Skip to main content
Top
Published in: Inflammation 6/2017

01-12-2017 | ORIGINAL ARTICLE

Comparative Effects of Schisandrin A, B, and C on Acne-Related Inflammation

Authors: Miaomiao Guo, Faliang An, Xing Wei, Minhua Hong, Yanhua Lu

Published in: Inflammation | Issue 6/2017

Login to get access

Abstract

Inflammatory responses induced by Propionibacterium acnes are a major etiological factor in the pathogenesis of acne vulgaris. Schisandrin A, schisandrin B, and schisandrin C are the representative lignans of Schisandra chinensis (Turcz.) Baill. extract. Although anti-inflammatory effects of the lignans have been shown, their effects on acne-related inflammation caused by P. acnes have not been investigated and compared. We pretreated THP-1 human monocytic cells with 5, 10, and 20 μM schisandrin A, B, and C, and stimulated the cells with P. acnes. Schisandrin B and C inhibited the release of inflammatory cytokines at a concentration of 5 μM, while schisandrin A required a concentration of 10 μM to exert the effects. All of the schisandrins decreased the levels of toll-like receptor 2, and schisandrin B and C reduced the intracellular mRNA expression of the receptor gene. We also studied the influence of schisandrins on the MAPK signaling pathway. Schisandrin A suppressed the P. acnes-induced activation of JNK, while exerting only a weak effect on ERK and p38. Schisandrin B exerted a strong effect on p38, a lesser effect on ERK, and almost no effect on JNK. Schisandrin C inhibited the phosphorylation of all three proteins, especially ERK. Furthermore, the three lignans also prevented the nuclear translocation of NF-κB. These results contribute to our understanding of the mechanisms underlying the effects of the three lignans on P. acnes-induced inflammation and suggest that schisandrins might be developed as pharmacological agents for acne therapy.
Literature
2.
3.
go back to reference Leyden, J.J. 2003. A review of the use of combination therapies for the treatment of acne vulgaris. Journal of American Academy of Dermatology 49: 200–210.CrossRef Leyden, J.J. 2003. A review of the use of combination therapies for the treatment of acne vulgaris. Journal of American Academy of Dermatology 49: 200–210.CrossRef
4.
go back to reference Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820.CrossRefPubMed Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140: 805–820.CrossRefPubMed
5.
go back to reference Beylot, C., N. Auffret, F. Poli, J.P. Claudel, M.T. Leccia, P. Del Giudice, and B. Dreno. 2014. Propionibacterium acnes: an update on its role in the pathogenesis of acne. Journal of the European Academy of Dermatology & Venerology 28: 271–278.CrossRef Beylot, C., N. Auffret, F. Poli, J.P. Claudel, M.T. Leccia, P. Del Giudice, and B. Dreno. 2014. Propionibacterium acnes: an update on its role in the pathogenesis of acne. Journal of the European Academy of Dermatology & Venerology 28: 271–278.CrossRef
6.
go back to reference Gambero, M., D. Teixeira, L. Butin, M.E. Ishimura, M. Mariano, A.F. Popi, and I.M. Longo-Maugeri. 2016. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via TLR2-mediated mechanism. Immunobiology 221: 1001–1011.CrossRefPubMed Gambero, M., D. Teixeira, L. Butin, M.E. Ishimura, M. Mariano, A.F. Popi, and I.M. Longo-Maugeri. 2016. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via TLR2-mediated mechanism. Immunobiology 221: 1001–1011.CrossRefPubMed
7.
go back to reference Kim, J. 2005. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211: 193–198.CrossRefPubMed Kim, J. 2005. Review of the innate immune response in acne vulgaris: activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology 211: 193–198.CrossRefPubMed
8.
go back to reference Duan, Y.X., J.L. Cao, R.R. Wen, G.Y. Yang, J.X. Pu, H.D. Sun, W.L. Xiao, and G.P. Li. 2011. Dibenzocycolooctadiene lignans from Schisandra neglecta and their anti-HIV-1 activities. Journal of Asian Natural Products Research 77: 1800–1805. Duan, Y.X., J.L. Cao, R.R. Wen, G.Y. Yang, J.X. Pu, H.D. Sun, W.L. Xiao, and G.P. Li. 2011. Dibenzocycolooctadiene lignans from Schisandra neglecta and their anti-HIV-1 activities. Journal of Asian Natural Products Research 77: 1800–1805.
9.
go back to reference Liu, H., H. Lai, X. Jia, J. Liu, Z. Zhang, Y. Qi, J. Zhang, J. Song, C. Wu, B. Zhang, and P. Xiao. 2013. Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics. Phytomedicine 20: 1135–1143.CrossRefPubMed Liu, H., H. Lai, X. Jia, J. Liu, Z. Zhang, Y. Qi, J. Zhang, J. Song, C. Wu, B. Zhang, and P. Xiao. 2013. Comprehensive chemical analysis of Schisandra chinensis by HPLC-DAD-MS combined with chemometrics. Phytomedicine 20: 1135–1143.CrossRefPubMed
10.
go back to reference Chun, J.N., M. Cho, I. So, and J.H. Jeon. 2014. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: a review of the molecular mechanisms. Fitoterapia 97: 224–233.CrossRefPubMed Chun, J.N., M. Cho, I. So, and J.H. Jeon. 2014. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: a review of the molecular mechanisms. Fitoterapia 97: 224–233.CrossRefPubMed
11.
go back to reference Alexander, J.S., and Y. Wang. 2012. Therapeutic potential of Schisandra chinensis extracts for treatment of hypertension. Introduction to: ‘antihypertensive effect of gomisin A from Schisandra chinensis on angiotensin II-induced hypertension via preservation of nitric oxide bioavailability’ by Park et al. Hypertension Research: official journal of the Japanese Society of Hypertension 35: 892–893.CrossRef Alexander, J.S., and Y. Wang. 2012. Therapeutic potential of Schisandra chinensis extracts for treatment of hypertension. Introduction to: ‘antihypertensive effect of gomisin A from Schisandra chinensis on angiotensin II-induced hypertension via preservation of nitric oxide bioavailability’ by Park et al. Hypertension Research: official journal of the Japanese Society of Hypertension 35: 892–893.CrossRef
12.
go back to reference Guo, M., Y. Lu, J. Yang, X. Zhao, and Y. Lu. 2016. Inhibitory effects of Schisandra chinensis extract on acne-related inflammation and UVB-induced photoageing. Pharmaceutical Biology 54: 2987–2994.CrossRefPubMed Guo, M., Y. Lu, J. Yang, X. Zhao, and Y. Lu. 2016. Inhibitory effects of Schisandra chinensis extract on acne-related inflammation and UVB-induced photoageing. Pharmaceutical Biology 54: 2987–2994.CrossRefPubMed
13.
go back to reference Ko, K.M., and B.Y. Lam. 2002. Schisandrin B protects against tert-butylhydroperoxide induced cerebral toxicity by enhancing glutathione antioxidant status in mouse brain. Molecular and Cellular Biochemistry 238: 181–186.CrossRefPubMed Ko, K.M., and B.Y. Lam. 2002. Schisandrin B protects against tert-butylhydroperoxide induced cerebral toxicity by enhancing glutathione antioxidant status in mouse brain. Molecular and Cellular Biochemistry 238: 181–186.CrossRefPubMed
14.
go back to reference Panossian, A., and G. Wikman. 2008. Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. Journal of Ethnopharmacology 118: 183–212.CrossRefPubMed Panossian, A., and G. Wikman. 2008. Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. Journal of Ethnopharmacology 118: 183–212.CrossRefPubMed
15.
go back to reference Szopa, A., R. Ekiert, and H. Ekiert. 2016. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochemistry Reviews. https://doi.org/10.1007/s11101-016-9470-4. Szopa, A., R. Ekiert, and H. Ekiert. 2016. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochemistry Reviews. https://​doi.​org/​10.​1007/​s11101-016-9470-4.
16.
go back to reference Chen, Z., M. Guo, G. Song, J. Gao, Y. Zhang, Z. Jing, T. Liu, and C. Dong. 2016. Schisandrin B inhibits Th1/Th17 differentiation and promotes regulatory T cell expansion in mouse lymphocytes. International Immunopharmacology 35: 257–264.CrossRefPubMed Chen, Z., M. Guo, G. Song, J. Gao, Y. Zhang, Z. Jing, T. Liu, and C. Dong. 2016. Schisandrin B inhibits Th1/Th17 differentiation and promotes regulatory T cell expansion in mouse lymphocytes. International Immunopharmacology 35: 257–264.CrossRefPubMed
17.
go back to reference Bartlova, M., L. Opletal, V. Chobot, and H. Sovova. 2002. Liquid chromatographic analysis of supercritical carbon dioxide extracts of Schisandra chinensis. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences 770: 283–289.CrossRef Bartlova, M., L. Opletal, V. Chobot, and H. Sovova. 2002. Liquid chromatographic analysis of supercritical carbon dioxide extracts of Schisandra chinensis. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences 770: 283–289.CrossRef
18.
go back to reference Sun, Y.X., Y.L. Cong, Y. Liu, B. Jin, L. Si, A.B. Wang, H. Cai, G.Y. Che, B. Tang, C.F. Wang, Z.Y. Li, and X.M. Zhang. 2014. Schiandrin A and B affect subventricular zone neurogenesis in mouse. European Journal of Pharmacology 740: 55–559. Sun, Y.X., Y.L. Cong, Y. Liu, B. Jin, L. Si, A.B. Wang, H. Cai, G.Y. Che, B. Tang, C.F. Wang, Z.Y. Li, and X.M. Zhang. 2014. Schiandrin A and B affect subventricular zone neurogenesis in mouse. European Journal of Pharmacology 740: 55–559.
19.
go back to reference Guo, L.Y., T.M. Hung, K.H. Bae, E.M. Shin, H.Y. Zhou, Y.N. Hong, S.S. Kang, H.P. Kim, and Y.S. Kim. 2008. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. European Journal of Pharmacology 591: 293–299.CrossRefPubMed Guo, L.Y., T.M. Hung, K.H. Bae, E.M. Shin, H.Y. Zhou, Y.N. Hong, S.S. Kang, H.P. Kim, and Y.S. Kim. 2008. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. European Journal of Pharmacology 591: 293–299.CrossRefPubMed
20.
go back to reference Leong, P.K., H.S. Wong, J. Chen, W.M. Chan, H.Y. Leung, and K.M. Ko. 2016. Differential action between schisandrin A and schisandrin B in eliciting an anti-inflammatory action: the depletion of reduced glutathione and the induction of an antioxidant response. PloS One 11: e0155879.CrossRefPubMedPubMedCentral Leong, P.K., H.S. Wong, J. Chen, W.M. Chan, H.Y. Leung, and K.M. Ko. 2016. Differential action between schisandrin A and schisandrin B in eliciting an anti-inflammatory action: the depletion of reduced glutathione and the induction of an antioxidant response. PloS One 11: e0155879.CrossRefPubMedPubMedCentral
21.
go back to reference Park, S.Y., D.J. Park, Y.H. Kim, Y.H. Kim, S.G. Kim, K.J. Shon, Y.W. Choi, and S.J. Lee. 2011. Upregulation of heme oxygenase-1 via PI3K/Akt and Nrf-2 signaling pathways mediates the anti-inflammatory activity of Schisandrin in Porphyromonas gingivalis LPS-stimulated macrophages. Immunology Letters 139: 93–101.CrossRefPubMed Park, S.Y., D.J. Park, Y.H. Kim, Y.H. Kim, S.G. Kim, K.J. Shon, Y.W. Choi, and S.J. Lee. 2011. Upregulation of heme oxygenase-1 via PI3K/Akt and Nrf-2 signaling pathways mediates the anti-inflammatory activity of Schisandrin in Porphyromonas gingivalis LPS-stimulated macrophages. Immunology Letters 139: 93–101.CrossRefPubMed
22.
go back to reference Cai, Z., J. Liu, H. Bian, J. Cai, and G. Zhu. 2016. Suppression of P2X7/NF-κB pathway by Schisandrin B contributes to attenuation of lipopolysaccharide-induced inflammation responses in acute lung injury. Archives of Pharmacal Research 39: 499–507.CrossRefPubMed Cai, Z., J. Liu, H. Bian, J. Cai, and G. Zhu. 2016. Suppression of P2X7/NF-κB pathway by Schisandrin B contributes to attenuation of lipopolysaccharide-induced inflammation responses in acute lung injury. Archives of Pharmacal Research 39: 499–507.CrossRefPubMed
23.
go back to reference Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, H.N. Bhilwade, T. Konishi, and S.K. Sandur. 2012. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nrf2 and NF-κB. Free Radical Biology & Medicine 53: 1421–1430.CrossRef Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, H.N. Bhilwade, T. Konishi, and S.K. Sandur. 2012. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nrf2 and NF-κB. Free Radical Biology & Medicine 53: 1421–1430.CrossRef
24.
go back to reference Zeng, K.W., T. Zhang, H. Fu, G.X. Liu, and X.M. Wang. 2012. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia. European Journal of Pharmacology 692: 29–37.CrossRefPubMed Zeng, K.W., T. Zhang, H. Fu, G.X. Liu, and X.M. Wang. 2012. Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia. European Journal of Pharmacology 692: 29–37.CrossRefPubMed
26.
go back to reference Oh, S.Y., Y.H. Kim, D.S. Bae, B.H. Um, C.H. Pan, C.Y. Kim, H.J. Lee, and J.K. Lee. 2010. Anti-inflammatory effects of gomisin N, gomisin J and schisandrin C isolated from fruit of Schisandra chinensis. Bioscience Biotechnology & Biochemistry 74: 285–291.CrossRef Oh, S.Y., Y.H. Kim, D.S. Bae, B.H. Um, C.H. Pan, C.Y. Kim, H.J. Lee, and J.K. Lee. 2010. Anti-inflammatory effects of gomisin N, gomisin J and schisandrin C isolated from fruit of Schisandra chinensis. Bioscience Biotechnology & Biochemistry 74: 285–291.CrossRef
27.
go back to reference Karin, M., and M. Delhase. 2000. The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signaling. Seminars in Immunololy 12: 85–98.CrossRef Karin, M., and M. Delhase. 2000. The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signaling. Seminars in Immunololy 12: 85–98.CrossRef
28.
go back to reference Poulton, K., A. Rahman, and I. Giles. 2012. Examining how antiphospholipid antibodies activate intracellular signaling pathways: a systematic review. Seminars in Arthritis & Rheumatism 41: 720–736.CrossRef Poulton, K., A. Rahman, and I. Giles. 2012. Examining how antiphospholipid antibodies activate intracellular signaling pathways: a systematic review. Seminars in Arthritis & Rheumatism 41: 720–736.CrossRef
29.
go back to reference Lolis, M.S., W.P. Bowe, and A.R. Shalita. 2009. Acne and systemic disease. Medical Clinics of North America 93: 1161–1181.CrossRefPubMed Lolis, M.S., W.P. Bowe, and A.R. Shalita. 2009. Acne and systemic disease. Medical Clinics of North America 93: 1161–1181.CrossRefPubMed
30.
go back to reference De, N.E. 2001. The role of inflammatory and immunological mediators inperiodontitis and cardiovascular disease. Annals of Periodontology 6: 30–40.CrossRef De, N.E. 2001. The role of inflammatory and immunological mediators inperiodontitis and cardiovascular disease. Annals of Periodontology 6: 30–40.CrossRef
31.
go back to reference Cailton, F., M. O’Connell, E.A. Eady, G.R. Jenkins, J.H. Cove, A.M. Layton, and A.P. Mountford. 2010. Interleukin-10 secretion from CD14+ peripheral blood mononuclear cells is downregulated in patients with acne vulgaris. British Journal of Dermatology 162: 296–303.CrossRef Cailton, F., M. O’Connell, E.A. Eady, G.R. Jenkins, J.H. Cove, A.M. Layton, and A.P. Mountford. 2010. Interleukin-10 secretion from CD14+ peripheral blood mononuclear cells is downregulated in patients with acne vulgaris. British Journal of Dermatology 162: 296–303.CrossRef
32.
go back to reference Kim, J., M.T. Ochoa, S.R. Krutzik, O. Takeuchi, S. Uematsu, A.J. Legaspi, H.D. Brightbill, D. Holland, W.J. Cunliffe, S. Akira, P.A. Sieling, P.J. Godowski, and R.L. Modlin. 2002. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Journal of Immunology 169: 1535–1541.CrossRef Kim, J., M.T. Ochoa, S.R. Krutzik, O. Takeuchi, S. Uematsu, A.J. Legaspi, H.D. Brightbill, D. Holland, W.J. Cunliffe, S. Akira, P.A. Sieling, P.J. Godowski, and R.L. Modlin. 2002. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Journal of Immunology 169: 1535–1541.CrossRef
33.
go back to reference Jung, M.K., S. Ha, J.A. Son, J.H. Song, Y. Houh, E. Cho, J.H. Chun, S.R. Yoon, Y. Yang, S.I. Bang, M. Kim, H.J. Park, and D. Cho. 2012. Polyphenon-60 displays a therapeutic effect on acne by suppression of TLR2 and IL-8 expression via down-regulating the ERK1/2 pathway. Archives of Dermatological Research 304: 655–663.CrossRefPubMed Jung, M.K., S. Ha, J.A. Son, J.H. Song, Y. Houh, E. Cho, J.H. Chun, S.R. Yoon, Y. Yang, S.I. Bang, M. Kim, H.J. Park, and D. Cho. 2012. Polyphenon-60 displays a therapeutic effect on acne by suppression of TLR2 and IL-8 expression via down-regulating the ERK1/2 pathway. Archives of Dermatological Research 304: 655–663.CrossRefPubMed
34.
go back to reference Vega, B., A. Jomard, and S. Michel. 2002. Regulation of human monocyte Toll-like receptor (TLR2) expression by adapalene. Journal of the European Academy of Dermatology and Venereology 16: 123–124. Vega, B., A. Jomard, and S. Michel. 2002. Regulation of human monocyte Toll-like receptor (TLR2) expression by adapalene. Journal of the European Academy of Dermatology and Venereology 16: 123–124.
35.
go back to reference Qin, M., A. Priouz, M.H. Kim, S.R. Krutzik, H.J. Garban, and J. Kim. 2014. Propionibacterium acnes induces IL-1β secretion via the NLRP3 inflammasome in human monocytes. Journal of Investigative Dermatology 134: 381–388.CrossRefPubMed Qin, M., A. Priouz, M.H. Kim, S.R. Krutzik, H.J. Garban, and J. Kim. 2014. Propionibacterium acnes induces IL-1β secretion via the NLRP3 inflammasome in human monocytes. Journal of Investigative Dermatology 134: 381–388.CrossRefPubMed
Metadata
Title
Comparative Effects of Schisandrin A, B, and C on Acne-Related Inflammation
Authors
Miaomiao Guo
Faliang An
Xing Wei
Minhua Hong
Yanhua Lu
Publication date
01-12-2017
Publisher
Springer US
Published in
Inflammation / Issue 6/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0656-8

Other articles of this Issue 6/2017

Inflammation 6/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.