Skip to main content
Top
Published in: Diabetologia 4/2016

01-04-2016 | Article

Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: positron emission tomography study in a porcine model

Authors: Elena Sanguinetti, Tiziana Liistro, Marco Mainardi, Silvia Pardini, Piero A. Salvadori, Alessandro Vannucci, Silvia Burchielli, Patricia Iozzo

Published in: Diabetologia | Issue 4/2016

Login to get access

Abstract

Aims/hypothesis

Maternal obesity negatively affects fetal development. Abnormalities in brain glucose metabolism are predictive of metabolic–cognitive disorders.

Methods

We studied the offspring (aged 0, 1, 6, 12 months) of minipigs fed a normal vs high-fat diet (HFD), by positron emission tomography (PET) to measure brain glucose metabolism, and ex vivo assessments of brain insulin receptors (IRβ) and GLUT4.

Results

At birth, brain glucose metabolism and IRβ were twice as high in the offspring of HFD-fed than control mothers. During infancy and youth, brain glucose uptake, GLUT4 and IRβ increased in the offspring of control mothers and decreased in those of HFD-fed mothers, leading to a 40–85% difference (p < 0.05), and severe glycogen depletion, lasting until adulthood.

Conclusions/interpretation

Maternal high-fat feeding leads to brain glucose overexposure during fetal development, followed by long-lasting depression in brain glucose metabolism in minipigs. These features may predispose the offspring to develop metabolic–neurodegenerative diseases.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269CrossRefPubMed Hallschmid M, Schultes B (2009) Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 52:2264–2269CrossRefPubMed
4.
go back to reference Moll L, Schubert M (2012) The role of insulin and insulin-like growth factor-1/FOXO-mediated transcription for the pathogenesis of obesity-associated dementia. Curr Gerontol Geriatr Res 384094 Moll L, Schubert M (2012) The role of insulin and insulin-like growth factor-1/FOXO-mediated transcription for the pathogenesis of obesity-associated dementia. Curr Gerontol Geriatr Res 384094
5.
go back to reference Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178CrossRefPubMed Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178CrossRefPubMed
6.
go back to reference Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83:47–54CrossRefPubMed Stockhorst U, de Fries D, Steingrueber HJ, Scherbaum WA (2004) Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav 83:47–54CrossRefPubMed
7.
go back to reference Bingham EM, Hopkins D, Smith D et al (2002) The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 51:3384–3390CrossRefPubMed Bingham EM, Hopkins D, Smith D et al (2002) The role of insulin in human brain glucose metabolism: an 18fluoro-deoxyglucose positron emission tomography study. Diabetes 51:3384–3390CrossRefPubMed
8.
go back to reference Ngarmukos C, Baur EL, Kumagai AK (2001) Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res 900:1–8CrossRefPubMed Ngarmukos C, Baur EL, Kumagai AK (2001) Co-localization of GLUT1 and GLUT4 in the blood-brain barrier of the rat ventromedial hypothalamus. Brain Res 900:1–8CrossRefPubMed
9.
go back to reference Emmanuel Y, Cochlin LE, Tyler DJ, de Jager CA, Smith AD, Clarke K (2013) Human hippocampal energy metabolism is impaired during cognitive activity in a lipid infusion model of insulin resistance. Brain Behav 3:134–144CrossRefPubMedPubMedCentral Emmanuel Y, Cochlin LE, Tyler DJ, de Jager CA, Smith AD, Clarke K (2013) Human hippocampal energy metabolism is impaired during cognitive activity in a lipid infusion model of insulin resistance. Brain Behav 3:134–144CrossRefPubMedPubMedCentral
10.
go back to reference Kim SY, Dietz PM, England L, Morrow B, Callaghan WM (2007) Trends in pre-pregnancy obesity in nine states, 1993–2003. Obesity (Silver Spring) 15:986–993CrossRef Kim SY, Dietz PM, England L, Morrow B, Callaghan WM (2007) Trends in pre-pregnancy obesity in nine states, 1993–2003. Obesity (Silver Spring) 15:986–993CrossRef
12.
go back to reference O'Reilly JR, Reynolds RM (2013) The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol 78:9–16CrossRef O'Reilly JR, Reynolds RM (2013) The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol 78:9–16CrossRef
13.
go back to reference Gaudet L, Tu X, Fell D, El-Chaar D, Wu SW, Walker M (2012) The effect of maternal class III obesity on neonatal outcomes: a retrospective matched cohort study. J Matern Fetal Neonatal Med 25:2281–2286CrossRefPubMed Gaudet L, Tu X, Fell D, El-Chaar D, Wu SW, Walker M (2012) The effect of maternal class III obesity on neonatal outcomes: a retrospective matched cohort study. J Matern Fetal Neonatal Med 25:2281–2286CrossRefPubMed
14.
go back to reference Sewell MF, Huston-Presley L, Super DM, Catalano P (2006) Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 195:1100–1103CrossRefPubMed Sewell MF, Huston-Presley L, Super DM, Catalano P (2006) Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol 195:1100–1103CrossRefPubMed
15.
go back to reference Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S (2009) Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32:1076–1080CrossRefPubMedPubMedCentral Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S (2009) Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32:1076–1080CrossRefPubMedPubMedCentral
16.
go back to reference Muhlhausler BS, Adam CL, Findlay CA, Duffield JA, McMillen IC (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20:1257–1259CrossRefPubMed Muhlhausler BS, Adam CL, Findlay CA, Duffield JA, McMillen IC (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20:1257–1259CrossRefPubMed
17.
go back to reference Budge H, Stephenson T, Symonds ME (2007) Maternal nutrient restriction is not equivalent to maternal biological stress. Curr Drug Targets 8:888–893CrossRefPubMed Budge H, Stephenson T, Symonds ME (2007) Maternal nutrient restriction is not equivalent to maternal biological stress. Curr Drug Targets 8:888–893CrossRefPubMed
18.
go back to reference Bouret SG (2009) Early life origins of obesity: role of hypothalamic programming. J Pediatr Gastroenterol Nutr 48(Suppl 1):S31–S38CrossRefPubMed Bouret SG (2009) Early life origins of obesity: role of hypothalamic programming. J Pediatr Gastroenterol Nutr 48(Suppl 1):S31–S38CrossRefPubMed
19.
go back to reference Ross MG, Desai M, Khorram O, McKnight RA, Lane RH, Torday J (2007) Gestational programming of offspring obesity: a potential contributor to Alzheimer's disease. Curr Alzheimer Res 4:213–217CrossRefPubMed Ross MG, Desai M, Khorram O, McKnight RA, Lane RH, Torday J (2007) Gestational programming of offspring obesity: a potential contributor to Alzheimer's disease. Curr Alzheimer Res 4:213–217CrossRefPubMed
20.
go back to reference Plagemann A, Harder T, Janert U et al (1999) Malformations of hypothalamic nuclei in hyperinsulinemic offspring of rats with gestational diabetes. Dev Neurosci 21:58–67CrossRefPubMed Plagemann A, Harder T, Janert U et al (1999) Malformations of hypothalamic nuclei in hyperinsulinemic offspring of rats with gestational diabetes. Dev Neurosci 21:58–67CrossRefPubMed
21.
go back to reference Singh BS, Westfall TC, Devaskar SU (1997) Maternal diabetes-induced hyperglycemia and acute intracerebral hyperinsulinism suppress fetal brain neuropeptide Y concentrations. Endocrinology 138:963–969PubMed Singh BS, Westfall TC, Devaskar SU (1997) Maternal diabetes-induced hyperglycemia and acute intracerebral hyperinsulinism suppress fetal brain neuropeptide Y concentrations. Endocrinology 138:963–969PubMed
22.
go back to reference Casas M, Chatzi L, Carsin AE et al (2013) Maternal pre-pregnancy overweight and obesity, and child neuropsychological development: two Southern European birth cohort studies. Int J Epidemiol 42:506–517CrossRefPubMed Casas M, Chatzi L, Carsin AE et al (2013) Maternal pre-pregnancy overweight and obesity, and child neuropsychological development: two Southern European birth cohort studies. Int J Epidemiol 42:506–517CrossRefPubMed
23.
go back to reference Basatemur E, Gardiner J, Williams C, Melhuish E, Barnes J, Sutcliffe A (2012) Maternal prepregnancy BMI and child cognition: a longitudinal cohort study. Pediatrics 131:56–63CrossRefPubMed Basatemur E, Gardiner J, Williams C, Melhuish E, Barnes J, Sutcliffe A (2012) Maternal prepregnancy BMI and child cognition: a longitudinal cohort study. Pediatrics 131:56–63CrossRefPubMed
24.
go back to reference Val-Laillet D, Layec S, Guérin S, Meurice P, Malbert CH (2011) Changes in brain activity after a diet-induced obesity. Obesity (Silver Spring) 19:749–756CrossRef Val-Laillet D, Layec S, Guérin S, Meurice P, Malbert CH (2011) Changes in brain activity after a diet-induced obesity. Obesity (Silver Spring) 19:749–756CrossRef
25.
go back to reference Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402PubMed Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402PubMed
26.
go back to reference Ishizu K, Nishizawa S, Yonekura Y et al (1994) Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 35:1104–1109PubMed Ishizu K, Nishizawa S, Yonekura Y et al (1994) Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 35:1104–1109PubMed
27.
go back to reference Thie JA (1995) Clarification of a fractional uptake concept. J Nucl Med 36:711–712PubMed Thie JA (1995) Clarification of a fractional uptake concept. J Nucl Med 36:711–712PubMed
29.
go back to reference Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMed Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMed
30.
go back to reference Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497CrossRefPubMed Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22:487–497CrossRefPubMed
31.
go back to reference Liistro T, Guiducci L, Burchielli S et al (2010) Brain glucose overexposure and lack of acute metabolic flexibility in obesity and type 2 diabetes: a PET-[18F]FDG study in Zucker and ZDF rats. J Cereb Blood Flow Metab 30:895–899CrossRefPubMedPubMedCentral Liistro T, Guiducci L, Burchielli S et al (2010) Brain glucose overexposure and lack of acute metabolic flexibility in obesity and type 2 diabetes: a PET-[18F]FDG study in Zucker and ZDF rats. J Cereb Blood Flow Metab 30:895–899CrossRefPubMedPubMedCentral
32.
go back to reference Li M, Sloboda DM, Vickers MH (2011) Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res 2011:592408CrossRefPubMedPubMedCentral Li M, Sloboda DM, Vickers MH (2011) Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res 2011:592408CrossRefPubMedPubMedCentral
33.
34.
go back to reference Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG (2014) Rat maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol 211(3):237PubMedPubMedCentral Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG (2014) Rat maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol 211(3):237PubMedPubMedCentral
35.
go back to reference Mingrone G, Manco M, Mora ME et al (2008) Influence of maternal obesity on insulin sensitivity and secretion in offspring. Diabetes Care 31:1872–1876CrossRefPubMedPubMedCentral Mingrone G, Manco M, Mora ME et al (2008) Influence of maternal obesity on insulin sensitivity and secretion in offspring. Diabetes Care 31:1872–1876CrossRefPubMedPubMedCentral
36.
go back to reference Chen H, Simar D, Morris MJ (2014) Maternal obesity impairs brain glucose metabolism and neural response to hyperglycemia in male rat offspring. J Neurochem 129:297–303CrossRefPubMed Chen H, Simar D, Morris MJ (2014) Maternal obesity impairs brain glucose metabolism and neural response to hyperglycemia in male rat offspring. J Neurochem 129:297–303CrossRefPubMed
37.
go back to reference Kaiser N, Leibowitz G, Nesher R (2003) Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab 16:5–22CrossRefPubMed Kaiser N, Leibowitz G, Nesher R (2003) Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab 16:5–22CrossRefPubMed
38.
go back to reference Rossetti L (2004) Glucose toxicity: effect of chronic hyperglycemia on insulin action. In: LeRoith D, Taylor SI, Olefsky JM (eds), Diabetes mellitus: a fundamental and clinical text, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 939–951 Rossetti L (2004) Glucose toxicity: effect of chronic hyperglycemia on insulin action. In: LeRoith D, Taylor SI, Olefsky JM (eds), Diabetes mellitus: a fundamental and clinical text, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 939–951
39.
go back to reference Reaven GM, Thompson LW, Nahum D, Haskins E (1990) Relationship between hyperglycemia and cognitive function in older NIDDM patients. Diabetes Care 13:16–21CrossRefPubMed Reaven GM, Thompson LW, Nahum D, Haskins E (1990) Relationship between hyperglycemia and cognitive function in older NIDDM patients. Diabetes Care 13:16–21CrossRefPubMed
40.
42.
go back to reference de Leon MJ, Convit A, Wolf OT et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 98:10966–10971CrossRefPubMedPubMedCentral de Leon MJ, Convit A, Wolf OT et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 98:10966–10971CrossRefPubMedPubMedCentral
43.
44.
go back to reference Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738CrossRefPubMed Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738CrossRefPubMed
45.
46.
go back to reference Gómez O, Ballester-Lurbe B, Poch E, Mesonero JE, Terrado J (2010) Developmental regulation of glucose transporters GLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex. J Anat 217:616–623CrossRefPubMedPubMedCentral Gómez O, Ballester-Lurbe B, Poch E, Mesonero JE, Terrado J (2010) Developmental regulation of glucose transporters GLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex. J Anat 217:616–623CrossRefPubMedPubMedCentral
47.
go back to reference Sankar R, Thamotharan S, Shin D, Moley KH, Devaskar SU (2002) Insulin-responsive glucose transporters – GLUT8 and GLUT4 are expressed in the developing mammalian brain. Brain Res Mol Brain Res 107:157–165CrossRefPubMed Sankar R, Thamotharan S, Shin D, Moley KH, Devaskar SU (2002) Insulin-responsive glucose transporters – GLUT8 and GLUT4 are expressed in the developing mammalian brain. Brain Res Mol Brain Res 107:157–165CrossRefPubMed
48.
Metadata
Title
Maternal high-fat feeding leads to alterations of brain glucose metabolism in the offspring: positron emission tomography study in a porcine model
Authors
Elena Sanguinetti
Tiziana Liistro
Marco Mainardi
Silvia Pardini
Piero A. Salvadori
Alessandro Vannucci
Silvia Burchielli
Patricia Iozzo
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 4/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3848-5

Other articles of this Issue 4/2016

Diabetologia 4/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine