Skip to main content
Top
Published in: Cancer Cell International 1/2020

Open Access 01-12-2020 | Meningioma | Primary research

Characterization and comparison of genomic profiles between primary cancer cell lines and parent atypical meningioma tumors

Authors: Eunhye Kim, Mirae Kim, Kyungha So, Young Seok Park, Chang Gok Woo, Sang-Hwan Hyun

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

Meningiomas are the second most common primary tumors of the central nervous system. However, there is a paucity of data on meningioma biology due to the lack of suitable preclinical in vitro and in vivo models. In this study, we report the establishment and characterization of patient-derived, spontaneously immortalized cancer cell lines derived from World Health Organization (WHO) grade I and atypical WHO grade II meningiomas.

Methods

We evaluated high-resolution 3T MRI neuroimaging findings in meningioma patients which were followed by histological analysis. RT-qPCR and immunostaining analyses were performed to determine the expression levels of meningioma-related factors. Additionally, flow cytometry and sorting assays were conducted to investigate and isolate the CD133 and CD44 positive cells from primary atypical meningioma cells. Further, we compared the gene expression profiles of meningiomas and cell lines derived from them by performing whole-exome sequencing of the blood and tumor samples from the patients, and the primary cancer cell lines established from the meningioma tumor.

Results

Our results were consistent with earlier studies that reported mutations in NF2, SMO, and AKT1 genes in atypical meningiomas, and we also observed mutations in MYBL2, a gene that was recently discovered. Significantly, the genomic signature was consistent between the atypical meningioma cancer cell lines and the tumor and blood samples from the patient.

Conclusion

Our results lead us to conclude that established meningioma cell lines with a genomic signature identical to tumors might be a valuable tool for understanding meningioma tumor biology, and for screening therapeutic agents to treat recurrent meningiomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baldi I, Engelhardt J, Bonnet C, Bauchet L, Berteaud E, Grüber A, Loiseau H. Epidemiology of meningiomas. Neurochirurgie. 2018;64(1):5–14.PubMedCrossRef Baldi I, Engelhardt J, Bonnet C, Bauchet L, Berteaud E, Grüber A, Loiseau H. Epidemiology of meningiomas. Neurochirurgie. 2018;64(1):5–14.PubMedCrossRef
2.
go back to reference Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-oncology. 2015;17(suppl 4):iv1–62.PubMedPubMedCentralCrossRef Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-oncology. 2015;17(suppl 4):iv1–62.PubMedPubMedCentralCrossRef
3.
go back to reference Holleczek B, Zampella D, Urbschat S, Sahm F, von Deimling A, Oertel J, Ketter R. Incidence, mortality and outcome of meningiomas: a population-based study from Germany. Cancer Epidemiol. 2019;62:101562.PubMedCrossRef Holleczek B, Zampella D, Urbschat S, Sahm F, von Deimling A, Oertel J, Ketter R. Incidence, mortality and outcome of meningiomas: a population-based study from Germany. Cancer Epidemiol. 2019;62:101562.PubMedCrossRef
4.
go back to reference Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. Lancet Neurol. 2006;5(12):1045–54.PubMedCrossRef Riemenschneider MJ, Perry A, Reifenberger G. Histological classification and molecular genetics of meningiomas. Lancet Neurol. 2006;5(12):1045–54.PubMedCrossRef
5.
go back to reference van Alkemade H, de Leau M, Dieleman EM, Kardaun JW, van Os R, Vandertop WP, van Furth WR, Stalpers LJ. Impaired survival and long-term neurological problems in benign meningioma. Neuro-oncology. 2012;14(5):658–66.PubMedPubMedCentralCrossRef van Alkemade H, de Leau M, Dieleman EM, Kardaun JW, van Os R, Vandertop WP, van Furth WR, Stalpers LJ. Impaired survival and long-term neurological problems in benign meningioma. Neuro-oncology. 2012;14(5):658–66.PubMedPubMedCentralCrossRef
6.
go back to reference Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamaridès M, Menei P, Deruty R, Moreau JJ, Fèvre-Montange M, Guyotat J. WHO grade II and III meningiomas: a study of prognostic factors. J Neurooncol. 2009;95(3):367–75.PubMedCrossRef Durand A, Labrousse F, Jouvet A, Bauchet L, Kalamaridès M, Menei P, Deruty R, Moreau JJ, Fèvre-Montange M, Guyotat J. WHO grade II and III meningiomas: a study of prognostic factors. J Neurooncol. 2009;95(3):367–75.PubMedCrossRef
7.
go back to reference Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus. 2011;30(5):E6.PubMedCrossRef Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus. 2011;30(5):E6.PubMedCrossRef
8.
go back to reference Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD. Medical therapies for meningiomas. J Neurooncol. 2010;99(3):365–78.PubMedCrossRef Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD. Medical therapies for meningiomas. J Neurooncol. 2010;99(3):365–78.PubMedCrossRef
9.
go back to reference Moazzam AA, Wagle N, Zada G. Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus. 2013;35(6):E18.PubMedCrossRef Moazzam AA, Wagle N, Zada G. Recent developments in chemotherapy for meningiomas: a review. Neurosurg Focus. 2013;35(6):E18.PubMedCrossRef
10.
go back to reference Johnson J, Decker S, Zaharevitz D, Rubinstein L, Venditti J, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424.PubMedPubMedCentralCrossRef Johnson J, Decker S, Zaharevitz D, Rubinstein L, Venditti J, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424.PubMedPubMedCentralCrossRef
11.
go back to reference Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):254–68.PubMedCrossRef Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017;17(4):254–68.PubMedCrossRef
12.
go back to reference Malham M, Thomsen RJ, Synek BJ, Baguley G. Establishment of primary human meningiomas as subcutaneous xenografts in mice. Br J Neurosurg. 2001;15(4):328–34.PubMedCrossRef Malham M, Thomsen RJ, Synek BJ, Baguley G. Establishment of primary human meningiomas as subcutaneous xenografts in mice. Br J Neurosurg. 2001;15(4):328–34.PubMedCrossRef
13.
go back to reference McCutcheon IE, Friend KE, Gerdes TM, Zhang B-M, Wildrick DM, Fuller GN. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg. 2000;92(2):306–14.PubMedCrossRef McCutcheon IE, Friend KE, Gerdes TM, Zhang B-M, Wildrick DM, Fuller GN. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg. 2000;92(2):306–14.PubMedCrossRef
14.
go back to reference Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T, Ishikawa H. In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM). Hum Cell. 2004;17(4):211–7.PubMedCrossRef Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T, Ishikawa H. In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM). Hum Cell. 2004;17(4):211–7.PubMedCrossRef
15.
go back to reference Lee W-H. Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery. 1990;27(3):389–96.PubMedCrossRef Lee W-H. Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery. 1990;27(3):389–96.PubMedCrossRef
16.
go back to reference Tanaka K, Sato C, Maeda Y, Koike M, Matsutani M, Yamada K, Miyaki M. Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer. 1989;64(11):2243–9.PubMedCrossRef Tanaka K, Sato C, Maeda Y, Koike M, Matsutani M, Yamada K, Miyaki M. Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer. 1989;64(11):2243–9.PubMedCrossRef
17.
go back to reference Püttmann S, Senner V, Braune S, Hillmann B, Exeler R, Rickert CH, Paulus W. Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest. 2005;85(9):1163–71.PubMedCrossRef Püttmann S, Senner V, Braune S, Hillmann B, Exeler R, Rickert CH, Paulus W. Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest. 2005;85(9):1163–71.PubMedCrossRef
18.
go back to reference Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS. Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery. 2007;60(4):750–60.PubMedCrossRef Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS. Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery. 2007;60(4):750–60.PubMedCrossRef
19.
go back to reference Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia. 2008;10(11):1204–12.PubMedPubMedCentralCrossRef Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia. 2008;10(11):1204–12.PubMedPubMedCentralCrossRef
20.
go back to reference Dubois S, Viailly P-J, Mareschal S, Bohers E, Bertrand P, Ruminy P, Maingonnat C, Jais J-P, Peyrouze P, Figeac M. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA Study. Clin Cancer Res. 2016;22(12):2919–28.PubMedCrossRef Dubois S, Viailly P-J, Mareschal S, Bohers E, Bertrand P, Ruminy P, Maingonnat C, Jais J-P, Peyrouze P, Figeac M. Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA Study. Clin Cancer Res. 2016;22(12):2919–28.PubMedCrossRef
21.
go back to reference Schweiger MR, Kerick M, Timmermann B, Isau M. The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev. 2011;30(2):199–210.PubMedCrossRef Schweiger MR, Kerick M, Timmermann B, Isau M. The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev. 2011;30(2):199–210.PubMedCrossRef
22.
go back to reference Russnes HG, Navin N, Hicks J, Borresen-Dale A-L. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Investig. 2011;121(10):3810–8.PubMedCrossRefPubMedCentral Russnes HG, Navin N, Hicks J, Borresen-Dale A-L. Insight into the heterogeneity of breast cancer through next-generation sequencing. J Clin Investig. 2011;121(10):3810–8.PubMedCrossRefPubMedCentral
23.
go back to reference Guan Y-F, Li G-R, Wang R-J, Yi Y-T, Yang L, Jiang D, Zhang X-P, Peng Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer. 2012;31(10):463–70.PubMedPubMedCentralCrossRef Guan Y-F, Li G-R, Wang R-J, Yi Y-T, Yang L, Jiang D, Zhang X-P, Peng Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer. 2012;31(10):463–70.PubMedPubMedCentralCrossRef
24.
go back to reference Fontaine B, Rouleau GA, Seizinger BR, Menon AG, Jewell AF, Martuza RL, Gusella JF. Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci. 1991;615:338–43.PubMedCrossRef Fontaine B, Rouleau GA, Seizinger BR, Menon AG, Jewell AF, Martuza RL, Gusella JF. Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci. 1991;615:338–43.PubMedCrossRef
25.
go back to reference Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Özduman K, Avşar T, Li J, Murray PB, Henegariu O. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.PubMedPubMedCentralCrossRef Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Özduman K, Avşar T, Li J, Murray PB, Henegariu O. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.PubMedPubMedCentralCrossRef
26.
go back to reference Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.PubMedPubMedCentralCrossRef Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.PubMedPubMedCentralCrossRef
27.
go back to reference Tang H, Zhu H, Wang X, Hua L, Li J, Xie Q, Chen X, Zhang T, Gong Y. KLF4 is a tumor suppressor in anaplastic meningioma stem-like cells and human meningiomas. J Mol Cell Biol. 2017;9(4):315–24.PubMedCrossRef Tang H, Zhu H, Wang X, Hua L, Li J, Xie Q, Chen X, Zhang T, Gong Y. KLF4 is a tumor suppressor in anaplastic meningioma stem-like cells and human meningiomas. J Mol Cell Biol. 2017;9(4):315–24.PubMedCrossRef
28.
go back to reference Reuss DE, Piro RM, Jones DT, Simon M, Ketter R, Kool M, Becker A, Sahm F, Pusch S, Meyer J. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013;125(3):351–8.PubMedCrossRef Reuss DE, Piro RM, Jones DT, Simon M, Ketter R, Kool M, Becker A, Sahm F, Pusch S, Meyer J. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol. 2013;125(3):351–8.PubMedCrossRef
29.
go back to reference Bleeker F, Felicioni L, Buttitta F, Lamba S, Cardone L, Rodolfo M, Scarpa A, Leenstra S, Frattini M, Barbareschi M. AKT1 E17K in human solid tumours. Oncogene. 2008;27(42):5648–50.PubMedCrossRef Bleeker F, Felicioni L, Buttitta F, Lamba S, Cardone L, Rodolfo M, Scarpa A, Leenstra S, Frattini M, Barbareschi M. AKT1 E17K in human solid tumours. Oncogene. 2008;27(42):5648–50.PubMedCrossRef
30.
go back to reference Laurendeau I, Ferrer M, Garrido D, D’Haene N, Ciavarelli P, Basso A, Vidaud M, Bieche I, Salmon I, Szijan I. Gene expression profiling of the hedgehog signaling pathway in human meningiomas. Mol Med. 2010;16(7–8):262–70.PubMedPubMedCentralCrossRef Laurendeau I, Ferrer M, Garrido D, D’Haene N, Ciavarelli P, Basso A, Vidaud M, Bieche I, Salmon I, Szijan I. Gene expression profiling of the hedgehog signaling pathway in human meningiomas. Mol Med. 2010;16(7–8):262–70.PubMedPubMedCentralCrossRef
31.
go back to reference Ferreira D, Adega F, Chaves R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing. In: Lopez-Camarillo C, Arechaga-Ocampo E, editors. Oncogenomics and cancer proteomics-novel approaches in biomarkers discovery and therapeutic targets in cancer. InTech. 2013. p. 139–166. Ferreira D, Adega F, Chaves R. The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing. In: Lopez-Camarillo C, Arechaga-Ocampo E, editors. Oncogenomics and cancer proteomics-novel approaches in biomarkers discovery and therapeutic targets in cancer. InTech. 2013. p. 139–166.
32.
go back to reference Kim E, Kim M, Hwang SU, Kim J, Lee G, Park YS, Hyun SH. Neural induction of porcine-induced pluripotent stem cells and further differentiation using glioblastoma-cultured medium. J Cell Mol Med. 2019;23(3):2052–63.PubMedPubMedCentralCrossRef Kim E, Kim M, Hwang SU, Kim J, Lee G, Park YS, Hyun SH. Neural induction of porcine-induced pluripotent stem cells and further differentiation using glioblastoma-cultured medium. J Cell Mol Med. 2019;23(3):2052–63.PubMedPubMedCentralCrossRef
33.
go back to reference Kim E, Hwang S-U, Yoo H, Yoon JD, Jeon Y, Kim H, Jeung E-B, Lee C-K, Hyun S-H. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology. 2016;85(4):601–16.PubMedCrossRef Kim E, Hwang S-U, Yoo H, Yoon JD, Jeon Y, Kim H, Jeung E-B, Lee C-K, Hyun S-H. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology. 2016;85(4):601–16.PubMedCrossRef
34.
go back to reference Michelhaugh SK, Guastella AR, Varadarajan K, Klinger NV, Parajuli P, Ahmad A, Sethi S, Aboukameel A, Kiousis S, Zitron IM. Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1. J Transl Med. 2015;13(1):227.PubMedPubMedCentralCrossRef Michelhaugh SK, Guastella AR, Varadarajan K, Klinger NV, Parajuli P, Ahmad A, Sethi S, Aboukameel A, Kiousis S, Zitron IM. Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1. J Transl Med. 2015;13(1):227.PubMedPubMedCentralCrossRef
35.
go back to reference Rath P, Miller DC, Litofsky NS, Anthony DC, Feng Q, Franklin C, Pei L, Free A, Liu J, Ren M. Isolation and characterization of a population of stem-like progenitor cells from an atypical meningioma. Exp Mol Pathol. 2011;90(2):179–88.PubMedCrossRef Rath P, Miller DC, Litofsky NS, Anthony DC, Feng Q, Franklin C, Pei L, Free A, Liu J, Ren M. Isolation and characterization of a population of stem-like progenitor cells from an atypical meningioma. Exp Mol Pathol. 2011;90(2):179–88.PubMedCrossRef
36.
go back to reference Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.PubMedPubMedCentralCrossRef Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.PubMedPubMedCentralCrossRef
37.
go back to reference Elder EE, Xu D, Höög A, Enberg U, Hou M, Pisa P, Gruber A, Larsson C, Bäckdahl M. KI-67 and hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Mod Pathol. 2003;16(3):246–55.PubMedCrossRef Elder EE, Xu D, Höög A, Enberg U, Hou M, Pisa P, Gruber A, Larsson C, Bäckdahl M. KI-67 and hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma. Mod Pathol. 2003;16(3):246–55.PubMedCrossRef
38.
go back to reference Maes L, Van Neste L, Van Damme K, Kalala J, De Ridder L, Bekaert S, Cornelissen M. Relation between telomerase activity, hTERT and telomere length for intracranial tumours. Oncol Rep. 2007;18(6):1571–6.PubMed Maes L, Van Neste L, Van Damme K, Kalala J, De Ridder L, Bekaert S, Cornelissen M. Relation between telomerase activity, hTERT and telomere length for intracranial tumours. Oncol Rep. 2007;18(6):1571–6.PubMed
39.
go back to reference Simon M, Park T-W, Leuenroth S, Hans VH, Löning T, Schramm J. Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J Neurosurg. 2000;92(5):832–40.PubMedCrossRef Simon M, Park T-W, Leuenroth S, Hans VH, Löning T, Schramm J. Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J Neurosurg. 2000;92(5):832–40.PubMedCrossRef
40.
go back to reference Christodoulidou A, Raftopoulou C, Chiourea M, Papaioannou GK, Hoshiyama H, Wright WE, Shay JW, Gagos S. The roles of telomerase in the generation of polyploidy during neoplastic cell growth. Neoplasia. 2013;15(2):156–68.PubMedPubMedCentralCrossRef Christodoulidou A, Raftopoulou C, Chiourea M, Papaioannou GK, Hoshiyama H, Wright WE, Shay JW, Gagos S. The roles of telomerase in the generation of polyploidy during neoplastic cell growth. Neoplasia. 2013;15(2):156–68.PubMedPubMedCentralCrossRef
41.
go back to reference Kamamoto D, Saga I, Ohara K, Yoshida K, Sasaki H. Association between CD133, CD44, and nestin expression and prognostic factors in high-grade meningioma. World Neurosurg. 2019;124:e188–96.CrossRef Kamamoto D, Saga I, Ohara K, Yoshida K, Sasaki H. Association between CD133, CD44, and nestin expression and prognostic factors in high-grade meningioma. World Neurosurg. 2019;124:e188–96.CrossRef
42.
go back to reference Kalala J, Maes L, Thomas T, Vandenbroecke C, de Ridder L. The hTERT protein as a marker for malignancy in meningiomas. Oncol Rep. 2005;13(2):273–7.PubMed Kalala J, Maes L, Thomas T, Vandenbroecke C, de Ridder L. The hTERT protein as a marker for malignancy in meningiomas. Oncol Rep. 2005;13(2):273–7.PubMed
43.
go back to reference Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391–403.PubMedCrossRef Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391–403.PubMedCrossRef
44.
go back to reference Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRef
45.
go back to reference Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.PubMedCrossRef Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.PubMedCrossRef
46.
go back to reference Alamir H, Alomari M, Salwati AAA, Saka M, Bangash M, Baeesa S, Alghamdi F, Carracedo A, Schulten H-J, Chaudhary A. In situ characterization of stem cells-like biomarkers in meningiomas. Cancer Cell Int. 2018;18(1):77.PubMedPubMedCentralCrossRef Alamir H, Alomari M, Salwati AAA, Saka M, Bangash M, Baeesa S, Alghamdi F, Carracedo A, Schulten H-J, Chaudhary A. In situ characterization of stem cells-like biomarkers in meningiomas. Cancer Cell Int. 2018;18(1):77.PubMedPubMedCentralCrossRef
47.
go back to reference Shivapathasundram G, Wickremesekera AC, Tan ST, Itinteang T. Tumour stem cells in meningioma: a review. J Clin Neurosci. 2018;47:66–71.PubMedCrossRef Shivapathasundram G, Wickremesekera AC, Tan ST, Itinteang T. Tumour stem cells in meningioma: a review. J Clin Neurosci. 2018;47:66–71.PubMedCrossRef
48.
go back to reference Tang H, Gong Y, Mao Y, Xie Q, Zheng M, Wang D, Zhu H, Wang X, Chen H, Chen X. Cd133-positive cells might be responsible for efficient proliferation of human meningioma cells. Int J Mol Sci. 2012;13(5):6424–39.PubMedPubMedCentralCrossRef Tang H, Gong Y, Mao Y, Xie Q, Zheng M, Wang D, Zhu H, Wang X, Chen H, Chen X. Cd133-positive cells might be responsible for efficient proliferation of human meningioma cells. Int J Mol Sci. 2012;13(5):6424–39.PubMedPubMedCentralCrossRef
49.
go back to reference Hueng D-Y, Sytwu H-K, Huang S-M, Chang C, Ma H-I. Isolation and characterization of tumor stem-like cells from human meningiomas. J Neurooncol. 2011;104(1):45–53.PubMedCrossRef Hueng D-Y, Sytwu H-K, Huang S-M, Chang C, Ma H-I. Isolation and characterization of tumor stem-like cells from human meningiomas. J Neurooncol. 2011;104(1):45–53.PubMedCrossRef
50.
go back to reference Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84.PubMedCrossRef Wilding JL, Bodmer WF. Cancer cell lines for drug discovery and development. Cancer Res. 2014;74(9):2377–84.PubMedCrossRef
51.
go back to reference Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.PubMedCrossRef Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126.PubMedCrossRef
52.
go back to reference Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016;35(5):537–48.PubMedCrossRef Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016;35(5):537–48.PubMedCrossRef
53.
go back to reference McClatchey AI, Giovannini M. Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin. Genes Dev. 2005;19(19):2265–77.PubMedCrossRef McClatchey AI, Giovannini M. Membrane organization and tumorigenesis—the NF2 tumor suppressor, Merlin. Genes Dev. 2005;19(19):2265–77.PubMedCrossRef
54.
go back to reference Horiguchi A, Zheng R, Shen R, Nanus DM. Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate. 2008;68(9):975–84.PubMedCrossRef Horiguchi A, Zheng R, Shen R, Nanus DM. Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate. 2008;68(9):975–84.PubMedCrossRef
55.
go back to reference Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjöld M, Collins VP. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.PubMedCrossRef Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjöld M, Collins VP. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.PubMedCrossRef
56.
go back to reference Fontaine B, Rouleau GA, Seizinger BR, Menon AG, Jewell AF, Martuza RL, Gusella JF. Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci. 1991;615(1):338–43.PubMedCrossRef Fontaine B, Rouleau GA, Seizinger BR, Menon AG, Jewell AF, Martuza RL, Gusella JF. Molecular genetics of neurofibromatosis 2 and related tumors (acoustic neuroma and meningioma). Ann N Y Acad Sci. 1991;615(1):338–43.PubMedCrossRef
57.
go back to reference Olar A, Wani KM, Sulman EP, Mansouri A, Zadeh G, Wilson CD, DeMonte F, Fuller GN, Aldape KD. Mitotic index is an independent predictor of recurrence-free survival in meningioma. Brain Pathol. 2015;25(3):266–75.PubMedCrossRef Olar A, Wani KM, Sulman EP, Mansouri A, Zadeh G, Wilson CD, DeMonte F, Fuller GN, Aldape KD. Mitotic index is an independent predictor of recurrence-free survival in meningioma. Brain Pathol. 2015;25(3):266–75.PubMedCrossRef
58.
go back to reference Ansieau S, Kowenz-Leutz E, Dechend R, Leutz A. B-Myb, a repressed trans-activating protein. J Mol Med. 1997;75(11–12):815–9.PubMedCrossRef Ansieau S, Kowenz-Leutz E, Dechend R, Leutz A. B-Myb, a repressed trans-activating protein. J Mol Med. 1997;75(11–12):815–9.PubMedCrossRef
59.
go back to reference Ren F, Wang L, Shen X, Xiao X, Liu Z, Wei P, Wang Y, Qi P, Shen C, Sheng W. MYBL2 is an independent prognostic marker that has tumor-promoting functions in colorectal cancer. Am J Cancer Res. 2015;5(4):1542.PubMedPubMedCentral Ren F, Wang L, Shen X, Xiao X, Liu Z, Wei P, Wang Y, Qi P, Shen C, Sheng W. MYBL2 is an independent prognostic marker that has tumor-promoting functions in colorectal cancer. Am J Cancer Res. 2015;5(4):1542.PubMedPubMedCentral
60.
go back to reference Liang H-B, Cao Y, Ma Q, Shu Y-J, Wang Z, Zhang F, Ye Y-Y, Li H-F, Xiang S-S, Song X-L. MYBL2 is a potential prognostic marker that promotes cell proliferation in gallbladder cancer. Cell Physiol Biochem. 2017;41(5):2117–31.PubMedCrossRef Liang H-B, Cao Y, Ma Q, Shu Y-J, Wang Z, Zhang F, Ye Y-Y, Li H-F, Xiang S-S, Song X-L. MYBL2 is a potential prognostic marker that promotes cell proliferation in gallbladder cancer. Cell Physiol Biochem. 2017;41(5):2117–31.PubMedCrossRef
61.
go back to reference Martin CM, Astbury K, Kehoe L, O’Crowley JB, O’Toole S, O’Leary JJ. The use of MYBL2 as a novel candidate biomarker of cervical cancer. cervical cancer. Berlin: Springer; 2015. p. 241–51. Martin CM, Astbury K, Kehoe L, O’Crowley JB, O’Toole S, O’Leary JJ. The use of MYBL2 as a novel candidate biomarker of cervical cancer. cervical cancer. Berlin: Springer; 2015. p. 241–51.
62.
go back to reference Musa J, Aynaud M-M, Mirabeau O, Delattre O, Grünewald TG. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis. 2017;8(6):e2895–e2895.PubMedPubMedCentralCrossRef Musa J, Aynaud M-M, Mirabeau O, Delattre O, Grünewald TG. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis. 2017;8(6):e2895–e2895.PubMedPubMedCentralCrossRef
63.
go back to reference Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, Listewnik ML, Dias-Santagata D, Thorner AR, Van Hummelen P. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro-oncology. 2016;18(5):649–55.PubMedPubMedCentralCrossRef Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, Listewnik ML, Dias-Santagata D, Thorner AR, Van Hummelen P. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro-oncology. 2016;18(5):649–55.PubMedPubMedCentralCrossRef
64.
go back to reference Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11.PubMedCrossRef Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11.PubMedCrossRef
65.
go back to reference Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRef Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRef
Metadata
Title
Characterization and comparison of genomic profiles between primary cancer cell lines and parent atypical meningioma tumors
Authors
Eunhye Kim
Mirae Kim
Kyungha So
Young Seok Park
Chang Gok Woo
Sang-Hwan Hyun
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01438-x

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine