Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Production of highly and broad-range specific monoclonal antibodies against hemagglutinin of H5-subtype avian influenza viruses and their differentiation by mass spectrometry

Authors: Violetta Sączyńska, Anna Bierczyńska-Krzysik, Violetta Cecuda-Adamczewska, Piotr Baran, Anna Porębska, Katarzyna Florys, Marcin Zieliński, Grażyna Płucienniczak

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research. The aim of this study was to obtain diagnostically valuable mAbs with broad strain specificity against H5-subtype AIVs.

Results

We applied the hybridoma method to produce anti-HA mAbs. The cloning and screening procedures resulted in the selection of 7 mouse hybridoma cell lines and their respective antibody clones. Preliminary immunoreactivity studies showed that these newly established mAbs, all of the IgG1 isotype, had high specificity and broad-range activities against the H5 HAs. However, these studies did not allow for a clear distinction among the selected antibodies and mAb-secreting hybridoma clones. To differentiate the analyzed mAbs and determine the exact number of hybridoma clones, peptide mapping of the Fc and Fab fragments was performed using a Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF/TOF) mass spectrometer. Detailed analyses of the acquired MS and MS/MS spectra confirmed that the Fc fragments constituted highly conserved species- and isotype-immunoglobulin components, whereas the Fab fragments exhibited considerable variation in the sequences that determine antibody specificity. This approach enabled unambiguous characterization of the selected mAbs according to their peptide composition. As a result, 6 different clones were distinguished.

Conclusions

Our work provided a unique panel of anti-H5 HA mAbs, which meets the demand for novel, high-specificity analytical tools for use in serologic surveillance. Applications of these mAbs in areas other than diagnostics are also possible. Moreover, we demonstrated for the first time that peptide mapping of antibody fragments with mass spectrometry is an efficient method for the differentiation of antibody clones and relevant antibody-producing cell lines. The method may be successfully used to characterize mAbs at the protein level.
Appendix
Available only for authorised users
Literature
1.
go back to reference Xu X, Subbarao, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:15–9.CrossRefPubMed Xu X, Subbarao, Cox NJ, Guo Y. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 1999;261:15–9.CrossRefPubMed
2.
go back to reference Verhagen JH, Herfst S, Fouchier RA. Infectious disease. How a virus travels the world. Science. 2015;347(6222):616–7.CrossRefPubMed Verhagen JH, Herfst S, Fouchier RA. Infectious disease. How a virus travels the world. Science. 2015;347(6222):616–7.CrossRefPubMed
4.
go back to reference Ip HS, Torchetti MK, Crespo R, Kohrs P, DeBruyn P, Mansfield KG, et al. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014. Emerg Infect Dis. 2015;21:886–90.CrossRefPubMedPubMedCentral Ip HS, Torchetti MK, Crespo R, Kohrs P, DeBruyn P, Mansfield KG, et al. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014. Emerg Infect Dis. 2015;21:886–90.CrossRefPubMedPubMedCentral
5.
go back to reference Hvistendahl M. Avian influenza. Enigmatic bird flu strain races across the U.S. Midwest. Science. 2015;348:741–2.CrossRefPubMed Hvistendahl M. Avian influenza. Enigmatic bird flu strain races across the U.S. Midwest. Science. 2015;348:741–2.CrossRefPubMed
8.
go back to reference Velkov T, Ong C, Baker MA, Kim H, Li J, Nation RL, et al. The antigenic architecture of the hemagglutinin of influenza H5N1 viruses. Mol Immunol. 2013;56:705–19.CrossRefPubMed Velkov T, Ong C, Baker MA, Kim H, Li J, Nation RL, et al. The antigenic architecture of the hemagglutinin of influenza H5N1 viruses. Mol Immunol. 2013;56:705–19.CrossRefPubMed
9.
go back to reference Thompson NJ, Rosati S, Heck A. Performing native mass spectrometry analysis on therapeutic antibodies. Methods. 2014;65(1):11–7.CrossRefPubMed Thompson NJ, Rosati S, Heck A. Performing native mass spectrometry analysis on therapeutic antibodies. Methods. 2014;65(1):11–7.CrossRefPubMed
10.
go back to reference Chirino AJ, Mire-Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol. 2004;22(11):1383–91.CrossRefPubMed Chirino AJ, Mire-Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol. 2004;22(11):1383–91.CrossRefPubMed
11.
go back to reference Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.CrossRefPubMed Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.CrossRefPubMed
12.
go back to reference Steinitz M, Klein G, Koskimies S, Makel O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature. 1977;269(5627):420–2.CrossRefPubMed Steinitz M, Klein G, Koskimies S, Makel O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature. 1977;269(5627):420–2.CrossRefPubMed
13.
go back to reference Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol. 2007;18(6):523–8.CrossRefPubMed Lanzavecchia A, Corti D, Sallusto F. Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol. 2007;18(6):523–8.CrossRefPubMed
14.
go back to reference Borth N, Zeyda M, Kunert R, Katinger H. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 2000–2001;71(4):266-273. Borth N, Zeyda M, Kunert R, Katinger H. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng 2000–2001;71(4):266-273.
15.
go back to reference Kuhne M, Dippong M, Flemig S, Hoffmann K, Petsch K, Schenk JA, et al. Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA. J Immunol Methods. 2014;413:45–56.CrossRefPubMed Kuhne M, Dippong M, Flemig S, Hoffmann K, Petsch K, Schenk JA, et al. Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA. J Immunol Methods. 2014;413:45–56.CrossRefPubMed
16.
go back to reference Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev. 2009;28(1):147–76.CrossRefPubMed Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev. 2009;28(1):147–76.CrossRefPubMed
17.
go back to reference Chelius D, Ruf P, Gruber P, Plöscher M, Liedtke R, Gansberger E, et al. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs. 2010;2(3):309–19.CrossRefPubMedPubMedCentral Chelius D, Ruf P, Gruber P, Plöscher M, Liedtke R, Gansberger E, et al. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs. 2010;2(3):309–19.CrossRefPubMedPubMedCentral
18.
go back to reference Gahoual R, Burr A, Busnel JM, Kuhn L, Hammann P, Beck A, et al. Rapid and multi-level characterization of trastuzumab using sheathless capillary electrophoresis-tandem mass spectrometry. MAbs. 2013;5(3):479–90.CrossRefPubMedPubMedCentral Gahoual R, Burr A, Busnel JM, Kuhn L, Hammann P, Beck A, et al. Rapid and multi-level characterization of trastuzumab using sheathless capillary electrophoresis-tandem mass spectrometry. MAbs. 2013;5(3):479–90.CrossRefPubMedPubMedCentral
19.
go back to reference Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev. 2007;26(3):370–88.CrossRefPubMed Srebalus Barnes CA, Lim A. Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev. 2007;26(3):370–88.CrossRefPubMed
20.
go back to reference Yamaguchi Y, Kim H, Kato K, Masuda K, Shimada I, Arata Y. Proteolytic fragmentation with high specificity of mouse immunoglobulin G. Mapping of proteolytic cleavage sites in the hinge region. J Immunol Methods. 1995;181(2):259–67.CrossRefPubMed Yamaguchi Y, Kim H, Kato K, Masuda K, Shimada I, Arata Y. Proteolytic fragmentation with high specificity of mouse immunoglobulin G. Mapping of proteolytic cleavage sites in the hinge region. J Immunol Methods. 1995;181(2):259–67.CrossRefPubMed
21.
go back to reference Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol. 1983;131(6):2895–902.PubMed Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol. 1983;131(6):2895–902.PubMed
22.
go back to reference Mariani M, Camagna M, Tarditi L, Seccamani E. A new enzymatic method to obtain high-yield F(ab’)2 suitable for clinical use from mouse IgG1. Mol Immunol. 1991;28(1–2):69–77.CrossRefPubMed Mariani M, Camagna M, Tarditi L, Seccamani E. A new enzymatic method to obtain high-yield F(ab’)2 suitable for clinical use from mouse IgG1. Mol Immunol. 1991;28(1–2):69–77.CrossRefPubMed
23.
go back to reference Linke S, Neubauer K, Dorner MB, Dorner BG, Pauli G, Schweiger B. Generation and characterisation of monoclonal antibodies against influenza virus A, subtype H5N1. J Virol Methods. 2011;175(1):85–94.CrossRefPubMed Linke S, Neubauer K, Dorner MB, Dorner BG, Pauli G, Schweiger B. Generation and characterisation of monoclonal antibodies against influenza virus A, subtype H5N1. J Virol Methods. 2011;175(1):85–94.CrossRefPubMed
24.
go back to reference Ohnishi K, Takahashi Y, Kono N, Nakajima N, Mizukoshi F, Misawa S, et al. Newly established monoclonal antibodies for immunological detection of H5N1 influenza virus. Jpn J Infect Dis. 2012;65(1):19–27.PubMed Ohnishi K, Takahashi Y, Kono N, Nakajima N, Mizukoshi F, Misawa S, et al. Newly established monoclonal antibodies for immunological detection of H5N1 influenza virus. Jpn J Infect Dis. 2012;65(1):19–27.PubMed
26.
go back to reference Wu R, Li X, Leung HC, Cao Z, Qiu Z, Zhou Y, et al. A novel neutralizing antibody against diverse clades of H5N1 influenza virus and its mutants capable of airborne transmission. Antivir Res. 2014;106:13–23.CrossRefPubMed Wu R, Li X, Leung HC, Cao Z, Qiu Z, Zhou Y, et al. A novel neutralizing antibody against diverse clades of H5N1 influenza virus and its mutants capable of airborne transmission. Antivir Res. 2014;106:13–23.CrossRefPubMed
27.
go back to reference Fiebig P, Shehata AA, Liebert UG. Generation of monoclonal antibodies reactive against subtype specific conserved B-cell epitopes on haemagglutinin protein of influenza virus H5N1. Virus Res. 2015;199:46–55.CrossRefPubMed Fiebig P, Shehata AA, Liebert UG. Generation of monoclonal antibodies reactive against subtype specific conserved B-cell epitopes on haemagglutinin protein of influenza virus H5N1. Virus Res. 2015;199:46–55.CrossRefPubMed
28.
go back to reference Gronsang D, Bui AN, Trinh DQ, Bui VN, Nguyen KV, Can MX, et al. Characterization of cross-clade monoclonal antibodies against H5N1 highly pathogenic avian influenza virus and their application to the antigenic analysis of diverse H5 subtype viruses. Arch Virol. 2017; https://doi.org/10.1007/s00705-017-3350-0. Gronsang D, Bui AN, Trinh DQ, Bui VN, Nguyen KV, Can MX, et al. Characterization of cross-clade monoclonal antibodies against H5N1 highly pathogenic avian influenza virus and their application to the antigenic analysis of diverse H5 subtype viruses. Arch Virol. 2017; https://​doi.​org/​10.​1007/​s00705-017-3350-0.
31.
go back to reference Lelli D, Moreno A, Brocchi E, Sozzi E, Capucci L, Canelli E, et al. West Nile virus: characterization and diagnostic applications of monoclonal antibodies. Virol J. 2012;9:81.CrossRefPubMedPubMedCentral Lelli D, Moreno A, Brocchi E, Sozzi E, Capucci L, Canelli E, et al. West Nile virus: characterization and diagnostic applications of monoclonal antibodies. Virol J. 2012;9:81.CrossRefPubMedPubMedCentral
Metadata
Title
Production of highly and broad-range specific monoclonal antibodies against hemagglutinin of H5-subtype avian influenza viruses and their differentiation by mass spectrometry
Authors
Violetta Sączyńska
Anna Bierczyńska-Krzysik
Violetta Cecuda-Adamczewska
Piotr Baran
Anna Porębska
Katarzyna Florys
Marcin Zieliński
Grażyna Płucienniczak
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0886-2

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.