Skip to main content
Top
Published in: Calcified Tissue International 1/2010

01-01-2010

MEPE’s Diverse Effects on Mineralization

Authors: Adele L. Boskey, Phyllis Chiang, Alexis Fermanis, Jared Brown, Hayat Taleb, Valentin David, Peter S. N. Rowe

Published in: Calcified Tissue International | Issue 1/2010

Login to get access

Abstract

Matrix extracellular phosphoglycoprotein (MEPE) is an inhibitor of mineralization in situ and in cell cultures where altered expression is associated with oncogenic osteomalacia and hypophosphatemic rickets. The purpose of this study was to determine whether the intact protein or the peptide(s) originating from this protein was responsible for the inhibition. The ability of the intact protein and the acidic, serine- and aspartate-rich MEPE-associated motif (ASARM) peptide to promote or inhibit de novo hydroxyapatite formation and growth of hydroxyapatite seed crystals, in both phosphorylated and dephosphorylated forms, was assessed at room temperature in a dynamic gel diffusion system at 3.5 and 5 days. The most effective nucleator concentration was also examined when associated with fibrillar type I collagen. The phosphorylated intact protein was an effective promoter of mineralization in the gelatin gel diffusion system, while the ASARM peptide was an effective inhibitor. When dephosphorylated both the intact protein and the ASARM peptide had no effect on mineralization. Associated with collagen fibrils, some of the effect of the intact protein was lost. This study demonstrates the importance of posttranslational modification for the site-specific activity of MEPE and its ASARM peptide.
Literature
4.
go back to reference Nampei A, Hashimoto J, Hayashida K, Tsuboi H, Shi K, Tsuji I, Miyashita H, Yamada T, Matsukawa N, Matsumoto M, Morimoto S, Ogihara T, Ochi T, Yoshikawa H (2004) Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab 22:176–184. doi:10.1007/s00774-003-0468-9 CrossRefPubMed Nampei A, Hashimoto J, Hayashida K, Tsuboi H, Shi K, Tsuji I, Miyashita H, Yamada T, Matsukawa N, Matsumoto M, Morimoto S, Ogihara T, Ochi T, Yoshikawa H (2004) Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J Bone Miner Metab 22:176–184. doi:10.​1007/​s00774-003-0468-9 CrossRefPubMed
5.
go back to reference Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007. doi:10.1074/jbc.M203250200 CrossRefPubMed Gowen LC, Petersen DN, Mansolf AL, Qi H, Stock JL, Tkalcevic GT, Simmons HA, Crawford DT, Chidsey-Frink KL, Ke HZ, McNeish JD, Brown TA (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278:1998–2007. doi:10.​1074/​jbc.​M203250200 CrossRefPubMed
6.
go back to reference Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772. doi:10.1210/en.2007-1205 CrossRefPubMed Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge AM, Rowe PS (2008) Degradation of MEPE, DMP1, and release of SIBLING ASARM-peptides (minhibins): ASARM-peptide(s) are directly responsible for defective mineralization in HYP. Endocrinology 149:1757–1772. doi:10.​1210/​en.​2007-1205 CrossRefPubMed
8.
go back to reference Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649. doi:10.1359/jbmr.080601 CrossRefPubMed Addison WN, Nakano Y, Loisel T, Crine P, McKee MD (2008) MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM. J Bone Miner Res 23:1638–1649. doi:10.​1359/​jbmr.​080601 CrossRefPubMed
9.
go back to reference Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46. doi:10.1016/j.bone.2004.09.015 CrossRefPubMed Rowe PS, Garrett IR, Schwarz PM, Carnes DL, Lafer EM, Mundy GR, Gutierrez GE (2005) Surface plasmon resonance (SPR) confirms that MEPE binds to PHEX via the MEPE-ASARM motif: a model for impaired mineralization in X-linked rickets (HYP). Bone 36:33–46. doi:10.​1016/​j.​bone.​2004.​09.​015 CrossRefPubMed
10.
go back to reference Guo R, Rowe PS, Liu S, Simpson LG, Xiao ZS, Quarles LD (2002) Inhibition of MEPE cleavage by Phex. Biochem Biophys Res Commun 297:38–45CrossRefPubMed Guo R, Rowe PS, Liu S, Simpson LG, Xiao ZS, Quarles LD (2002) Inhibition of MEPE cleavage by Phex. Biochem Biophys Res Commun 297:38–45CrossRefPubMed
12.
go back to reference Willis JB (1980) Determination of metals in blood serum by atomic absorption spectroscopy. I. Calcium. Spectrochim Acta 16:259–272CrossRef Willis JB (1980) Determination of metals in blood serum by atomic absorption spectroscopy. I. Calcium. Spectrochim Acta 16:259–272CrossRef
13.
go back to reference Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphates. Anal Biochem 113:313–317CrossRefPubMed Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphates. Anal Biochem 113:313–317CrossRefPubMed
15.
go back to reference Hayashibara T, Hiraga T, Yi B, Nomizu M, Kumagai Y, Nishimura R, Yoneda T (2004) A synthetic peptide fragment of human MEPE stimulates new bone formation in vitro and in vivo. J Bone Miner Res 19:455–462. doi:10.1359/JBMR.0301263 CrossRefPubMed Hayashibara T, Hiraga T, Yi B, Nomizu M, Kumagai Y, Nishimura R, Yoneda T (2004) A synthetic peptide fragment of human MEPE stimulates new bone formation in vitro and in vivo. J Bone Miner Res 19:455–462. doi:10.​1359/​JBMR.​0301263 CrossRefPubMed
16.
go back to reference Six N, Septier D, Chaussain-Miller C, Blacher R, DenBesten P, Goldberg M (2007) Dentonin, a MEPE fragment, initiates pulp-healing response to injury. J Dent Res 86:780–785CrossRefPubMed Six N, Septier D, Chaussain-Miller C, Blacher R, DenBesten P, Goldberg M (2007) Dentonin, a MEPE fragment, initiates pulp-healing response to injury. J Dent Res 86:780–785CrossRefPubMed
21.
go back to reference Qin C, Baba O, Butler WT (2004) Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126–136CrossRefPubMed Qin C, Baba O, Butler WT (2004) Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis. Crit Rev Oral Biol Med 15:126–136CrossRefPubMed
22.
go back to reference Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin–hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159CrossRefPubMed Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin–hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159CrossRefPubMed
24.
go back to reference Tartaix PH, Doulaverakis M, George A, Fisher LW, Butler WT, Qin C, Salih E, Tan M, Fujimoto Y, Spevak L, Boskey AL (2004) In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem 279:18115–18120. doi:10.1074/jbc.M314114200 CrossRefPubMed Tartaix PH, Doulaverakis M, George A, Fisher LW, Butler WT, Qin C, Salih E, Tan M, Fujimoto Y, Spevak L, Boskey AL (2004) In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem 279:18115–18120. doi:10.​1074/​jbc.​M314114200 CrossRefPubMed
25.
26.
go back to reference Boskey AL, Maresca M, Doty S, Sabsay B, Veis A (1990) Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner 11:55–65CrossRefPubMed Boskey AL, Maresca M, Doty S, Sabsay B, Veis A (1990) Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner 11:55–65CrossRefPubMed
27.
go back to reference He G, Ramachandran A, Dahl T, George S, Schultz D, Cookson D, Veis A, George A (2005) Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem 280:33109–33114. doi:10.1074/jbc.M500159200 CrossRefPubMed He G, Ramachandran A, Dahl T, George S, Schultz D, Cookson D, Veis A, George A (2005) Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem 280:33109–33114. doi:10.​1074/​jbc.​M500159200 CrossRefPubMed
28.
go back to reference Boskey A, Spevak L, Tan M, Doty SB, Butler WT (2000) Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Calcif Tissue Int 67:472–478CrossRefPubMed Boskey A, Spevak L, Tan M, Doty SB, Butler WT (2000) Dentin sialoprotein (DSP) has limited effects on in vitro apatite formation and growth. Calcif Tissue Int 67:472–478CrossRefPubMed
29.
go back to reference Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA 90:8562–8565CrossRefPubMed Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA 90:8562–8565CrossRefPubMed
Metadata
Title
MEPE’s Diverse Effects on Mineralization
Authors
Adele L. Boskey
Phyllis Chiang
Alexis Fermanis
Jared Brown
Hayat Taleb
Valentin David
Peter S. N. Rowe
Publication date
01-01-2010
Publisher
Springer-Verlag
Published in
Calcified Tissue International / Issue 1/2010
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-009-9313-z

Other articles of this Issue 1/2010

Calcified Tissue International 1/2010 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.