Skip to main content
Top
Published in: Inflammation 6/2017

01-12-2017 | ORIGINAL ARTICLE

Melatonin Attenuates Pain Hypersensitivity and Decreases Astrocyte-Mediated Spinal Neuroinflammation in a Rat Model of Oxaliplatin-Induced Pain

Authors: Ye-song Wang, Yuan-yuan Li, Wei Cui, Li-bin Li, Zhao-cai Zhang, Bao-ping Tian, Gen-sheng Zhang

Published in: Inflammation | Issue 6/2017

Login to get access

Abstract

Neuroinflammatory response in spinal dorsal horn has been demonstrated to be a critical factor in oxaliplatin-induced pain. Melatonin has been shown to have anti-inflammatory and anti-allodynia effects in both preclinical and clinical studies. In the present study, we investigated the role of systemic administration of melatonin on oxaliplatin-induced pain. Intraperitoneal (i.p.) injection with oxaliplatin induced significantly mechanical allodynia and thermal hyperalgesia. Melatonin (i.p.) significantly alleviated mechanical allodynia and thermal hyperalgesia in the oxaliplatin but not sham-treated rats. The attenuation of nociceptive response persisted at least to 3 days after melatonin injection, throughout the entire observing window. Immunohistochemistry showed that oxaliplatin induced a significant increase of glial fibrillary acidic protein (GFAP) immunodensities, which could be suppressed by melatonin. Western blotting showed that GFAP protein levels were significantly elevated in the oxaliplatin-vehicle group. Melatonin significantly decreased oxaliplatin-induced upregulation of GFAP expressions. Oxaliplatin injection also enhanced the messenger RNA (mRNA) expressions of cytokines including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and chemokines including monocyte chemoattractant protein-1 (MCP-1) and monocyte inflammatory protein-1 (MIP-1α) in the spinal dorsal horn, which could be significantly repressed by melatonin. In vitro study showed that mRNA levels of TNF-α, IL-1β, MCP-1, and MIP-1α in primarily astrocytes were significantly increased after lipopolysaccharide (LPS, 1 μg/ml) stimulation. Melatonin (10 and 100 μM) greatly inhibited synthesis of these inflammatory mediators, in a dose-related manner. Conclusively, our data provide a novel implication of anti-nociceptive mechanism of melatonin in chemotherapy-related pain.
Appendix
Available only for authorised users
Literature
1.
go back to reference Agboola, S.O., W. Ju, A. Elfiky, J.C. Kvedar, and K. Jethwani. 2015. The effect of technology-based interventions on pain, depression, and quality of life in patients with cancer: a systematic review of randomized controlled trials. Journal of Medical Internet Research 17 (3): e65.CrossRefPubMedPubMedCentral Agboola, S.O., W. Ju, A. Elfiky, J.C. Kvedar, and K. Jethwani. 2015. The effect of technology-based interventions on pain, depression, and quality of life in patients with cancer: a systematic review of randomized controlled trials. Journal of Medical Internet Research 17 (3): e65.CrossRefPubMedPubMedCentral
2.
go back to reference Ambriz-Tututi, M., H.I. Rocha-Gonzalez, S.L. Cruz, and V. Granados-Soto. 2009. Melatonin: a hormone that modulates pain. Life Sciences 84 (15–16): 489–498.CrossRefPubMed Ambriz-Tututi, M., H.I. Rocha-Gonzalez, S.L. Cruz, and V. Granados-Soto. 2009. Melatonin: a hormone that modulates pain. Life Sciences 84 (15–16): 489–498.CrossRefPubMed
3.
go back to reference Areti, A., P. Komirishetty, M. Akuthota, R.A. Malik, and A. Kumar. 2017. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. Journal of Pineal Research 62 (3). Areti, A., P. Komirishetty, M. Akuthota, R.A. Malik, and A. Kumar. 2017. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. Journal of Pineal Research 62 (3).
4.
go back to reference Blask, D.E., R.T. Dauchy, L.A. Sauer, J.A. Krause, and G.C. Brainard. 2002. Light during darkness, melatonin suppression and cancer progression. Neuro Endocrinology Letters 23 (Suppl 2): 52–56.PubMed Blask, D.E., R.T. Dauchy, L.A. Sauer, J.A. Krause, and G.C. Brainard. 2002. Light during darkness, melatonin suppression and cancer progression. Neuro Endocrinology Letters 23 (Suppl 2): 52–56.PubMed
5.
go back to reference Blask, D.E., L.A. Sauer, and R.T. Dauchy. 2002. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Current Topics in Medicinal Chemistry 2 (2): 113–132.CrossRefPubMed Blask, D.E., L.A. Sauer, and R.T. Dauchy. 2002. Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Current Topics in Medicinal Chemistry 2 (2): 113–132.CrossRefPubMed
6.
go back to reference Carozzi, V.A., A. Canta, and A. Chiorazzi. 2015. Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neuroscience Letters 596: 90–107.CrossRefPubMed Carozzi, V.A., A. Canta, and A. Chiorazzi. 2015. Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neuroscience Letters 596: 90–107.CrossRefPubMed
7.
go back to reference Cersosimo, R.J. 2005. Oxaliplatin-associated neuropathy: a review. The Annals of Pharmacotherapy 39 (1): 128–135.CrossRefPubMed Cersosimo, R.J. 2005. Oxaliplatin-associated neuropathy: a review. The Annals of Pharmacotherapy 39 (1): 128–135.CrossRefPubMed
8.
go back to reference Chaplan, S.R., F.W. Bach, J.W. Pogrel, J.M. Chung, and T.L. Yaksh. 1994. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 53 (1): 55–63.CrossRefPubMed Chaplan, S.R., F.W. Bach, J.W. Pogrel, J.M. Chung, and T.L. Yaksh. 1994. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 53 (1): 55–63.CrossRefPubMed
9.
go back to reference Chung, Y.H., and D. Kim. 2016. Enhanced TLR4 expression on colon cancer cells after chemotherapy promotes cell survival and epithelial-mesenchymal transition through phosphorylation of GSK3beta. Anticancer Research 36 (7): 3383–3394.PubMed Chung, Y.H., and D. Kim. 2016. Enhanced TLR4 expression on colon cancer cells after chemotherapy promotes cell survival and epithelial-mesenchymal transition through phosphorylation of GSK3beta. Anticancer Research 36 (7): 3383–3394.PubMed
10.
go back to reference Di Cesare Mannelli, L., A. Pacini, L. Bonaccini, M. Zanardelli, T. Mello, and C. Ghelardini. 2013. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. The Journal of Pain 14 (12): 1585–1600.CrossRefPubMed Di Cesare Mannelli, L., A. Pacini, L. Bonaccini, M. Zanardelli, T. Mello, and C. Ghelardini. 2013. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. The Journal of Pain 14 (12): 1585–1600.CrossRefPubMed
11.
go back to reference Di Cesare Mannelli, L., A. Pacini, L. Micheli, A. Tani, M. Zanardelli, and C. Ghelardini. 2014. Glial role in oxaliplatin-induced neuropathic pain. Experimental Neurology 261: 22–33.CrossRefPubMed Di Cesare Mannelli, L., A. Pacini, L. Micheli, A. Tani, M. Zanardelli, and C. Ghelardini. 2014. Glial role in oxaliplatin-induced neuropathic pain. Experimental Neurology 261: 22–33.CrossRefPubMed
12.
go back to reference Ding, K., H. Wang, J. Xu, X. Lu, L. Zhang, and L. Zhu. 2014. Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochemistry International 76: 23–31.CrossRefPubMed Ding, K., H. Wang, J. Xu, X. Lu, L. Zhang, and L. Zhu. 2014. Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochemistry International 76: 23–31.CrossRefPubMed
13.
go back to reference Ebadi, M., P. Govitrapong, P. Phansuwan-Pujito, F. Nelson, and R.J. Reiter. 1998. Pineal opioid receptors and analgesic action of melatonin. Journal of Pineal Research 24 (4): 193–200.CrossRefPubMed Ebadi, M., P. Govitrapong, P. Phansuwan-Pujito, F. Nelson, and R.J. Reiter. 1998. Pineal opioid receptors and analgesic action of melatonin. Journal of Pineal Research 24 (4): 193–200.CrossRefPubMed
14.
go back to reference El-Shenawy, S.M., O.M. Abdel-Salam, A.R. Baiuomy, S. El-Batran, and M.S. Arbid. 2002. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacological Research 46 (3): 235–243.CrossRefPubMed El-Shenawy, S.M., O.M. Abdel-Salam, A.R. Baiuomy, S. El-Batran, and M.S. Arbid. 2002. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacological Research 46 (3): 235–243.CrossRefPubMed
15.
go back to reference Esposito, E., I. Paterniti, E. Mazzon, P. Bramanti, and S. Cuzzocrea. 2010. Melatonin reduces hyperalgesia associated with inflammation. Journal of Pineal Research 49 (4): 321–331.CrossRefPubMed Esposito, E., I. Paterniti, E. Mazzon, P. Bramanti, and S. Cuzzocrea. 2010. Melatonin reduces hyperalgesia associated with inflammation. Journal of Pineal Research 49 (4): 321–331.CrossRefPubMed
16.
go back to reference Fu, J., X. Xia, Z. Liu, Y. Wang, Y. Wang, Q. Shi, X. Song, E. Song, and Y. Song. 2017. The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via toll-like receptor 4 signaling: the protective role of melatonin preconditioning. Toxicology 381: 39–50.CrossRefPubMed Fu, J., X. Xia, Z. Liu, Y. Wang, Y. Wang, Q. Shi, X. Song, E. Song, and Y. Song. 2017. The acute exposure of tetrachloro-p-benzoquinone (a.k.a. chloranil) triggers inflammation and neurological dysfunction via toll-like receptor 4 signaling: the protective role of melatonin preconditioning. Toxicology 381: 39–50.CrossRefPubMed
18.
go back to reference Gao, Y.J., L. Zhang, O.A. Samad, M.R. Suter, K. Yasuhiko, Z.Z. Xu, J.Y. Park, A.L. Lind, Q. Ma, and R.R. Ji. 2009. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. The Journal of Neuroscience 29 (13): 4096–4108.CrossRefPubMedPubMedCentral Gao, Y.J., L. Zhang, O.A. Samad, M.R. Suter, K. Yasuhiko, Z.Z. Xu, J.Y. Park, A.L. Lind, Q. Ma, and R.R. Ji. 2009. JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. The Journal of Neuroscience 29 (13): 4096–4108.CrossRefPubMedPubMedCentral
19.
go back to reference Garcia-Perganeda, A., J.M. Guerrero, M. Rafii-El-Idrissi, M. Paz Romero, D. Pozo, and J.R. Calvo. 1999. Characterization of membrane melatonin receptor in mouse peritoneal macrophages: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Journal of Neuroimmunology 95 (1–2): 85–94.CrossRefPubMed Garcia-Perganeda, A., J.M. Guerrero, M. Rafii-El-Idrissi, M. Paz Romero, D. Pozo, and J.R. Calvo. 1999. Characterization of membrane melatonin receptor in mouse peritoneal macrophages: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Journal of Neuroimmunology 95 (1–2): 85–94.CrossRefPubMed
21.
go back to reference Heiman, A., A. Pallottie, R.F. Heary, and S. Elkabes. 2014. Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain, Behavior, and Immunity 42: 232–245.CrossRefPubMed Heiman, A., A. Pallottie, R.F. Heary, and S. Elkabes. 2014. Toll-like receptors in central nervous system injury and disease: a focus on the spinal cord. Brain, Behavior, and Immunity 42: 232–245.CrossRefPubMed
22.
go back to reference Hu, Y., Z. Wang, S. Pan, H. Zhang, M. Fang, H. Jiang, H. Zhang, et al. 2017. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-kappaB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8 (19): 31638–31654.PubMedPubMedCentral Hu, Y., Z. Wang, S. Pan, H. Zhang, M. Fang, H. Jiang, H. Zhang, et al. 2017. Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-kappaB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8 (19): 31638–31654.PubMedPubMedCentral
23.
go back to reference Ismail, S.A., and H.A. Mowafi. 2009. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. Anesthesia and Analgesia 108 (4): 1146–1151.CrossRefPubMed Ismail, S.A., and H.A. Mowafi. 2009. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. Anesthesia and Analgesia 108 (4): 1146–1151.CrossRefPubMed
24.
go back to reference Kawasaki, Y., L. Zhang, J.K. Cheng, and R.R. Ji. 2008. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. The Journal of Neuroscience 28 (20): 5189–5194.CrossRefPubMedPubMedCentral Kawasaki, Y., L. Zhang, J.K. Cheng, and R.R. Ji. 2008. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. The Journal of Neuroscience 28 (20): 5189–5194.CrossRefPubMedPubMedCentral
25.
go back to reference Kelland, L. 2007. The resurgence of platinum-based cancer chemotherapy. Nature Reviews. Cancer 7 (8): 573–584.CrossRefPubMed Kelland, L. 2007. The resurgence of platinum-based cancer chemotherapy. Nature Reviews. Cancer 7 (8): 573–584.CrossRefPubMed
26.
go back to reference Kiguchi, N., Y. Kobayashi, and S. Kishioka. 2012. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Current Opinion in Pharmacology 12 (1): 55–61.CrossRefPubMed Kiguchi, N., Y. Kobayashi, and S. Kishioka. 2012. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Current Opinion in Pharmacology 12 (1): 55–61.CrossRefPubMed
27.
go back to reference Konturek, S.J., O. Zayachkivska, X.O. Havryluk, T. Brzozowski, Z. Sliwowski, M. Pawlik, P.C. Konturek, M. Czesnikiewicz-Guzik, M.R. Gzhegotsky, and W.W. Pawlik. 2007. Protective influence of melatonin against acute esophageal lesions involves prostaglandins, nitric oxide and sensory nerves. Journal of Physiology and Pharmacology 58 (2): 361–377.PubMed Konturek, S.J., O. Zayachkivska, X.O. Havryluk, T. Brzozowski, Z. Sliwowski, M. Pawlik, P.C. Konturek, M. Czesnikiewicz-Guzik, M.R. Gzhegotsky, and W.W. Pawlik. 2007. Protective influence of melatonin against acute esophageal lesions involves prostaglandins, nitric oxide and sensory nerves. Journal of Physiology and Pharmacology 58 (2): 361–377.PubMed
28.
go back to reference Lin, S.H., Y.N. Huang, J.H. Kao, L.T. Tien, R.Y. Tsai, and C.S. Wong. 2016. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression. Life Sciences 152: 38–43.CrossRefPubMed Lin, S.H., Y.N. Huang, J.H. Kao, L.T. Tien, R.Y. Tsai, and C.S. Wong. 2016. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression. Life Sciences 152: 38–43.CrossRefPubMed
29.
go back to reference Liu, T., Q. Han, G. Chen, Y. Huang, L.X. Zhao, T. Berta, Y.J. Gao, and R.R. Ji. 2016. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 157 (4): 806–817.CrossRefPubMedPubMedCentral Liu, T., Q. Han, G. Chen, Y. Huang, L.X. Zhao, T. Berta, Y.J. Gao, and R.R. Ji. 2016. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain 157 (4): 806–817.CrossRefPubMedPubMedCentral
30.
go back to reference Loiseau, F., C. Le Bihan, M. Hamon, and M.H. Thiebot. 2006. Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. European Neuropsychopharmacology 16 (6): 417–428.CrossRefPubMed Loiseau, F., C. Le Bihan, M. Hamon, and M.H. Thiebot. 2006. Effects of melatonin and agomelatine in anxiety-related procedures in rats: interaction with diazepam. European Neuropsychopharmacology 16 (6): 417–428.CrossRefPubMed
31.
go back to reference Matsushita, K., H. Tozaki-Saitoh, C. Kojima, T. Masuda, M. Tsuda, K. Inoue, and S. Hoka. 2014. Chemokine (C-C motif) receptor 5 is an important pathological regulator in the development and maintenance of neuropathic pain. Anesthesiology 120 (6): 1491–1503.CrossRefPubMed Matsushita, K., H. Tozaki-Saitoh, C. Kojima, T. Masuda, M. Tsuda, K. Inoue, and S. Hoka. 2014. Chemokine (C-C motif) receptor 5 is an important pathological regulator in the development and maintenance of neuropathic pain. Anesthesiology 120 (6): 1491–1503.CrossRefPubMed
32.
go back to reference Raghavendra, V., J.N. Agrewala, and S.K. Kulkarni. 2000. Melatonin reversal of lipopolysacharides-induced thermal and behavioral hyperalgesia in mice. European Journal of Pharmacology 395 (1): 15–21.CrossRefPubMed Raghavendra, V., J.N. Agrewala, and S.K. Kulkarni. 2000. Melatonin reversal of lipopolysacharides-induced thermal and behavioral hyperalgesia in mice. European Journal of Pharmacology 395 (1): 15–21.CrossRefPubMed
33.
go back to reference Robinson, C.R., H. Zhang, and P.M. Dougherty. 2014. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274: 308–317.CrossRefPubMedPubMedCentral Robinson, C.R., H. Zhang, and P.M. Dougherty. 2014. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274: 308–317.CrossRefPubMedPubMedCentral
34.
go back to reference Romero-Sandoval, E.A., R.J. Horvath, and J.A. DeLeo. 2008. Neuroimmune interactions and pain: focus on glial-modulating targets. Current Opinion in Investigational Drugs 9 (7): 726–734.PubMedPubMedCentral Romero-Sandoval, E.A., R.J. Horvath, and J.A. DeLeo. 2008. Neuroimmune interactions and pain: focus on glial-modulating targets. Current Opinion in Investigational Drugs 9 (7): 726–734.PubMedPubMedCentral
35.
go back to reference Sanchez-Barcelo, E.J., S. Cos, D. Mediavilla, C. Martinez-Campa, A. Gonzalez, and C. Alonso-Gonzalez. 2005. Melatonin-estrogen interactions in breast cancer. Journal of Pineal Research 38 (4): 217–222.CrossRefPubMed Sanchez-Barcelo, E.J., S. Cos, D. Mediavilla, C. Martinez-Campa, A. Gonzalez, and C. Alonso-Gonzalez. 2005. Melatonin-estrogen interactions in breast cancer. Journal of Pineal Research 38 (4): 217–222.CrossRefPubMed
36.
go back to reference Scarabelot, V.L., L.F. Medeiros, C. de Oliveira, L.N. Adachi, I.C. de Macedo, S.G. Cioato, J.S. de Freitas, et al. 2016. Melatonin alters the mechanical and thermal hyperalgesia induced by orofacial pain model in rats. Inflammation 39 (5): 1649–1659.CrossRefPubMed Scarabelot, V.L., L.F. Medeiros, C. de Oliveira, L.N. Adachi, I.C. de Macedo, S.G. Cioato, J.S. de Freitas, et al. 2016. Melatonin alters the mechanical and thermal hyperalgesia induced by orofacial pain model in rats. Inflammation 39 (5): 1649–1659.CrossRefPubMed
37.
go back to reference Srinivasan, V., S.R. Pandi-Perumal, D.W. Spence, A. Moscovitch, I. Trakht, G.M. Brown, and D.P. Cardinali. 2010. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Research Bulletin 81 (4–5): 362–371.CrossRefPubMed Srinivasan, V., S.R. Pandi-Perumal, D.W. Spence, A. Moscovitch, I. Trakht, G.M. Brown, and D.P. Cardinali. 2010. Potential use of melatonergic drugs in analgesia: mechanisms of action. Brain Research Bulletin 81 (4–5): 362–371.CrossRefPubMed
38.
go back to reference Sugden, D. 1983. Psychopharmacological effects of melatonin in mouse and rat. The Journal of Pharmacology and Experimental Therapeutics 227 (3): 587–591.PubMed Sugden, D. 1983. Psychopharmacological effects of melatonin in mouse and rat. The Journal of Pharmacology and Experimental Therapeutics 227 (3): 587–591.PubMed
39.
go back to reference Wang, Y.M., B.Z. Jin, F. Ai, C.H. Duan, Y.Z. Lu, T.F. Dong, and Q.L. Fu. 2012. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemotherapy and Pharmacology 69 (5): 1213–1220.CrossRefPubMed Wang, Y.M., B.Z. Jin, F. Ai, C.H. Duan, Y.Z. Lu, T.F. Dong, and Q.L. Fu. 2012. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemotherapy and Pharmacology 69 (5): 1213–1220.CrossRefPubMed
40.
go back to reference Xin, W., W. Chun, L. Ling, and W. Wei. 2012. Role of melatonin in the prevention of morphine-induced hyperalgesia and spinal glial activation in rats: protein kinase C pathway involved. The International Journal of Neuroscience 122 (3): 154–163.CrossRefPubMed Xin, W., W. Chun, L. Ling, and W. Wei. 2012. Role of melatonin in the prevention of morphine-induced hyperalgesia and spinal glial activation in rats: protein kinase C pathway involved. The International Journal of Neuroscience 122 (3): 154–163.CrossRefPubMed
41.
go back to reference Yoon, S.Y., C.R. Robinson, H. Zhang, and P.M. Dougherty. 2013. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. The Journal of Pain 14 (2): 205–214.CrossRefPubMedPubMedCentral Yoon, S.Y., C.R. Robinson, H. Zhang, and P.M. Dougherty. 2013. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. The Journal of Pain 14 (2): 205–214.CrossRefPubMedPubMedCentral
42.
go back to reference Zhang, R.X., B. Liu, A. Li, L. Wang, K. Ren, J.T. Qiao, B.M. Berman, and L. Lao. 2008. Interleukin 1beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation. Neuroscience 154 (4): 1533–1538.CrossRefPubMedPubMedCentral Zhang, R.X., B. Liu, A. Li, L. Wang, K. Ren, J.T. Qiao, B.M. Berman, and L. Lao. 2008. Interleukin 1beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation. Neuroscience 154 (4): 1533–1538.CrossRefPubMedPubMedCentral
43.
go back to reference Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16 (2): 109–110.CrossRefPubMed Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16 (2): 109–110.CrossRefPubMed
Metadata
Title
Melatonin Attenuates Pain Hypersensitivity and Decreases Astrocyte-Mediated Spinal Neuroinflammation in a Rat Model of Oxaliplatin-Induced Pain
Authors
Ye-song Wang
Yuan-yuan Li
Wei Cui
Li-bin Li
Zhao-cai Zhang
Bao-ping Tian
Gen-sheng Zhang
Publication date
01-12-2017
Publisher
Springer US
Published in
Inflammation / Issue 6/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0645-y

Other articles of this Issue 6/2017

Inflammation 6/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.