Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1

Authors: Sharon K Michelhaugh, Anthony R Guastella, Kaushik Varadarajan, Neil V Klinger, Prahlad Parajuli, Aamir Ahmad, Seema Sethi, Amro Aboukameel, Sam Kiousis, Ian M Zitron, Salah A Ebrahim, Lisa A Polin, Fazlul H Sarkar, Aliccia Bollig-Fischer, Sandeep Mittal

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

There is a paucity of effective therapies for recurrent/aggressive meningiomas. Establishment of improved in vitro and in vivo meningioma models will facilitate development and testing of novel therapeutic approaches.

Methods

A primary meningioma cell line was generated from a patient with an olfactory groove meningioma. The cell line was extensively characterized by performing analysis of growth kinetics, immunocytochemistry, telomerase activity, karyotype, and comparative genomic hybridization. Xenograft models using immunocompromised SCID mice were also developed.

Results

Histopathology of the patient tumor was consistent with a WHO grade I typical meningioma composed of meningothelial cells, whorls, and occasional psammoma bodies. The original tumor and the early passage primary cells shared the standard immunohistochemical profile consistent with low-grade, good prognosis meningioma. Low passage KCI-MENG1 cells were composed of two cell types with spindle and round morphologies, showed linear growth curve, had very low telomerase activity, and were composed of two distinct unrelated clones on cytogenetic analysis. In contrast, high passage cells were homogeneously round, rapidly growing, had high telomerase activity, and were composed of a single clone with a near triploid karyotype containing 64–66 chromosomes with numerous aberrations. Following subcutaneous and orthotopic transplantation of low passage cells into SCID mice, firm tumors positive for vimentin and progesterone receptor (PR) formed, while subcutaneous implant of high passage cells yielded vimentin-positive, PR-negative tumors, concordant with a high-grade meningioma.

Conclusions

Although derived from a benign meningioma specimen, the newly-established spontaneously immortal KCI-MENG1 meningioma cell line can be utilized to generate xenograft tumor models with either low- or high-grade features, dependent on the cell passage number (likely due to the relative abundance of the round, near-triploid cells). These human meningioma mouse xenograft models will provide biologically relevant platforms from which to investigate differences in low- vs. high-grade meningioma tumor biology and disease progression as well as to develop novel therapies to improve treatment options for poor prognosis or recurrent meningiomas.
Appendix
Available only for authorised users
Literature
3.
go back to reference Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classification of tumours of the central nervous system, 2007th edn. IARC, Lyon Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classification of tumours of the central nervous system, 2007th edn. IARC, Lyon
6.
go back to reference Lee WH (1990) Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery 27(3):389–395 (discussion 96) PubMedCrossRef Lee WH (1990) Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery 27(3):389–395 (discussion 96) PubMedCrossRef
7.
go back to reference Yazaki T, Takamiya Y, Costello PC, Mineta T, Menon AG, Rabkin SD et al (1995) Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. J Neurooncol 23(1):23–29PubMedCrossRef Yazaki T, Takamiya Y, Costello PC, Mineta T, Menon AG, Rabkin SD et al (1995) Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. J Neurooncol 23(1):23–29PubMedCrossRef
8.
go back to reference Tanaka K, Sato C, Maeda Y, Koike M, Matsutani M, Yamada K et al (1989) Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer 64(11):2243–2249PubMedCrossRef Tanaka K, Sato C, Maeda Y, Koike M, Matsutani M, Yamada K et al (1989) Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer 64(11):2243–2249PubMedCrossRef
9.
go back to reference Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T et al (2004) In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM). Hum Cell 17(4):211–217PubMedCrossRef Ishiwata I, Ishiwata C, Ishiwata E, Sato Y, Kiguchi K, Tachibana T et al (2004) In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM). Hum Cell 17(4):211–217PubMedCrossRef
10.
go back to reference Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS (2007) Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery 60(4):750–759 (discussion 9–60) PubMedCrossRef Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS (2007) Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery 60(4):750–759 (discussion 9–60) PubMedCrossRef
13.
go back to reference Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10(11):1204–1212PubMedCentralPubMedCrossRef Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A (2008) The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia 10(11):1204–1212PubMedCentralPubMedCrossRef
14.
go back to reference Simon M, Park TW, Leuenroth S, Hans VH, Loning T, Schramm J (2000) Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J Neurosurg 92(5):832–840PubMedCrossRef Simon M, Park TW, Leuenroth S, Hans VH, Loning T, Schramm J (2000) Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J Neurosurg 92(5):832–840PubMedCrossRef
15.
go back to reference Maes L, Van Neste L, Van Damme K, Kalala JP, De Ridder L, Bekaert S et al (2007) Relation between telomerase activity, hTERT and telomere length for intracranial tumours. Oncol Rep 18(6):1571–1576PubMed Maes L, Van Neste L, Van Damme K, Kalala JP, De Ridder L, Bekaert S et al (2007) Relation between telomerase activity, hTERT and telomere length for intracranial tumours. Oncol Rep 18(6):1571–1576PubMed
17.
go back to reference Peyre M, Stemmer-Rachamimov A, Clermont-Taranchon E, Quentin S, El-Taraya N, Walczak C et al (2013) Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation. Oncogene 32(36):4264–4272. doi:10.1038/onc.2012.436 PubMedCrossRef Peyre M, Stemmer-Rachamimov A, Clermont-Taranchon E, Quentin S, El-Taraya N, Walczak C et al (2013) Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation. Oncogene 32(36):4264–4272. doi:10.​1038/​onc.​2012.​436 PubMedCrossRef
20.
go back to reference Lamszus K (2004) Meningioma pathology, genetics, and biology. J Neuropathol Exp Neurol 63(4):275–286PubMed Lamszus K (2004) Meningioma pathology, genetics, and biology. J Neuropathol Exp Neurol 63(4):275–286PubMed
21.
go back to reference Perry A, Gutmann DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neurooncol 70(2):183–202PubMedCrossRef Perry A, Gutmann DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neurooncol 70(2):183–202PubMedCrossRef
22.
go back to reference Zang KD (2001) Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Cell Genet 93(3–4):207–220PubMedCrossRef Zang KD (2001) Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Cell Genet 93(3–4):207–220PubMedCrossRef
23.
go back to reference Mark J, Levan G, Mitelman F (1972) Identification by fluorescence of the G chromosome lost in human meningomas. Hereditas 71(1):163–168PubMedCrossRef Mark J, Levan G, Mitelman F (1972) Identification by fluorescence of the G chromosome lost in human meningomas. Hereditas 71(1):163–168PubMedCrossRef
24.
go back to reference Zankl H, Zang KD (1972) Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 14(2):167–169PubMedCrossRef Zankl H, Zang KD (1972) Cytological and cytogenetical studies on brain tumors. 4. Identification of the missing G chromosome in human meningiomas as no. 22 by fluorescence technique. Humangenetik 14(2):167–169PubMedCrossRef
25.
go back to reference Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q et al (2011) The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 30(5):E6. doi:10.3171/2011.2.FOCUS1116 PubMed Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q et al (2011) The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 30(5):E6. doi:10.​3171/​2011.​2.​FOCUS1116 PubMed
26.
go back to reference Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M (2004) Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg 101(2):210–218PubMedCrossRef Al-Mefty O, Kadri PA, Pravdenkova S, Sawyer JR, Stangeby C, Husain M (2004) Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J Neurosurg 101(2):210–218PubMedCrossRef
28.
go back to reference Christodoulidou A, Raftopoulou C, Chiourea M, Papaioannou GK, Hoshiyama H, Wright WE et al (2013) The roles of telomerase in the generation of polyploidy during neoplastic cell growth. Neoplasia 15(2):156–168PubMedCentralPubMedCrossRef Christodoulidou A, Raftopoulou C, Chiourea M, Papaioannou GK, Hoshiyama H, Wright WE et al (2013) The roles of telomerase in the generation of polyploidy during neoplastic cell growth. Neoplasia 15(2):156–168PubMedCentralPubMedCrossRef
29.
go back to reference Zitron IM, Kamson DO, Kiousis S, Juhasz C, Mittal S (2013) In vivo metabolism of tryptophan in meningiomas is mediated by indoleamine 2,3-dioxygenase 1. Cancer Biol Ther 14(4):333–339PubMedCentralPubMedCrossRef Zitron IM, Kamson DO, Kiousis S, Juhasz C, Mittal S (2013) In vivo metabolism of tryptophan in meningiomas is mediated by indoleamine 2,3-dioxygenase 1. Cancer Biol Ther 14(4):333–339PubMedCentralPubMedCrossRef
30.
go back to reference Bosnyák E, Kamson DO, Guastella AR, Varadarajan K, Robinette NL, Kupsky WJ et al (2015) Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas. Neuro Oncol. doi:10.1093/neuonc/nov098 PubMed Bosnyák E, Kamson DO, Guastella AR, Varadarajan K, Robinette NL, Kupsky WJ et al (2015) Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas. Neuro Oncol. doi:10.​1093/​neuonc/​nov098 PubMed
31.
go back to reference Barch M (1991) ACT cytogenetics laboratory manual, 2nd edn. Raven Press NYC, New York Barch M (1991) ACT cytogenetics laboratory manual, 2nd edn. Raven Press NYC, New York
32.
go back to reference Shaffer LG, McGowan-Jordan J, Schmid M (eds) (2013) ISCN 2013: an international system for human cytogenetic nomenclature, 1st edn. S. Karger AG, Basel Shaffer LG, McGowan-Jordan J, Schmid M (eds) (2013) ISCN 2013: an international system for human cytogenetic nomenclature, 1st edn. S. Karger AG, Basel
34.
go back to reference Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82(5):864–873PubMedCrossRef Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82(5):864–873PubMedCrossRef
36.
go back to reference Kallio M, Sankila R, Hakulinen T, Jaaskelainen J (1992) Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma. Neurosurgery 31(1):2–12PubMedCrossRef Kallio M, Sankila R, Hakulinen T, Jaaskelainen J (1992) Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma. Neurosurgery 31(1):2–12PubMedCrossRef
37.
go back to reference Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62(1):18–24PubMedCrossRef Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62(1):18–24PubMedCrossRef
38.
go back to reference Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85(9):2046–2056PubMed Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85(9):2046–2056PubMed
39.
go back to reference Dziuk TW, Woo S, Butler EB, Thornby J, Grossman R, Dennis WS et al (1998) Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol 37(2):177–188PubMedCrossRef Dziuk TW, Woo S, Butler EB, Thornby J, Grossman R, Dennis WS et al (1998) Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol 37(2):177–188PubMedCrossRef
40.
go back to reference Jaaskelainen J, Haltia M, Servo A (1986) Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome. Surg Neurol 25(3):233–242PubMedCrossRef Jaaskelainen J, Haltia M, Servo A (1986) Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome. Surg Neurol 25(3):233–242PubMedCrossRef
41.
go back to reference Goldsmith BJ, Wara WM, Wilson CB, Larson DA (1994) Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 80(2):195–201PubMedCrossRef Goldsmith BJ, Wara WM, Wilson CB, Larson DA (1994) Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 80(2):195–201PubMedCrossRef
42.
go back to reference Adeberg S, Hartmann C, Welzel T, Rieken S, Habermehl D, von Deimling A et al (2012) Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas—clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 83(3):859–864. doi:10.1016/j.ijrobp.2011.08.010 PubMedCrossRef Adeberg S, Hartmann C, Welzel T, Rieken S, Habermehl D, von Deimling A et al (2012) Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas—clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 83(3):859–864. doi:10.​1016/​j.​ijrobp.​2011.​08.​010 PubMedCrossRef
46.
go back to reference Van Marck VL, Bracke ME (2000) Epithelial–mesenchymal transitions in human cancer. Madame Curie Bioscience Database [Internet]. Landes Bioscience, Austin Van Marck VL, Bracke ME (2000) Epithelial–mesenchymal transitions in human cancer. Madame Curie Bioscience Database [Internet]. Landes Bioscience, Austin
50.
go back to reference Pecina-Slaus N, Cicvara-Pecina T, Kafka A (2012) Epithelial-to-mesenchymal transition: possible role in meningiomas. Front Biosci (Elite Ed) 4:889–896CrossRef Pecina-Slaus N, Cicvara-Pecina T, Kafka A (2012) Epithelial-to-mesenchymal transition: possible role in meningiomas. Front Biosci (Elite Ed) 4:889–896CrossRef
53.
go back to reference Chen HJ, Liang CL, Lu K, Lin JW, Cho CL (2000) Implication of telomerase activity and alternations of telomere length in the histologic characteristics of intracranial meningiomas. Cancer 89(10):2092–2098PubMedCrossRef Chen HJ, Liang CL, Lu K, Lin JW, Cho CL (2000) Implication of telomerase activity and alternations of telomere length in the histologic characteristics of intracranial meningiomas. Cancer 89(10):2092–2098PubMedCrossRef
54.
go back to reference Langford LA, Piatyszek MA, Xu R, Schold SC Jr, Wright WE, Shay JW (1997) Telomerase activity in ordinary meningiomas predicts poor outcome. Hum Pathol 28(4):416–420PubMedCrossRef Langford LA, Piatyszek MA, Xu R, Schold SC Jr, Wright WE, Shay JW (1997) Telomerase activity in ordinary meningiomas predicts poor outcome. Hum Pathol 28(4):416–420PubMedCrossRef
55.
go back to reference Leuraud P, Dezamis E, Aguirre-Cruz L, Taillibert S, Lejeune J, Robin E et al (2004) Prognostic value of allelic losses and telomerase activity in meningiomas. J Neurosurg 100(2):303–309PubMedCrossRef Leuraud P, Dezamis E, Aguirre-Cruz L, Taillibert S, Lejeune J, Robin E et al (2004) Prognostic value of allelic losses and telomerase activity in meningiomas. J Neurosurg 100(2):303–309PubMedCrossRef
56.
go back to reference Urbschat S, Rahnenfuhrer J, Henn W, Feiden W, Wemmert S, Linsler S et al (2011) Clonal cytogenetic progression within intratumorally heterogeneous meningiomas predicts tumor recurrence. Int J Oncol 39(6):1601–1608. doi:10.3892/ijo.2011.1199 PubMed Urbschat S, Rahnenfuhrer J, Henn W, Feiden W, Wemmert S, Linsler S et al (2011) Clonal cytogenetic progression within intratumorally heterogeneous meningiomas predicts tumor recurrence. Int J Oncol 39(6):1601–1608. doi:10.​3892/​ijo.​2011.​1199 PubMed
57.
go back to reference Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24(2):184–189. doi:10.1111/bpa.12110 PubMedCrossRef Goutagny S, Nault JC, Mallet M, Henin D, Rossi JZ, Kalamarides M (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24(2):184–189. doi:10.​1111/​bpa.​12110 PubMedCrossRef
Metadata
Title
Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1
Authors
Sharon K Michelhaugh
Anthony R Guastella
Kaushik Varadarajan
Neil V Klinger
Prahlad Parajuli
Aamir Ahmad
Seema Sethi
Amro Aboukameel
Sam Kiousis
Ian M Zitron
Salah A Ebrahim
Lisa A Polin
Fazlul H Sarkar
Aliccia Bollig-Fischer
Sandeep Mittal
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0596-8

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue