Skip to main content
Top
Published in: Journal of Ovarian Research 1/2018

Open Access 01-12-2018 | Review

Mass spectrometry-based proteomics techniques and their application in ovarian cancer research

Authors: Agata Swiatly, Szymon Plewa, Jan Matysiak, Zenon J. Kokot

Published in: Journal of Ovarian Research | Issue 1/2018

Login to get access

Abstract

Ovarian cancer has emerged as one of the leading cause of gynecological malignancies. So far, the measurement of CA125 and HE4 concentrations in blood and transvaginal ultrasound examination are essential ovarian cancer diagnostic methods. However, their sensitivity and specificity are still not sufficient to detect disease at the early stage. Moreover, applied treatment may appear to be ineffective due to drug-resistance. Because of a high mortality rate of ovarian cancer, there is a pressing need to develop innovative strategies leading to a full understanding of complicated molecular pathways related to cancerogenesis. Recent studies have shown the great potential of clinical proteomics in the characterization of many diseases, including ovarian cancer. Therefore, in this review, we summarized achievements of proteomics in ovarian cancer management. Since the development of mass spectrometry has caused a breakthrough in systems biology, we decided to focus on studies based on this technique. According to PubMed engine, in the years 2008–2010 the number of studies concerning OC proteomics was increasing, and since 2010 it has reached a plateau. Proteomics as a rapidly evolving branch of science may be essential in novel biomarkers discovery, therapy decisions, progression predication, monitoring of drug response or resistance. Despite the fact that proteomics has many to offer, we also discussed some limitations occur in ovarian cancer studies. Main difficulties concern both complexity and heterogeneity of ovarian cancer and drawbacks of the mass spectrometry strategies. This review summarizes challenges, capabilities, and promises of the mass spectrometry-based proteomics techniques in ovarian cancer management.
Literature
1.
go back to reference Zhang B, Barekati Z, Kohler C, Radpour R, Asadollahi R, Holzgreve W, et al. Proteomics and biomarkers for ovarian cancer diagnosis. Ann Clin Lab Sci. 2010;40:218–25.PubMed Zhang B, Barekati Z, Kohler C, Radpour R, Asadollahi R, Holzgreve W, et al. Proteomics and biomarkers for ovarian cancer diagnosis. Ann Clin Lab Sci. 2010;40:218–25.PubMed
2.
go back to reference Poersch A, Grassi ML, Carvalho VP, Lanfredi GP, Palma Cde S, Greene LJ, et al. A proteomic signature of ovarian cancer tumor fluid identified by highthroughput and verified by targeted proteomics. J Proteomics. 2016;145:226–36.CrossRef Poersch A, Grassi ML, Carvalho VP, Lanfredi GP, Palma Cde S, Greene LJ, et al. A proteomic signature of ovarian cancer tumor fluid identified by highthroughput and verified by targeted proteomics. J Proteomics. 2016;145:226–36.CrossRef
3.
go back to reference Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation.
4.
go back to reference Longuespée R, Boyon C, Desmons A, Vinatier D, Leblanc E, Farré I, et al. Ovarian cancer molecular pathology. Cancer Metastasis Rev. 2012;31:713–32.CrossRef Longuespée R, Boyon C, Desmons A, Vinatier D, Leblanc E, Farré I, et al. Ovarian cancer molecular pathology. Cancer Metastasis Rev. 2012;31:713–32.CrossRef
5.
go back to reference Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14:9–32.CrossRef Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14:9–32.CrossRef
6.
go back to reference Elzek MA, Rodland KD. Proteomics of ovarian cancer: functional insights and clinical applications. Cancer Metastasis Rev. 2015;34:83–96.CrossRef Elzek MA, Rodland KD. Proteomics of ovarian cancer: functional insights and clinical applications. Cancer Metastasis Rev. 2015;34:83–96.CrossRef
7.
go back to reference Vaughan S, Coward JI, Bast RC, Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11:719–25.CrossRef Vaughan S, Coward JI, Bast RC, Berchuck A, Berek JS, Brenton JD, et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 2011;11:719–25.CrossRef
8.
go back to reference Hays JL, Kim G, Giuroiu I, Kohn EC. Proteomics and ovarian cancer: integrating proteomics information into clinical care. J Proteome. 2010;73:1864–72.CrossRef Hays JL, Kim G, Giuroiu I, Kohn EC. Proteomics and ovarian cancer: integrating proteomics information into clinical care. J Proteome. 2010;73:1864–72.CrossRef
9.
go back to reference Parker CE, Borchers CH. Mass spectrometry based biomarker discovery, verification, and validation – quality assurance and control of protein biomarker assays. Mol Oncol. 2014;8:840–58.CrossRef Parker CE, Borchers CH. Mass spectrometry based biomarker discovery, verification, and validation – quality assurance and control of protein biomarker assays. Mol Oncol. 2014;8:840–58.CrossRef
10.
go back to reference Matthews H, Hanison J, Nirmalan N. “Omics”-informed drug and biomarker discovery: opportunities. Challenges and Future Perspectives Proteomes. 2016;4:28. Matthews H, Hanison J, Nirmalan N. “Omics”-informed drug and biomarker discovery: opportunities. Challenges and Future Perspectives Proteomes. 2016;4:28.
11.
go back to reference Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1:26–41.CrossRef Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1:26–41.CrossRef
12.
go back to reference Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–61.CrossRef Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–61.CrossRef
13.
go back to reference Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res. 2018;11:50.CrossRef Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res. 2018;11:50.CrossRef
14.
go back to reference Ardekani AM, Liotta LA, Petricoin EF. Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev Mol Diagn. 2002;2:312–20.CrossRef Ardekani AM, Liotta LA, Petricoin EF. Clinical potential of proteomics in the diagnosis of ovarian cancer. Expert Rev Mol Diagn. 2002;2:312–20.CrossRef
15.
go back to reference Sajic T, Liu Y, Aebersold R. Using data-independent, high resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl. 2014. Sajic T, Liu Y, Aebersold R. Using data-independent, high resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl. 2014.
16.
go back to reference Hajduk J, Matysiak J, Kokot ZJ. Challenges in biomarker discovery with MALDI-TOF MS. Clin Chim Acta. 2016. Hajduk J, Matysiak J, Kokot ZJ. Challenges in biomarker discovery with MALDI-TOF MS. Clin Chim Acta. 2016.
17.
go back to reference Meehan KL, Rainczuk A, Salamonsen LA, Stephens AN. Proteomics and the search for biomarkers of female reproductive diseases. Reproduction. 2010;140:505–19.CrossRef Meehan KL, Rainczuk A, Salamonsen LA, Stephens AN. Proteomics and the search for biomarkers of female reproductive diseases. Reproduction. 2010;140:505–19.CrossRef
18.
go back to reference Romagnolo C, Leon AE, Fabricio ASC, Taborelli M, Polesel J, Del Pup L, et al. HE4, CA125 and risk of ovarian malignancy algorithm (ROMA) as diagnostic tools for ovarian cancer in patients with a pelvic mass: an Italian multicenter study. Gynecol Oncol. 2016;141:303–11.CrossRef Romagnolo C, Leon AE, Fabricio ASC, Taborelli M, Polesel J, Del Pup L, et al. HE4, CA125 and risk of ovarian malignancy algorithm (ROMA) as diagnostic tools for ovarian cancer in patients with a pelvic mass: an Italian multicenter study. Gynecol Oncol. 2016;141:303–11.CrossRef
19.
go back to reference Swiatly A, Horala A, Hajduk J, Matysiak J, Nowak-Markwitz E, Kokot ZJ. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer. 2017;17. Swiatly A, Horala A, Hajduk J, Matysiak J, Nowak-Markwitz E, Kokot ZJ. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer. 2017;17.
20.
go back to reference Imperlini E, Santorelli L, Orrù S, Scolamiero E, Ruoppolo M, Caterino M. Mass spectrometry-based Metabolomic and proteomic strategies in organic Acidemias. Biomed Res Int. 2016;2016:9210408.CrossRef Imperlini E, Santorelli L, Orrù S, Scolamiero E, Ruoppolo M, Caterino M. Mass spectrometry-based Metabolomic and proteomic strategies in organic Acidemias. Biomed Res Int. 2016;2016:9210408.CrossRef
21.
go back to reference Merlos Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–55.CrossRef Merlos Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245–55.CrossRef
22.
go back to reference Tabb DL. Quality assessment for clinical proteomics. Clin Biochem. 2013;46:411–20.CrossRef Tabb DL. Quality assessment for clinical proteomics. Clin Biochem. 2013;46:411–20.CrossRef
23.
go back to reference Albalat A, Husi H, Stalmach A, Schanstra JP, Mischak H. Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis. 2014;6:247–66.CrossRef Albalat A, Husi H, Stalmach A, Schanstra JP, Mischak H. Classical MALDI-MS versus CE-based ESI-MS proteomic profiling in urine for clinical applications. Bioanalysis. 2014;6:247–66.CrossRef
24.
go back to reference Sandin M, Chawade A, Levander F. Is label-free LC-MS/MS ready for biomarker discovery? PROTEOMICS - Clin Appl. 2015;9:289–94.CrossRef Sandin M, Chawade A, Levander F. Is label-free LC-MS/MS ready for biomarker discovery? PROTEOMICS - Clin Appl. 2015;9:289–94.CrossRef
25.
go back to reference Collins MA, An J, Hood BL, Conrads TP, Bowser RP. Label-free LC–MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res. 2015;14:4486–501.CrossRef Collins MA, An J, Hood BL, Conrads TP, Bowser RP. Label-free LC–MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res. 2015;14:4486–501.CrossRef
26.
go back to reference Tsai T-H, Song E, Zhu R, Di Poto C, Wang M, Luo Y, et al. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. Proteomics. 2015;15:2369–81.CrossRef Tsai T-H, Song E, Zhu R, Di Poto C, Wang M, Luo Y, et al. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. Proteomics. 2015;15:2369–81.CrossRef
27.
go back to reference Stalmach A, Husi H, Mosbahi K, Albalat A, Mullen W, Mischak H. Methods in Capillary Electrophoresis Coupled to Mass Spectrometry for the Identification of Clinical Proteomic/Peptidomic Biomarkers in Biofluids. 2015. p. 187–205. Stalmach A, Husi H, Mosbahi K, Albalat A, Mullen W, Mischak H. Methods in Capillary Electrophoresis Coupled to Mass Spectrometry for the Identification of Clinical Proteomic/Peptidomic Biomarkers in Biofluids. 2015. p. 187–205.
28.
go back to reference Dittrich J, Becker S, Hecht M, Ceglarek U. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. PROTEOMICS - Clin Appl. 2015;9:5–16.CrossRef Dittrich J, Becker S, Hecht M, Ceglarek U. Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. PROTEOMICS - Clin Appl. 2015;9:5–16.CrossRef
29.
go back to reference Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359:572–7.CrossRef Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359:572–7.CrossRef
30.
go back to reference Lopez MF, Mikulskis A, Kuzdzal S, Golenko E, Petricoin EF, Liotta LA, et al. A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clin Chem. 2007;53:1067–74.CrossRef Lopez MF, Mikulskis A, Kuzdzal S, Golenko E, Petricoin EF, Liotta LA, et al. A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clin Chem. 2007;53:1067–74.CrossRef
31.
go back to reference Ye H, Sun L, Huang X, Zhang P, Zhao X. A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol Cell Biochem. 2010;343:91–9.CrossRef Ye H, Sun L, Huang X, Zhang P, Zhao X. A proteomic approach for plasma biomarker discovery with 8-plex iTRAQ labeling and SCX-LC-MS/MS. Mol Cell Biochem. 2010;343:91–9.CrossRef
32.
go back to reference Aresta A, Calvano CD, Palmisano F, Zambonin CG, Monaco A, Tommasi S, et al. Impact of sample preparation in peptide/protein profiling in human serum by MALDI-TOF mass spectrometry. J Pharm Biomed Anal. 2008;46:157–64.CrossRef Aresta A, Calvano CD, Palmisano F, Zambonin CG, Monaco A, Tommasi S, et al. Impact of sample preparation in peptide/protein profiling in human serum by MALDI-TOF mass spectrometry. J Pharm Biomed Anal. 2008;46:157–64.CrossRef
33.
go back to reference Ye B, Cramer DW, Skates SJ, Gygi SP, Pratomo V, Fu L, et al. Haptoglobin-α subunit as potential serum biomarker in ovarian Cancer. Clin Cancer Res. 2003:9. Ye B, Cramer DW, Skates SJ, Gygi SP, Pratomo V, Fu L, et al. Haptoglobin-α subunit as potential serum biomarker in ovarian Cancer. Clin Cancer Res. 2003:9.
34.
go back to reference Periyasamy A, Gopisetty G, Veluswami S, Joyimallaya Subramanium M, Thangarajan R. Identification of candidate biomarker mass (m/z) ranges in serous ovarian adenocarcinoma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. Biomarkers. 2015;20:292–8.CrossRef Periyasamy A, Gopisetty G, Veluswami S, Joyimallaya Subramanium M, Thangarajan R. Identification of candidate biomarker mass (m/z) ranges in serous ovarian adenocarcinoma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling. Biomarkers. 2015;20:292–8.CrossRef
35.
go back to reference Wu S, Xu K, Chen G, Zhang J, Liu Z, Xie X. Identification of serum biomarkers for ovarian cancer using MALDI–TOF-MS combined with magnetic beads. Int J Clin Oncol. 2012;17:89–95.CrossRef Wu S, Xu K, Chen G, Zhang J, Liu Z, Xie X. Identification of serum biomarkers for ovarian cancer using MALDI–TOF-MS combined with magnetic beads. Int J Clin Oncol. 2012;17:89–95.CrossRef
36.
go back to reference Zhang Z, Bast RC, Yu Y, Li J, Sokoll LJ, Rai AJ, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 2004;64:5882–90.CrossRef Zhang Z, Bast RC, Yu Y, Li J, Sokoll LJ, Rai AJ, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 2004;64:5882–90.CrossRef
37.
go back to reference Li C, Li H, Zhang T, Li J, Liu L, Chang J. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis. Biochem Biophys Res Commun. 2014;446:1047–52.CrossRef Li C, Li H, Zhang T, Li J, Liu L, Chang J. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis. Biochem Biophys Res Commun. 2014;446:1047–52.CrossRef
38.
go back to reference Kawahara R, Bollinger JG, Rivera C, Ribeiro ACP, Brandão TB, Leme AFP, et al. A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics. 2016;16:159–73.CrossRef Kawahara R, Bollinger JG, Rivera C, Ribeiro ACP, Brandão TB, Leme AFP, et al. A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics. 2016;16:159–73.CrossRef
39.
go back to reference Grenache DG, Heichman KA, Werner TL, Vucetic Z. Clinical performance of two multi-marker blood tests for predicting malignancy in women with an adnexal mass. Clin Chim Acta. 2015;438:358–63.CrossRef Grenache DG, Heichman KA, Werner TL, Vucetic Z. Clinical performance of two multi-marker blood tests for predicting malignancy in women with an adnexal mass. Clin Chim Acta. 2015;438:358–63.CrossRef
40.
go back to reference Bland AM, D’Eugenio LR, Dugan MA, Janech MG, Almeida JS, Zile MR, et al. Comparison of variability associated with sample preparation in two-dimensional gel electrophoresis of cardiac tissue. J Biomol Tech. 2006;17:195–9.PubMedPubMedCentral Bland AM, D’Eugenio LR, Dugan MA, Janech MG, Almeida JS, Zile MR, et al. Comparison of variability associated with sample preparation in two-dimensional gel electrophoresis of cardiac tissue. J Biomol Tech. 2006;17:195–9.PubMedPubMedCentral
41.
go back to reference Lindemann C, Thomanek N, Hundt F, Lerari T, Meyer HE, Wolters D, et al. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol Chem. 2017;398:687–99.CrossRef Lindemann C, Thomanek N, Hundt F, Lerari T, Meyer HE, Wolters D, et al. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol Chem. 2017;398:687–99.CrossRef
42.
go back to reference Schubert OT, Röst HL, Collins BC, Rosenberger G, Aebersold R. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc. 2017;12:1289–94.CrossRef Schubert OT, Röst HL, Collins BC, Rosenberger G, Aebersold R. Quantitative proteomics: challenges and opportunities in basic and applied research. Nat Protoc. 2017;12:1289–94.CrossRef
43.
go back to reference Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 2017;8:291.CrossRef Collins BC, Hunter CL, Liu Y, Schilling B, Rosenberger G, Bader SL, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun. 2017;8:291.CrossRef
44.
go back to reference Uitto PM, Lance BK, Wood GR, Sherman J, Baker MS, Molloy MP. Comparing SILAC and two-dimensional gel electrophoresis image analysis for profiling Urokinase plasminogen activator signaling in ovarian Cancer cells. J Proteome Res. 2007;6:2105–12.CrossRef Uitto PM, Lance BK, Wood GR, Sherman J, Baker MS, Molloy MP. Comparing SILAC and two-dimensional gel electrophoresis image analysis for profiling Urokinase plasminogen activator signaling in ovarian Cancer cells. J Proteome Res. 2007;6:2105–12.CrossRef
45.
go back to reference Musrap N, Tuccitto A, Karagiannis GS, Saraon P, Batruch I, Diamandis EP. Comparative proteomics of ovarian Cancer aggregate formation reveals an increased expression of calcium-activated Chloride Channel regulator 1 (CLCA1). J Biol Chem. 2015;290:17218–27.CrossRef Musrap N, Tuccitto A, Karagiannis GS, Saraon P, Batruch I, Diamandis EP. Comparative proteomics of ovarian Cancer aggregate formation reveals an increased expression of calcium-activated Chloride Channel regulator 1 (CLCA1). J Biol Chem. 2015;290:17218–27.CrossRef
46.
go back to reference Qi D, Wang Q, Li H, Zhang T, Lan R, Kwong DWJ, et al. SILAC-based quantitative proteomics identified lysosome as a fast response target to PDT agent Gd-N induced oxidative stress in human ovarian cancer IGROV1 cells. Mol BioSyst. 2015;11:3059–67.CrossRef Qi D, Wang Q, Li H, Zhang T, Lan R, Kwong DWJ, et al. SILAC-based quantitative proteomics identified lysosome as a fast response target to PDT agent Gd-N induced oxidative stress in human ovarian cancer IGROV1 cells. Mol BioSyst. 2015;11:3059–67.CrossRef
47.
go back to reference Grassi ML, Palma C de S, Thomé CH, Lanfredi GP, Poersch A, Faça VM. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteome. 2017;151:2–11.CrossRef Grassi ML, Palma C de S, Thomé CH, Lanfredi GP, Poersch A, Faça VM. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteome. 2017;151:2–11.CrossRef
48.
go back to reference Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA. Quantitation with chemical tagging reagents in biomarker studies. PROTEOMICS - Clin Appl. 2015;9:295–300.CrossRef Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA. Quantitation with chemical tagging reagents in biomarker studies. PROTEOMICS - Clin Appl. 2015;9:295–300.CrossRef
49.
go back to reference Kristjansdottir B, Levan K, Partheen K, Carlsohn E, Sundfeldt K. Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ. Clin Proteomics. 2013;10:4.CrossRef Kristjansdottir B, Levan K, Partheen K, Carlsohn E, Sundfeldt K. Potential tumor biomarkers identified in ovarian cyst fluid by quantitative proteomic analysis, iTRAQ. Clin Proteomics. 2013;10:4.CrossRef
50.
go back to reference Wang L-N, Tong S-W, Hu H-D, Ye F, Li S-L, Ren H, et al. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem. 2012;113:3762–72.CrossRef Wang L-N, Tong S-W, Hu H-D, Ye F, Li S-L, Ren H, et al. Quantitative proteome analysis of ovarian cancer tissues using a iTRAQ approach. J Cell Biochem. 2012;113:3762–72.CrossRef
51.
go back to reference Wang L, Chen S, Zhang M, Li N, Chen Y, Su W, et al. Legumain: a biomarker for diagnosis and prognosis of human ovarian cancer. J Cell Biochem. 2012;113:2679–86.CrossRef Wang L, Chen S, Zhang M, Li N, Chen Y, Su W, et al. Legumain: a biomarker for diagnosis and prognosis of human ovarian cancer. J Cell Biochem. 2012;113:2679–86.CrossRef
52.
go back to reference Russell MR, Walker MJ, Williamson AJK, Gentry-Maharaj A, Ryan A, Kalsi J, et al. Protein Z: a putative novel biomarker for early detection of ovarian cancer. Int J Cancer. 2016;138:2984–92.CrossRef Russell MR, Walker MJ, Williamson AJK, Gentry-Maharaj A, Ryan A, Kalsi J, et al. Protein Z: a putative novel biomarker for early detection of ovarian cancer. Int J Cancer. 2016;138:2984–92.CrossRef
53.
go back to reference Waldemarson S, Krogh M, Alaiya A, Kirik U, Schedvins K, Auer G, et al. Protein expression changes in ovarian Cancer during the transition from benign to malignant. J Proteome Res. 2012;11:2876–89.CrossRef Waldemarson S, Krogh M, Alaiya A, Kirik U, Schedvins K, Auer G, et al. Protein expression changes in ovarian Cancer during the transition from benign to malignant. J Proteome Res. 2012;11:2876–89.CrossRef
54.
go back to reference Hiramatsu K, Yoshino K, Serada S, Yoshihara K, Hori Y, Fujimoto M, et al. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas. Br J Cancer. 2016;114:554–61.CrossRef Hiramatsu K, Yoshino K, Serada S, Yoshihara K, Hori Y, Fujimoto M, et al. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas. Br J Cancer. 2016;114:554–61.CrossRef
55.
go back to reference Sinclair J, Metodieva G, Dafou D, Gayther SA, Timms JF. Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-LC-MS/MS with tandem mass tagging. J Proteome. 2011;74:451–65.CrossRef Sinclair J, Metodieva G, Dafou D, Gayther SA, Timms JF. Profiling signatures of ovarian cancer tumour suppression using 2D-DIGE and 2D-LC-MS/MS with tandem mass tagging. J Proteome. 2011;74:451–65.CrossRef
56.
go back to reference Nepomuceno AI, Shao H, Jing K, Ma Y, Petitte JN, Idowu MO, et al. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal Bioanal Chem. 2015;407:6851–63.CrossRef Nepomuceno AI, Shao H, Jing K, Ma Y, Petitte JN, Idowu MO, et al. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal Bioanal Chem. 2015;407:6851–63.CrossRef
57.
go back to reference Wegdam W, Argmann CA, Kramer G, Vissers JP, Buist MR, Kenter GG, et al. Label-free LC-MSe in tissue and serum reveals protein networks underlying differences between benign and malignant serous ovarian tumors. Rota R, editor. PLoS One. 2014;e108046:9. Wegdam W, Argmann CA, Kramer G, Vissers JP, Buist MR, Kenter GG, et al. Label-free LC-MSe in tissue and serum reveals protein networks underlying differences between benign and malignant serous ovarian tumors. Rota R, editor. PLoS One. 2014;e108046:9.
58.
go back to reference Langley SR, Mayr M. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J Proteome. 2015;129:83–92.CrossRef Langley SR, Mayr M. Comparative analysis of statistical methods used for detecting differential expression in label-free mass spectrometry proteomics. J Proteome. 2015;129:83–92.CrossRef
59.
go back to reference Banazadeh A, Veillon L, Wooding KM, Zabet-moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 2017;38:162–89.CrossRef Banazadeh A, Veillon L, Wooding KM, Zabet-moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 2017;38:162–89.CrossRef
60.
go back to reference Mechref Y, Hu Y, Garcia A, Zhou S, Desantos-Garcia JL, Hussein A. Defining putative glycan cancer biomarkers by MS. Bioanalysis. 2012;4:2457–69.CrossRef Mechref Y, Hu Y, Garcia A, Zhou S, Desantos-Garcia JL, Hussein A. Defining putative glycan cancer biomarkers by MS. Bioanalysis. 2012;4:2457–69.CrossRef
61.
go back to reference Tousi F, Hancock WS, Hincapie M. Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Anal Methods. 2011;3:20–32.CrossRef Tousi F, Hancock WS, Hincapie M. Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Anal Methods. 2011;3:20–32.CrossRef
62.
go back to reference Kim K, Ruhaak LR, Nguyen UT, Taylor SL, Dimapasoc L, Williams C, et al. Evaluation of glycomic profiling as a diagnostic biomarker for epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 2014;23:611–21.CrossRef Kim K, Ruhaak LR, Nguyen UT, Taylor SL, Dimapasoc L, Williams C, et al. Evaluation of glycomic profiling as a diagnostic biomarker for epithelial ovarian cancer. Cancer Epidemiol Biomark Prev. 2014;23:611–21.CrossRef
63.
go back to reference Abbott KL, Lim J-M, Wells L, Benigno BB, McDonald JF, Pierce M. Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics. 2010;10:470–81.CrossRef Abbott KL, Lim J-M, Wells L, Benigno BB, McDonald JF, Pierce M. Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics. 2010;10:470–81.CrossRef
64.
go back to reference Shetty V, Hafner J, Shah P, Nickens Z, Philip R. Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics. 2012;9:10.CrossRef Shetty V, Hafner J, Shah P, Nickens Z, Philip R. Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics. 2012;9:10.CrossRef
65.
go back to reference Kuzmanov U, Musrap N, Kosanam H, Smith CR, Batruch I, Dimitromanolakis A, et al. Glycoproteomic identification of potential glycoprotein biomarkers in ovarian cancer proximal fluids. Clin Chem Lab Med. 2013:51. Kuzmanov U, Musrap N, Kosanam H, Smith CR, Batruch I, Dimitromanolakis A, et al. Glycoproteomic identification of potential glycoprotein biomarkers in ovarian cancer proximal fluids. Clin Chem Lab Med. 2013:51.
66.
go back to reference Saldova R, Struwe WB, Wynne K, Elia G, Duffy MJ, Rudd PM. Exploring the glycosylation of serum CA125. Int J Mol Sci. 2013;14:15636–54.CrossRef Saldova R, Struwe WB, Wynne K, Elia G, Duffy MJ, Rudd PM. Exploring the glycosylation of serum CA125. Int J Mol Sci. 2013;14:15636–54.CrossRef
67.
go back to reference Liau B, Tan B, Teo G, Zhang P, Choo A, Rudd PM. Shotgun Glycomics identifies tumor-associated glycan ligands bound by an ovarian carcinoma-specific monoclonal antibody. Sci Rep. 2017;7:14489.CrossRef Liau B, Tan B, Teo G, Zhang P, Choo A, Rudd PM. Shotgun Glycomics identifies tumor-associated glycan ligands bound by an ovarian carcinoma-specific monoclonal antibody. Sci Rep. 2017;7:14489.CrossRef
68.
go back to reference Maes E, Tirez K, Baggerman G, Valkenborg D, Schoofs L, Encinar JR, et al. The use of elemental mass spectrometry in phosphoproteomic applications. Mass Spectrom Rev. 2016;35:350–60.CrossRef Maes E, Tirez K, Baggerman G, Valkenborg D, Schoofs L, Encinar JR, et al. The use of elemental mass spectrometry in phosphoproteomic applications. Mass Spectrom Rev. 2016;35:350–60.CrossRef
69.
go back to reference Toss A, De Matteis E, Rossi E, Casa L, Iannone A, Federico M, et al. Ovarian Cancer: can proteomics give new insights for therapy and diagnosis? Int J Mol Sci. 2013;14:8271–90.CrossRef Toss A, De Matteis E, Rossi E, Casa L, Iannone A, Federico M, et al. Ovarian Cancer: can proteomics give new insights for therapy and diagnosis? Int J Mol Sci. 2013;14:8271–90.CrossRef
70.
go back to reference Harsha HC, Pandey A. Phosphoproteomics in cancer. Mol Oncol. 2010;4:482–95.CrossRef Harsha HC, Pandey A. Phosphoproteomics in cancer. Mol Oncol. 2010;4:482–95.CrossRef
71.
go back to reference Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Rakownikow Jersie-Christensen R, et al. Phosphoproteomics of primary cells reveals Druggable kinase signatures in ovarian Cancer. Cell Rep. 2017;18:3242–56.CrossRef Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Rakownikow Jersie-Christensen R, et al. Phosphoproteomics of primary cells reveals Druggable kinase signatures in ovarian Cancer. Cell Rep. 2017;18:3242–56.CrossRef
72.
go back to reference Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics. 2016;13:1.CrossRef Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics. 2016;13:1.CrossRef
73.
go back to reference Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002;20:261–8.CrossRef Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002;20:261–8.CrossRef
74.
go back to reference Gustafsson JOR, Oehler MK, Ruszkiewicz A, McColl SR, Hoffmann P. MALDI imaging mass spectrometry (MALDI-IMS)-application of spatial proteomics for ovarian cancer classification and diagnosis. Int J Mol Sci. 2011;12:773–94.CrossRef Gustafsson JOR, Oehler MK, Ruszkiewicz A, McColl SR, Hoffmann P. MALDI imaging mass spectrometry (MALDI-IMS)-application of spatial proteomics for ovarian cancer classification and diagnosis. Int J Mol Sci. 2011;12:773–94.CrossRef
75.
go back to reference Zhu Y, Wu R, Sangha N, Yoo C, Cho KR, Shedden KA, et al. Classifications of ovarian cancer tissues by proteomic patterns. Proteomics. 2006;6:5846–56.CrossRef Zhu Y, Wu R, Sangha N, Yoo C, Cho KR, Shedden KA, et al. Classifications of ovarian cancer tissues by proteomic patterns. Proteomics. 2006;6:5846–56.CrossRef
76.
go back to reference Kim H, Wu R, Cho KR, Thomas DG, Gossner G, Liu JR, et al. Comparative proteomic analysis of low stage and high stage endometrioid ovarian adenocarcinomas. Proteomics Clin Appl. 2008;2:571–84.CrossRef Kim H, Wu R, Cho KR, Thomas DG, Gossner G, Liu JR, et al. Comparative proteomic analysis of low stage and high stage endometrioid ovarian adenocarcinomas. Proteomics Clin Appl. 2008;2:571–84.CrossRef
77.
go back to reference Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry — from bench to bedside. Biochim Biophys Acta - Proteins Proteomics. 2016. Schwamborn K, Kriegsmann M, Weichert W. MALDI imaging mass spectrometry — from bench to bedside. Biochim Biophys Acta - Proteins Proteomics. 2016.
78.
go back to reference Lemaire R, Ait Menguellet S, Stauber J, Marchaudon V, Lucot J-P, Collinet P, et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary Cancer biomarker. J Proteome Res. 2007;6:4127–34.CrossRef Lemaire R, Ait Menguellet S, Stauber J, Marchaudon V, Lucot J-P, Collinet P, et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary Cancer biomarker. J Proteome Res. 2007;6:4127–34.CrossRef
79.
go back to reference McDonnell LA, Corthals GL, Willems SM, van Remoortere A, RJM v Z, Deelder AM. Peptide and protein imaging mass spectrometry in cancer research. J Proteome. 2010;73:1921–44.CrossRef McDonnell LA, Corthals GL, Willems SM, van Remoortere A, RJM v Z, Deelder AM. Peptide and protein imaging mass spectrometry in cancer research. J Proteome. 2010;73:1921–44.CrossRef
80.
go back to reference Kang S, Shim HS, Lee JS, Kim DS, Kim HY, Hong SH, et al. Molecular proteomics imaging of tumor interfaces by mass spectrometry. J Proteome Res. 2010;9:1157–64.CrossRef Kang S, Shim HS, Lee JS, Kim DS, Kim HY, Hong SH, et al. Molecular proteomics imaging of tumor interfaces by mass spectrometry. J Proteome Res. 2010;9:1157–64.CrossRef
81.
go back to reference Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian Cancer tissues. Mol Cell Proteomics. 2016;15:3003–16.CrossRef Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian Cancer tissues. Mol Cell Proteomics. 2016;15:3003–16.CrossRef
82.
go back to reference Delcourt V, Franck J, Leblanc E, Narducci F, Robin Y-M, Gimeno J-P, et al. Combined mass spectrometry imaging and top-down microproteomics reveals evidence of a hidden proteome in ovarian Cancer. EBioMedicine. 2017;21:55–64.CrossRef Delcourt V, Franck J, Leblanc E, Narducci F, Robin Y-M, Gimeno J-P, et al. Combined mass spectrometry imaging and top-down microproteomics reveals evidence of a hidden proteome in ovarian Cancer. EBioMedicine. 2017;21:55–64.CrossRef
83.
go back to reference Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.CrossRef Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88.CrossRef
84.
go back to reference O’Toole S, O’Leary J. Ovarian Cancer Chemoresistance. Encycl Cancer. 2011:2674–6. O’Toole S, O’Leary J. Ovarian Cancer Chemoresistance. Encycl Cancer. 2011:2674–6.
85.
go back to reference Deng J, Wang L, Ni J, Beretov J, Wasinger V, Wu D, et al. Proteomics discovery of chemoresistant biomarkers for ovarian cancer therapy. Expert Rev Proteomics. 2016;13:905–15.CrossRef Deng J, Wang L, Ni J, Beretov J, Wasinger V, Wu D, et al. Proteomics discovery of chemoresistant biomarkers for ovarian cancer therapy. Expert Rev Proteomics. 2016;13:905–15.CrossRef
86.
go back to reference Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–16.CrossRef Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3:502–16.CrossRef
87.
go back to reference Yan X, Pan L, Yuan Y, Lang J, Mao N. Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian Cancer cells and their platinum-resistant sublines. J Proteome Res. 2007;6:772–80.CrossRef Yan X, Pan L, Yuan Y, Lang J, Mao N. Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian Cancer cells and their platinum-resistant sublines. J Proteome Res. 2007;6:772–80.CrossRef
88.
go back to reference Dai Z, Yin J, He H, Li W, Hou C, Qian X, et al. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics. 2010;10:3789–99.CrossRef Dai Z, Yin J, He H, Li W, Hou C, Qian X, et al. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics. 2010;10:3789–99.CrossRef
89.
go back to reference Cicchillitti L, Di Michele M, Urbani A, Ferlini C, Donat MB, Scambia G, et al. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res. 2009;8:1902–12.CrossRef Cicchillitti L, Di Michele M, Urbani A, Ferlini C, Donat MB, Scambia G, et al. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res. 2009;8:1902–12.CrossRef
90.
go back to reference Lee DH, Chung K, Song J-A, Kim T, Kang H, Huh JH, et al. Proteomic identification of paclitaxel-resistance associated hnRNP A2 and GDI 2 proteins in human ovarian Cancer cells. J Proteome Res. 2010;9:5668–76.CrossRef Lee DH, Chung K, Song J-A, Kim T, Kang H, Huh JH, et al. Proteomic identification of paclitaxel-resistance associated hnRNP A2 and GDI 2 proteins in human ovarian Cancer cells. J Proteome Res. 2010;9:5668–76.CrossRef
91.
go back to reference Di Michele M, Marcone S, Cicchillitti L, Della Corte A, Ferlini C, Scambia G, et al. Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: towards the identification of putative biomarkers. J Proteome. 2010;73:879–98.CrossRef Di Michele M, Marcone S, Cicchillitti L, Della Corte A, Ferlini C, Scambia G, et al. Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: towards the identification of putative biomarkers. J Proteome. 2010;73:879–98.CrossRef
92.
go back to reference Chappell NP, Teng P, Hood BL, Wang G, Darcy KM, Hamilton CA, et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian Cancer. J Proteome Res. 2012;11:4605–14.CrossRef Chappell NP, Teng P, Hood BL, Wang G, Darcy KM, Hamilton CA, et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian Cancer. J Proteome Res. 2012;11:4605–14.CrossRef
93.
go back to reference Zhang S-F, Wang X-Y, Fu Z-Q, Peng Q-H, Zhang J-Y, Ye F, et al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11:225–38.CrossRef Zhang S-F, Wang X-Y, Fu Z-Q, Peng Q-H, Zhang J-Y, Ye F, et al. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11:225–38.CrossRef
94.
go back to reference Chen X, Wei S, Ma Y, Lu J, Niu G, Xue Y, et al. Quantitative proteomics analysis identifies mitochondria as therapeutic targets of multidrug-resistance in ovarian cancer. Theranostics. 2014;4:1164–75.CrossRef Chen X, Wei S, Ma Y, Lu J, Niu G, Xue Y, et al. Quantitative proteomics analysis identifies mitochondria as therapeutic targets of multidrug-resistance in ovarian cancer. Theranostics. 2014;4:1164–75.CrossRef
95.
go back to reference Stewart JJ, White JT, Yan X, Collins S, Drescher CW, Urban ND, et al. Proteins associated with cisplatin resistance in ovarian Cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels. Mol Cell Proteomics. 2006;5:433–43.CrossRef Stewart JJ, White JT, Yan X, Collins S, Drescher CW, Urban ND, et al. Proteins associated with cisplatin resistance in ovarian Cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels. Mol Cell Proteomics. 2006;5:433–43.CrossRef
96.
go back to reference Pan S, Cheng L, White JT, Lu W, Utleg AG, Yan X, et al. Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and P53 binding protein 1 are important for chemotherapy response in ovarian cancers. Omi A J Integr Biol. 2009;13:345–54.CrossRef Pan S, Cheng L, White JT, Lu W, Utleg AG, Yan X, et al. Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and P53 binding protein 1 are important for chemotherapy response in ovarian cancers. Omi A J Integr Biol. 2009;13:345–54.CrossRef
97.
go back to reference Li S-L, Ye F, Cai W-J, Hu H-D, Hu P, Ren H, et al. Quantitative proteome analysis of multidrug resistance in human ovarian cancer cell line. J Cell Biochem. 2010;109:n/a-n/a. Li S-L, Ye F, Cai W-J, Hu H-D, Hu P, Ren H, et al. Quantitative proteome analysis of multidrug resistance in human ovarian cancer cell line. J Cell Biochem. 2010;109:n/a-n/a.
98.
go back to reference Shetty V, Nickens Z, Testa J, Hafner J, Sinnathamby G, Philip R. Quantitative immunoproteomics analysis reveals novel MHC class I presented peptides in cisplatin-resistant ovarian cancer cells. J Proteome. 2012;75:3270–90.CrossRef Shetty V, Nickens Z, Testa J, Hafner J, Sinnathamby G, Philip R. Quantitative immunoproteomics analysis reveals novel MHC class I presented peptides in cisplatin-resistant ovarian cancer cells. J Proteome. 2012;75:3270–90.CrossRef
99.
go back to reference Yu K-H, Levine DA, Zhang H, Chan DW, Zhang Z, Snyder M. Predicting ovarian Cancer patients’ clinical response to platinum-based chemotherapy by their tumor proteomic signatures. J Proteome Res. 2016;15:2455–65.CrossRef Yu K-H, Levine DA, Zhang H, Chan DW, Zhang Z, Snyder M. Predicting ovarian Cancer patients’ clinical response to platinum-based chemotherapy by their tumor proteomic signatures. J Proteome Res. 2016;15:2455–65.CrossRef
100.
go back to reference Maes E, Mertens I, Valkenborg D, Pauwels P, Rolfo C, Baggerman G. Proteomics in cancer research: are we ready for clinical practice? Crit Rev Oncol Hematol. 2015;96:437–48.CrossRef Maes E, Mertens I, Valkenborg D, Pauwels P, Rolfo C, Baggerman G. Proteomics in cancer research: are we ready for clinical practice? Crit Rev Oncol Hematol. 2015;96:437–48.CrossRef
101.
go back to reference Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, et al. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics. 2018;14789450.2018.1505510. Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, et al. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Rev Proteomics. 2018;14789450.2018.1505510.
102.
go back to reference Levitsky LI, Ivanov MV, Lobas AA, Gorshkov MV. Unbiased false discovery rate estimation for shotgun proteomics based on the target-decoy approach. J Proteome Res. 2017;16:393–7.CrossRef Levitsky LI, Ivanov MV, Lobas AA, Gorshkov MV. Unbiased false discovery rate estimation for shotgun proteomics based on the target-decoy approach. J Proteome Res. 2017;16:393–7.CrossRef
Metadata
Title
Mass spectrometry-based proteomics techniques and their application in ovarian cancer research
Authors
Agata Swiatly
Szymon Plewa
Jan Matysiak
Zenon J. Kokot
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2018
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0460-6

Other articles of this Issue 1/2018

Journal of Ovarian Research 1/2018 Go to the issue