Skip to main content
Top
Published in: Diabetologia 4/2016

01-04-2016 | Commentary

Islet inflammation in type 2 diabetes

Author: Piero Marchetti

Published in: Diabetologia | Issue 4/2016

Login to get access

Excerpt

The term inflammation originates from the Latin, inflammatio, meaning ‘setting on fire’, and in medicine it indicates the reaction of tissues to injuries induced by different causes. Classically, inflammation is a protective response, which involves many complex signals and aims to repair tissue and restore homeostasis [1]. However, dysregulated or prolonged inflammation states have been associated with many diseases, including type 2 diabetes [1]. Early connections between inflammation, obesity and type 2 diabetes were made in the 1990s, in both rodent models and humans [2, 3], and later substantiated by a large body of evidence (see [47] for recent reviews). Then, it was observed that pancreatic islet cells may also show signs of inflammation, including immune cell infiltration [810] and increased expression of cytokines and chemokines [1113]. It has been shown that a proinflammatory milieu can lead to reduced beta cell function and survival [1416]. Given the key role of beta cell impairment in the onset and progression of diabetes [17, 18], it is of utmost importance to shed light on the several features linking inflammation and islet cell dysfunction. This commentary on the ‘Islet inflammation in type 2 diabetes’ symposium at the EASD 2015 meeting focuses on a few general issues regarding the association between inflammation and the pancreatic islets in human type 2 diabetes. It is accompanied by articles that specifically address the mechanistic implications [19, 20] and therapeutic perspectives [21]. …
Literature
2.
go back to reference Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefPubMed Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefPubMed
3.
go back to reference Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41:1241–1248CrossRefPubMed Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41:1241–1248CrossRefPubMed
4.
go back to reference Lackey DE, Olefsky JM (2016) Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 12:15–28CrossRefPubMed Lackey DE, Olefsky JM (2016) Regulation of metabolism by the innate immune system. Nat Rev Endocrinol 12:15–28CrossRefPubMed
5.
go back to reference Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA (2015) Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes 6:598–612PubMedPubMedCentral Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA (2015) Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J Diabetes 6:598–612PubMedPubMedCentral
6.
go back to reference Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150CrossRefPubMed Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150CrossRefPubMed
7.
go back to reference Morris DL (2015) Minireview: emerging concepts in islet macrophage biology in type 2 diabetes. Mol Endocrinol 29:946–962CrossRefPubMed Morris DL (2015) Minireview: emerging concepts in islet macrophage biology in type 2 diabetes. Mol Endocrinol 29:946–962CrossRefPubMed
8.
go back to reference Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370CrossRefPubMed Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370CrossRefPubMed
9.
go back to reference Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688CrossRefPubMed Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) Islet-associated macrophages in type 2 diabetes. Diabetologia 52:1686–1688CrossRefPubMed
10.
go back to reference Martino L, Masini M, Bugliani M et al (2015) Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia 58:2554–2562CrossRefPubMed Martino L, Masini M, Bugliani M et al (2015) Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia 58:2554–2562CrossRefPubMed
11.
go back to reference Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21:261–267CrossRefPubMed Donath MY, Böni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21:261–267CrossRefPubMed
12.
go back to reference Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405CrossRefPubMed Igoillo-Esteve M, Marselli L, Cunha DA et al (2010) Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 53:1395–1405CrossRefPubMed
13.
go back to reference Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860CrossRefPubMedPubMedCentral Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860CrossRefPubMedPubMedCentral
14.
go back to reference Donath MY, Størling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 81:455–470CrossRef Donath MY, Størling J, Maedler K, Mandrup-Poulsen T (2003) Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med (Berl) 81:455–470CrossRef
15.
go back to reference Cnop M, Abdulkarim B, Bottu G et al (2014) RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63:1978–1993CrossRefPubMed Cnop M, Abdulkarim B, Bottu G et al (2014) RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63:1978–1993CrossRefPubMed
16.
go back to reference Eizirik DL, Miani M, Cardozo AK (2013) Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 56:234–241CrossRefPubMed Eizirik DL, Miani M, Cardozo AK (2013) Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 56:234–241CrossRefPubMed
17.
go back to reference Halban PA, Polonsky KS, Bowden DW et al (2014) β-Cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab 99:1983–1992CrossRefPubMed Halban PA, Polonsky KS, Bowden DW et al (2014) β-Cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab 99:1983–1992CrossRefPubMed
18.
go back to reference Marchetti P, Lupi R, del Guerra S et al (2009) Goals of treatment for type 2 diabetes: beta-cell preservation for glycemic control. Diabetes Care 32(Suppl 2):S178–S183CrossRefPubMedPubMedCentral Marchetti P, Lupi R, del Guerra S et al (2009) Goals of treatment for type 2 diabetes: beta-cell preservation for glycemic control. Diabetes Care 32(Suppl 2):S178–S183CrossRefPubMedPubMedCentral
19.
20.
22.
go back to reference Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 167:228–256CrossRefPubMed Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 167:228–256CrossRefPubMed
23.
go back to reference Eguchi K, Manabe I (2013) Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15(Suppl 3):152–158CrossRefPubMed Eguchi K, Manabe I (2013) Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15(Suppl 3):152–158CrossRefPubMed
24.
go back to reference Kamata K, Mizukami H, Inaba W et al (2014) Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid 21:191–201CrossRefPubMedPubMedCentral Kamata K, Mizukami H, Inaba W et al (2014) Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid 21:191–201CrossRefPubMedPubMedCentral
25.
go back to reference Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG (2014) Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes 63:3880–3890CrossRefPubMedPubMedCentral Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG (2014) Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes 63:3880–3890CrossRefPubMedPubMedCentral
26.
go back to reference Butcher MJ, Hallinger D, Garcia E et al (2014) Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 57:491–501CrossRefPubMedPubMedCentral Butcher MJ, Hallinger D, Garcia E et al (2014) Association of proinflammatory cytokines and islet resident leucocytes with islet dysfunction in type 2 diabetes. Diabetologia 57:491–501CrossRefPubMedPubMedCentral
27.
go back to reference Campbell-Thompson ML, Atkinson MA, Butler AE et al (2013) The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56:2541–2543CrossRefPubMed Campbell-Thompson ML, Atkinson MA, Butler AE et al (2013) The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56:2541–2543CrossRefPubMed
28.
go back to reference Banaei-Bouchareb L, Peuchmaur M, Czernichow P, Polak M (2006) A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. J Endocrinol 188:467–480CrossRefPubMed Banaei-Bouchareb L, Peuchmaur M, Czernichow P, Polak M (2006) A transient microenvironment loaded mainly with macrophages in the early developing human pancreas. J Endocrinol 188:467–480CrossRefPubMed
29.
go back to reference Gunton JE, Kulkarni RN, Yim S et al (2005) Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349CrossRefPubMed Gunton JE, Kulkarni RN, Yim S et al (2005) Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell 122:337–349CrossRefPubMed
30.
go back to reference Bugliani M, Liechti R, Cheon H et al (2013) Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin proteasome system in pancreatic β cell dysfunction. Mol Cell Endocrinol 367:1–10CrossRefPubMed Bugliani M, Liechti R, Cheon H et al (2013) Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin proteasome system in pancreatic β cell dysfunction. Mol Cell Endocrinol 367:1–10CrossRefPubMed
31.
go back to reference Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134CrossRefPubMed Taneera J, Lang S, Sharma A et al (2012) A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab 16:122–134CrossRefPubMed
32.
go back to reference Mahdi T, Hanzelmann S, Salehi A et al (2012) Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16:625–633CrossRefPubMed Mahdi T, Hanzelmann S, Salehi A et al (2012) Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab 16:625–633CrossRefPubMed
33.
go back to reference Welsh N, Cnop M, Kharroubi I et al (2005) Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 54:3238–3244CrossRefPubMed Welsh N, Cnop M, Kharroubi I et al (2005) Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 54:3238–3244CrossRefPubMed
34.
go back to reference Johansson U, Olsson A, Gabrielsson S, Nilsson B, Korsgren O (2003) Inflammatory mediators expressed in human islets of Langerhans: implications for islet transplantation. Biochem Biophys Res Commun 308:474–479CrossRefPubMed Johansson U, Olsson A, Gabrielsson S, Nilsson B, Korsgren O (2003) Inflammatory mediators expressed in human islets of Langerhans: implications for islet transplantation. Biochem Biophys Res Commun 308:474–479CrossRefPubMed
35.
go back to reference Negi S, Jetha A, Aikin R et al (2012) Analysis of β-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 7, e30415CrossRefPubMedPubMedCentral Negi S, Jetha A, Aikin R et al (2012) Analysis of β-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 7, e30415CrossRefPubMedPubMedCentral
36.
37.
go back to reference Marselli L, Sgroi DC, Bonner-Weir S, Weir GC (2009) Laser capture microdissection of human pancreatic β-cells and RNA preparation for gene expression profiling. Methods Mol Biol 560:87–98CrossRefPubMed Marselli L, Sgroi DC, Bonner-Weir S, Weir GC (2009) Laser capture microdissection of human pancreatic β-cells and RNA preparation for gene expression profiling. Methods Mol Biol 560:87–98CrossRefPubMed
38.
go back to reference Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of β-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5, e11499CrossRefPubMedPubMedCentral Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of β-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5, e11499CrossRefPubMedPubMedCentral
39.
go back to reference Boni-Schnetzler M, Thorne J, Parnaud G et al (2008) Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074CrossRefPubMedPubMedCentral Boni-Schnetzler M, Thorne J, Parnaud G et al (2008) Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074CrossRefPubMedPubMedCentral
40.
go back to reference Nackiewicz D, Dan M, He W et al (2014) TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 57:1645–1654CrossRefPubMed Nackiewicz D, Dan M, He W et al (2014) TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 57:1645–1654CrossRefPubMed
41.
go back to reference Maedler K, Schumann DM, Sauter N et al (2006) Low concentration of interleukin-1β induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. Diabetes 55:2713–2722CrossRefPubMed Maedler K, Schumann DM, Sauter N et al (2006) Low concentration of interleukin-1β induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. Diabetes 55:2713–2722CrossRefPubMed
42.
go back to reference Arous C, Ferreira PG, Dermitzakis ET, Halban PA (2015) Short term exposure of beta cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem 290:6653–6669CrossRefPubMed Arous C, Ferreira PG, Dermitzakis ET, Halban PA (2015) Short term exposure of beta cells to low concentrations of interleukin-1β improves insulin secretion through focal adhesion and actin remodeling and regulation of gene expression. J Biol Chem 290:6653–6669CrossRefPubMed
43.
go back to reference Hostens K, Pavlovic D, Zambre Y et al (1999) Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Invest 104:67–72CrossRefPubMedPubMedCentral Hostens K, Pavlovic D, Zambre Y et al (1999) Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J Clin Invest 104:67–72CrossRefPubMedPubMedCentral
Metadata
Title
Islet inflammation in type 2 diabetes
Author
Piero Marchetti
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 4/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3875-x

Other articles of this Issue 4/2016

Diabetologia 4/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine