.
4.
go back to reference Shiferaw B, Prasanna BM, Hellin J, Bänziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 2011;3:307.CrossRef Shiferaw B, Prasanna BM, Hellin J, Bänziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 2011;3:307.CrossRef
5.
go back to reference Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN, Stewart LR, Cassone BJ, Sevgan S, Nyasani JO, Kusia E, et al. Maize lethal necrosis (mln), an emerging threat to maize-based food security in sub-saharan africa. Phytopathology. 2015;105:956–65.CrossRefPubMed Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN, Stewart LR, Cassone BJ, Sevgan S, Nyasani JO, Kusia E, et al. Maize lethal necrosis (mln), an emerging threat to maize-based food security in sub-saharan africa. Phytopathology. 2015;105:956–65.CrossRefPubMed
6.
go back to reference Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, et al. Use of next-generation sequencing for the identification and characterization ofmaize chlorotic mottle virusandsugarcane mosaic viruscausing maize lethal necrosis in Kenya. Plant Pathol. 2013;62:741–9.CrossRef Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, et al. Use of next-generation sequencing for the identification and characterization ofmaize chlorotic mottle virusandsugarcane mosaic viruscausing maize lethal necrosis in Kenya. Plant Pathol. 2013;62:741–9.CrossRef
7.
go back to reference Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK, Kasina M, Mahuku G, Scheets K, Jeffers D. First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis. 2012;96:1582–3.CrossRef Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK, Kasina M, Mahuku G, Scheets K, Jeffers D. First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis. 2012;96:1582–3.CrossRef
8.
go back to reference Kagoda F, Gidoi R, Isabirye BE. Status of maize lethal necrosis in eastern Uganda. Afr J Agric Res. 2016;11:652–60.CrossRef Kagoda F, Gidoi R, Isabirye BE. Status of maize lethal necrosis in eastern Uganda. Afr J Agric Res. 2016;11:652–60.CrossRef
9.
go back to reference Adams I, Harju V, Hodges T, Hany U, Skelton A, Rai S, Deka M, Smith J, Fox A, Uzayisenga B. First report of maize lethal necrosis disease in Rwanda. New Dis Rep. 2014;29:22.CrossRef Adams I, Harju V, Hodges T, Hany U, Skelton A, Rai S, Deka M, Smith J, Fox A, Uzayisenga B. First report of maize lethal necrosis disease in Rwanda. New Dis Rep. 2014;29:22.CrossRef
10.
go back to reference Lukanda M, Owati A, Ogunsanya P, Valimunzigha K, Katsongo K, Ndemere H, Kumar PL. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 2014;98:1448.CrossRef Lukanda M, Owati A, Ogunsanya P, Valimunzigha K, Katsongo K, Ndemere H, Kumar PL. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 2014;98:1448.CrossRef
11.
go back to reference Mahuku G, Wangai A, Sadessa K, Teklewold A, Wegary D, Adams I, Smith J, Braidwood L, Feyissa B, Regassa B. First report of maize chlorotic mottle virus and maize lethal necrosis on maize in Ethiopia. Plant Dis. 2015;99:1870.CrossRef Mahuku G, Wangai A, Sadessa K, Teklewold A, Wegary D, Adams I, Smith J, Braidwood L, Feyissa B, Regassa B. First report of maize chlorotic mottle virus and maize lethal necrosis on maize in Ethiopia. Plant Dis. 2015;99:1870.CrossRef
12.
go back to reference Niblett C, Claflin L. Corn lethal necrosis-a new virus disease of corn in Kansas. Plant Dis Rep. 1978;62:15–9. Niblett C, Claflin L. Corn lethal necrosis-a new virus disease of corn in Kansas. Plant Dis Rep. 1978;62:15–9.
13.
go back to reference Dawson N, Martin A, Sikor T. Green revolution in sub-saharan africa: implications of imposed innovation for the wellbeing of rural smallholders. World Dev. 2016;78:204–18.CrossRef Dawson N, Martin A, Sikor T. Green revolution in sub-saharan africa: implications of imposed innovation for the wellbeing of rural smallholders. World Dev. 2016;78:204–18.CrossRef
14.
go back to reference Frankema E. Africa and the green revolution a global historical perspective. NJAS-Wageningen J Life Sci. 2014;70:17–24.CrossRef Frankema E. Africa and the green revolution a global historical perspective. NJAS-Wageningen J Life Sci. 2014;70:17–24.CrossRef
15.
go back to reference Frelat R, Lopez-Ridaura S, Giller KE, Herrero M, Douxchamps S, Djurfeldt AA, Erenstein O, Henderson B, Kassie M, Paul BK. Drivers of household food availability in sub-saharan africa based on big data from small farms. Proc Natl Acad Sci. 2016;113:458–63.CrossRefPubMed Frelat R, Lopez-Ridaura S, Giller KE, Herrero M, Douxchamps S, Djurfeldt AA, Erenstein O, Henderson B, Kassie M, Paul BK. Drivers of household food availability in sub-saharan africa based on big data from small farms. Proc Natl Acad Sci. 2016;113:458–63.CrossRefPubMed
16.
go back to reference Sibanda OS. Trade liberalisation and its impact on food security in sub–saharan africa. Int J Public Law Policy. 2015;5:92–107.CrossRef Sibanda OS. Trade liberalisation and its impact on food security in sub–saharan africa. Int J Public Law Policy. 2015;5:92–107.CrossRef
17.
go back to reference Nutter R, Scheets K, Panganiban L, Lommel S. The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Res. 1989;17:3163–77.CrossRefPubMedPubMedCentral Nutter R, Scheets K, Panganiban L, Lommel S. The complete nucleotide sequence of the maize chlorotic mottle virus genome. Nucleic Acids Res. 1989;17:3163–77.CrossRefPubMedPubMedCentral
18.
go back to reference Stenger DC, Young BA, Qu F, Morris TJ, French R. Wheat streak mosaic virus lacking helper component-proteinase is competent to produce disease synergism in double infections with maize chlorotic mottle virus. Phytopathology. 2007;97:1213–21.CrossRefPubMed Stenger DC, Young BA, Qu F, Morris TJ, French R. Wheat streak mosaic virus lacking helper component-proteinase is competent to produce disease synergism in double infections with maize chlorotic mottle virus. Phytopathology. 2007;97:1213–21.CrossRefPubMed
19.
go back to reference Stewart LR, Willie K, Wijeratne S, Redinbaugh MG, Massawe D, Niblett CL, Kiggundu A, Asiimwe T. Johnsongrass mosaic virus contributes to maize lethal necrosis in east africa. Plant Dis. 2017;101:1455–62.CrossRef Stewart LR, Willie K, Wijeratne S, Redinbaugh MG, Massawe D, Niblett CL, Kiggundu A, Asiimwe T. Johnsongrass mosaic virus contributes to maize lethal necrosis in east africa. Plant Dis. 2017;101:1455–62.CrossRef
20.
go back to reference Adams I, Miano D, Kinyua Z, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U. Use of next-generation sequencing for the identification and characterization of maize chlorotic mottle virus and sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol. 2013;62:741–9.CrossRef Adams I, Miano D, Kinyua Z, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U. Use of next-generation sequencing for the identification and characterization of maize chlorotic mottle virus and sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol. 2013;62:741–9.CrossRef
21.
go back to reference Adams I, Braidwood L, Stomeo F, Phiri N, Uwumukiza B, Feyissa B, Mahuku G, Wangai A, Smith J, Mumford R, et al. Characterising maize viruses associated with maize lethal necrosis symptoms in sub saharan africa. bioRxiv. 2017; https://doi.org/10.1101/161489 Adams I, Braidwood L, Stomeo F, Phiri N, Uwumukiza B, Feyissa B, Mahuku G, Wangai A, Smith J, Mumford R, et al. Characterising maize viruses associated with maize lethal necrosis symptoms in sub saharan africa. bioRxiv. 2017; https://​doi.​org/​10.​1101/​161489
22.
go back to reference Fentahun M, Feyissa T, Abraham A, Kwak HR. Detection and characterization of maize chlorotic mottle virus and sugarcanemosaic virus associated with maize lethal necrosis disease in Ethiopia: an emerging threat to maize production in the region. Eur J Plant Pathol. 2017:1–7. Fentahun M, Feyissa T, Abraham A, Kwak HR. Detection and characterization of maize chlorotic mottle virus and sugarcanemosaic virus associated with maize lethal necrosis disease in Ethiopia: an emerging threat to maize production in the region. Eur J Plant Pathol. 2017:1–7.
23.
go back to reference Zambrano JL, Jones MW, Brenner E, Francis DM, Tomas A, Redinbaugh MG. Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. Theor Appl Genet. 2014;127:867–80.CrossRefPubMed Zambrano JL, Jones MW, Brenner E, Francis DM, Tomas A, Redinbaugh MG. Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. Theor Appl Genet. 2014;127:867–80.CrossRefPubMed
24.
go back to reference Semagn K, Beyene Y, Babu R, Nair S, Gowda M, Das B, Tarekegne A, Mugo S, Mahuku G, Worku M. Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for sub-saharan africa. Crop Sci. 2015;55:1449–59.CrossRef Semagn K, Beyene Y, Babu R, Nair S, Gowda M, Das B, Tarekegne A, Mugo S, Mahuku G, Worku M. Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for sub-saharan africa. Crop Sci. 2015;55:1449–59.CrossRef
25.
go back to reference Beyene Y, Gowda M, Suresh LM, Mugo S, Olsen M, Oikeh SO, Juma C, Tarekegne A, Prasanna BM. Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica. 2017;213:224.CrossRef Beyene Y, Gowda M, Suresh LM, Mugo S, Olsen M, Oikeh SO, Juma C, Tarekegne A, Prasanna BM. Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica. 2017;213:224.CrossRef
26.
go back to reference Jones MW, Penning BW, Jamann TM, Glaubitz JC, Romay C, Buckler ES, Redinbaugh M. Diverse chromosomal locations of quantitative trait loci for tolerance to maize chlorotic mottle virus in five maize populations. Phytopathology. 2017; Jones MW, Penning BW, Jamann TM, Glaubitz JC, Romay C, Buckler ES, Redinbaugh M. Diverse chromosomal locations of quantitative trait loci for tolerance to maize chlorotic mottle virus in five maize populations. Phytopathology. 2017;
27.
go back to reference Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, et al. An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant. 2017;10:483–97.CrossRefPubMed Liu Q, Liu H, Gong Y, Tao Y, Jiang L, Zuo W, Yang Q, Ye J, Lai J, Wu J, et al. An atypical thioredoxin imparts early resistance to sugarcane mosaic virus in maize. Mol Plant. 2017;10:483–97.CrossRefPubMed
28.
go back to reference Nagano AJ, Honjo MN, Mihara M, Sato M, Kudoh H. Detection of plant viruses in natural environments by using rna-seq. In: Uyeda I, Masuta C, editors. Plant virology protocols: new approaches to detect viruses and host responses. New York: Springer New York; 2015. p. 89–98. Nagano AJ, Honjo MN, Mihara M, Sato M, Kudoh H. Detection of plant viruses in natural environments by using rna-seq. In: Uyeda I, Masuta C, editors. Plant virology protocols: new approaches to detect viruses and host responses. New York: Springer New York; 2015. p. 89–98.
29.
go back to reference Maina S, Edwards OR, de Almeida L, Ximenes A, Jones RAC. First complete squash leaf curl China virus genomic segment DNA-a sequence from East Timor. Genome Announcements. 2017;5:e00483–17.PubMedPubMedCentral Maina S, Edwards OR, de Almeida L, Ximenes A, Jones RAC. First complete squash leaf curl China virus genomic segment DNA-a sequence from East Timor. Genome Announcements. 2017;5:e00483–17.PubMedPubMedCentral
32.
go back to reference Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Trinity: reconstructing a full-length transcriptome without a genome from rna-seq data. Nat Biotechnol. 2011;29:644.CrossRefPubMedPubMedCentral Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Trinity: reconstructing a full-length transcriptome without a genome from rna-seq data. Nat Biotechnol. 2011;29:644.CrossRefPubMedPubMedCentral
33.
go back to reference Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing, S. The sequence alignment/map format and samtools. Bioinformatics. 2009;25:2078–9.CrossRefPubMedPubMedCentral Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing, S. The sequence alignment/map format and samtools. Bioinformatics. 2009;25:2078–9.CrossRefPubMedPubMedCentral
34.
35.
36.
go back to reference Katoh K, Toh H. Recent developments in the mafft multiple sequence alignment program. Brief Bioinform. 2008;9:286–98.CrossRefPubMed Katoh K, Toh H. Recent developments in the mafft multiple sequence alignment program. Brief Bioinform. 2008;9:286–98.CrossRefPubMed
38.
go back to reference Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.CrossRefPubMed Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.CrossRefPubMed
39.
go back to reference Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.CrossRefPubMedPubMedCentral Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.CrossRefPubMedPubMedCentral
41.
go back to reference Pande D, Madzokere E, Hartnady P, Kraberger S, Hadfield J, Rosario K, Jaschke A, Monjane AL, Owor BE, Dida MM, et al. The role of Kenya in the trans-african spread of maize streak virus strain a. Virus Res. 2017;232:69–76.CrossRefPubMed Pande D, Madzokere E, Hartnady P, Kraberger S, Hadfield J, Rosario K, Jaschke A, Monjane AL, Owor BE, Dida MM, et al. The role of Kenya in the trans-african spread of maize streak virus strain a. Virus Res. 2017;232:69–76.CrossRefPubMed
42.
go back to reference Shi XM, Miller H, Verchot J, Carrington JC, Vance VB. Mutations in the region encoding the central domain of helper component-proteinase (hc-pro) eliminate potato virus x/potyviral synergism. Virology. 1997;231:35–42.CrossRefPubMed Shi XM, Miller H, Verchot J, Carrington JC, Vance VB. Mutations in the region encoding the central domain of helper component-proteinase (hc-pro) eliminate potato virus x/potyviral synergism. Virology. 1997;231:35–42.CrossRefPubMed
43.
go back to reference Murphy JF, Bowen KL. Synergistic disease in pepper caused by the mixed infection of cucumber mosaic virus and pepper mottle virus. Phytopathology. 2006;96:240–7.CrossRefPubMed Murphy JF, Bowen KL. Synergistic disease in pepper caused by the mixed infection of cucumber mosaic virus and pepper mottle virus. Phytopathology. 2006;96:240–7.CrossRefPubMed
44.
go back to reference Zhang X, Du P, Lu L, Xiao Q, Wang W, Cao X, Ren B, Wei C, Li Y. Contrasting effects of hc-pro and 2b viral suppressors from sugarcane mosaic virus and tomato aspermy cucumovirus on the accumulation of sirnas. Virology. 2008;374:351–60.CrossRefPubMed Zhang X, Du P, Lu L, Xiao Q, Wang W, Cao X, Ren B, Wei C, Li Y. Contrasting effects of hc-pro and 2b viral suppressors from sugarcane mosaic virus and tomato aspermy cucumovirus on the accumulation of sirnas. Virology. 2008;374:351–60.CrossRefPubMed
45.
go back to reference Tatineni S, Qu F, Li R, Morris TJ, French R. Triticum mosaic poacevirus enlists p1 rather than hc-pro to suppress rna silencing-mediated host defense. Virology. 2012;433:104–15.CrossRefPubMed Tatineni S, Qu F, Li R, Morris TJ, French R. Triticum mosaic poacevirus enlists p1 rather than hc-pro to suppress rna silencing-mediated host defense. Virology. 2012;433:104–15.CrossRefPubMed
46.
go back to reference Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X. Characterization of a novel polerovirus infecting maize in China. Viruses. 2016;8:120.CrossRefPubMedCentral Chen S, Jiang G, Wu J, Liu Y, Qian Y, Zhou X. Characterization of a novel polerovirus infecting maize in China. Viruses. 2016;8:120.CrossRefPubMedCentral
47.
48.
go back to reference Boulton MI. Functions and interactions of mastrevirus gene products. Physiol Mol Plant Pathol. 2002;60:243–55.CrossRef Boulton MI. Functions and interactions of mastrevirus gene products. Physiol Mol Plant Pathol. 2002;60:243–55.CrossRef
49.
go back to reference Liu Y, Jin W, Wang L, Wang X. Replication-associated proteins encoded by wheat dwarf virus act as rna silencing suppressors. Virus Res. 2014;190:34–9.CrossRefPubMed Liu Y, Jin W, Wang L, Wang X. Replication-associated proteins encoded by wheat dwarf virus act as rna silencing suppressors. Virus Res. 2014;190:34–9.CrossRefPubMed
50.
go back to reference Krueger E, Beckett R, Gray S, Miller WA. The complete nucleotide sequence of the genome of barley yellow dwarf virus-rmv reveals it to be a new polerovirus distantly related to other yellow dwarf viruses. Front Microbiol. 2013;4:205.CrossRefPubMedPubMedCentral Krueger E, Beckett R, Gray S, Miller WA. The complete nucleotide sequence of the genome of barley yellow dwarf virus-rmv reveals it to be a new polerovirus distantly related to other yellow dwarf viruses. Front Microbiol. 2013;4:205.CrossRefPubMedPubMedCentral
51.
go back to reference Wang F, Zhou BG, Gao ZL, Xu DF. A new species of the genus polerovirus causing symptoms similar to maize yellow dwarf virus-rmv of maize in China. Plant Dis. 2016;100:1508.CrossRef Wang F, Zhou BG, Gao ZL, Xu DF. A new species of the genus polerovirus causing symptoms similar to maize yellow dwarf virus-rmv of maize in China. Plant Dis. 2016;100:1508.CrossRef
52.
go back to reference Yahaya A, Al Rwahnih M, Dangora DB, Gregg L, Alegbejo MD, Lava Kumar P, Alabi OJ. First report of maize yellow mosaic virus infecting sugarcane (saccharum spp.) and itch grass (rottboellia cochinchinensis) in Nigeria. Plant Dis. 2017;101:1335.CrossRef Yahaya A, Al Rwahnih M, Dangora DB, Gregg L, Alegbejo MD, Lava Kumar P, Alabi OJ. First report of maize yellow mosaic virus infecting sugarcane (saccharum spp.) and itch grass (rottboellia cochinchinensis) in Nigeria. Plant Dis. 2017;101:1335.CrossRef
53.
go back to reference Ivanov KI, Eskelin K, Lohmus A, Makinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol. 2014;95:1415–29.CrossRefPubMed Ivanov KI, Eskelin K, Lohmus A, Makinen K. Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol. 2014;95:1415–29.CrossRefPubMed
54.
go back to reference Tatineni S, Elowsky C, Graybosch RA. Wheat streak mosaic virus coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts. Mol Plant-Microbe Interact. 2017;30:974–83.CrossRefPubMed Tatineni S, Elowsky C, Graybosch RA. Wheat streak mosaic virus coat protein deletion mutants elicit more severe symptoms than wild-type virus in multiple cereal hosts. Mol Plant-Microbe Interact. 2017;30:974–83.CrossRefPubMed
55.
go back to reference Tatineni S, Kovacs F, French R. Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants. J Virol. 2014;88:1366–80.CrossRefPubMedPubMedCentral Tatineni S, Kovacs F, French R. Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants. J Virol. 2014;88:1366–80.CrossRefPubMedPubMedCentral
56.
go back to reference Viswanathan R, Karuppaiah R, Balamuralikrishnan M. Identification of new variants of scmv causing sugarcane mosaic in India and assessing their genetic diversity in relation to scmv type strains. Virus Genes. 2009;39:375.CrossRefPubMed Viswanathan R, Karuppaiah R, Balamuralikrishnan M. Identification of new variants of scmv causing sugarcane mosaic in India and assessing their genetic diversity in relation to scmv type strains. Virus Genes. 2009;39:375.CrossRefPubMed
57.
go back to reference Gonçalves MC, Galdeano DM, Maia IdG, Chagas CM. Variabilidade genética de sugarcane mosaic virus, causando mosaico em milho no brasil. Pesq Agrop Brasileira. 2011;46:362–9.CrossRef Gonçalves MC, Galdeano DM, Maia IdG, Chagas CM. Variabilidade genética de sugarcane mosaic virus, causando mosaico em milho no brasil. Pesq Agrop Brasileira. 2011;46:362–9.CrossRef
58.
go back to reference Alegria OM, Royer M, Bousalem M, Chatenet M, Peterschmitt M, Girard J-C, Rott P. Genetic diversity in the coat protein coding region of eighty-six sugarcane mosaic virus isolates from eight countries, particularly from Cameroon and Congo. Arch Virol. 2003;148:357–72.CrossRefPubMed Alegria OM, Royer M, Bousalem M, Chatenet M, Peterschmitt M, Girard J-C, Rott P. Genetic diversity in the coat protein coding region of eighty-six sugarcane mosaic virus isolates from eight countries, particularly from Cameroon and Congo. Arch Virol. 2003;148:357–72.CrossRefPubMed
59.
go back to reference Bockelman DL. Host range and seed-transmission studies of maize chlorotic mottle virus in grasses and corn. Plant Dis. 1982;66:216.CrossRef Bockelman DL. Host range and seed-transmission studies of maize chlorotic mottle virus in grasses and corn. Plant Dis. 1982;66:216.CrossRef
60.
go back to reference Brault V, Perigon S, Reinbold C, Erdinger M, Scheidecker D, Herrbach E, Richards K, Ziegler-Graff V. The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. J Virol. 2005;79:9685–93.CrossRefPubMedPubMedCentral Brault V, Perigon S, Reinbold C, Erdinger M, Scheidecker D, Herrbach E, Richards K, Ziegler-Graff V. The polerovirus minor capsid protein determines vector specificity and intestinal tropism in the aphid. J Virol. 2005;79:9685–93.CrossRefPubMedPubMedCentral
61.
go back to reference Nault LR, Styer WE, Coffey ME, Gordon DT, Negi LS, Niblett CL. Transmission of maize chlorotic mottle virus by chrysomelid beetles. Phytopathology. 1978;68:1071–4.CrossRef Nault LR, Styer WE, Coffey ME, Gordon DT, Negi LS, Niblett CL. Transmission of maize chlorotic mottle virus by chrysomelid beetles. Phytopathology. 1978;68:1071–4.CrossRef
62.
go back to reference Zhao M, Ho H, Wu Y, He Y, Li M. Western flower thrips (frankliniella occidentalis) transmits maize chlorotic mottle virus. J Phytopathol. 2014;162:532–6.CrossRef Zhao M, Ho H, Wu Y, He Y, Li M. Western flower thrips (frankliniella occidentalis) transmits maize chlorotic mottle virus. J Phytopathol. 2014;162:532–6.CrossRef
63.
go back to reference Hilker FM, Allen LJS, Bokil VA, Briggs CJ, Feng Z, Garrett KA, Gross LJ, Hamelin FM, Jeger MJ, Manore CA, et al. Modeling virus coinfection to inform management of maize lethal necrosis in Kenya. Phytopathology. 2017;107:1095–108.PubMed Hilker FM, Allen LJS, Bokil VA, Briggs CJ, Feng Z, Garrett KA, Gross LJ, Hamelin FM, Jeger MJ, Manore CA, et al. Modeling virus coinfection to inform management of maize lethal necrosis in Kenya. Phytopathology. 2017;107:1095–108.PubMed
64.
go back to reference Stewart LR, Teplier R, Todd JC, Jones MW, Cassone BJ, Wijeratne S, Wijeratne A, Redinbaugh MG. Viruses in maize and johnsongrass in southern Ohio. Phytopathology. 2014;104:1360–9.CrossRefPubMed Stewart LR, Teplier R, Todd JC, Jones MW, Cassone BJ, Wijeratne S, Wijeratne A, Redinbaugh MG. Viruses in maize and johnsongrass in southern Ohio. Phytopathology. 2014;104:1360–9.CrossRefPubMed
65.
go back to reference Uyemoto JK. Biology and control of maize chlorotic mottle virus. Plant Dis. 1983;67:7–10.CrossRef Uyemoto JK. Biology and control of maize chlorotic mottle virus. Plant Dis. 1983;67:7–10.CrossRef
66.
go back to reference Phillips NJ, Uyemoto JK, Wilson DL. Maize chlorotic mottle virus and crop rotation: effect of sorhgum on virus incidence. Plant Dis. 1982;66:376–9.CrossRef Phillips NJ, Uyemoto JK, Wilson DL. Maize chlorotic mottle virus and crop rotation: effect of sorhgum on virus incidence. Plant Dis. 1982;66:376–9.CrossRef
Metadata
Title
Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya
Authors
Mwathi Jane Wamaitha
Deepti Nigam
Solomon Maina
Francesca Stomeo
Anne Wangai
Joyce Njoki Njuguna
Timothy A. Holton
Bramwel W. Wanjala
Mark Wamalwa
Tanui Lucas
Appolinaire Djikeng
Hernan Garcia-Ruiz
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-0999-2

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue