Skip to main content
Top
Published in: Journal of Ovarian Research 1/2018

Open Access 01-12-2018 | Review

DNA damage repair in ovarian cancer: unlocking the heterogeneity

Authors: Mary Ellen Gee, Zahra Faraahi, Aiste McCormick, Richard J. Edmondson

Published in: Journal of Ovarian Research | Issue 1/2018

Login to get access

Abstract

Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.
A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.
Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Literature
1.
go back to reference Mukhopadhyay A, et al. Clinicopathological features of homologous recombination deficient epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum and survival. Cancer Res. 2012;72(22):5675–82.CrossRefPubMed Mukhopadhyay A, et al. Clinicopathological features of homologous recombination deficient epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum and survival. Cancer Res. 2012;72(22):5675–82.CrossRefPubMed
2.
go back to reference Ledermann J, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15(8):852–61.CrossRefPubMed Ledermann J, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15(8):852–61.CrossRefPubMed
3.
go back to reference Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5(9):689–98.CrossRefPubMed Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5(9):689–98.CrossRefPubMed
4.
go back to reference Kennedy R, AD D’A. DNA Repair Pathways in Clinical Practice: Lessons From Pediatric Cancer Susceptibility Syndromes. J Clin Oncol. 2006;24(23):3799–808.CrossRefPubMed Kennedy R, AD D’A. DNA Repair Pathways in Clinical Practice: Lessons From Pediatric Cancer Susceptibility Syndromes. J Clin Oncol. 2006;24(23):3799–808.CrossRefPubMed
5.
go back to reference Zhong Q, Chen CF, Li S, et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999;285:747–50.CrossRefPubMed Zhong Q, Chen CF, Li S, et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999;285:747–50.CrossRefPubMed
6.
go back to reference Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247–54.CrossRefPubMed Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27:247–54.CrossRefPubMed
7.
go back to reference TCGA. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRef TCGA. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRef
8.
go back to reference King MC, Marks JH, Mandell JB. Breast and ovarian Cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.CrossRefPubMed King MC, Marks JH, Mandell JB. Breast and ovarian Cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.CrossRefPubMed
9.
go back to reference Hilton J, Geisler JP, Rathe J, Hattermann-Zogg M, DeYoung B, Buller R, Inactivation of BRCA1 and BRCA2 in ovarian Cancer. J Natl Cancer Inst. 2002;94(18):1396–406. Hilton J, Geisler JP, Rathe J, Hattermann-Zogg M, DeYoung B, Buller R, Inactivation of BRCA1 and BRCA2 in ovarian Cancer. J Natl Cancer Inst. 2002;94(18):1396–406.
10.
go back to reference Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999;18(11):1957–65.CrossRefPubMed Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999;18(11):1957–65.CrossRefPubMed
11.
go back to reference Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Nardod S, Karlan BY. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000;60(19):5329–33.PubMed Baldwin RL, Nemeth E, Tran H, Shvartsman H, Cass I, Nardod S, Karlan BY. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study. Cancer Res. 2000;60(19):5329–33.PubMed
12.
go back to reference Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245–59.CrossRefPubMed Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med. 2010;12(5):245–59.CrossRefPubMed
13.
go back to reference Risch HA, McLaughlin JR, Cole D, Rosen B, et al. Prevalence and penetrance of Germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian Cancer. Am J Human Genet. 2001;68(3):700–10.CrossRef Risch HA, McLaughlin JR, Cole D, Rosen B, et al. Prevalence and penetrance of Germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian Cancer. Am J Human Genet. 2001;68(3):700–10.CrossRef
14.
go back to reference Boyd J, Sonoda Y, Federici MG. Clinicopathologic features of BRCA-linked and sporadic Ovarioan Cancer. JAMA. 2000;283:2260–5.CrossRefPubMed Boyd J, Sonoda Y, Federici MG. Clinicopathologic features of BRCA-linked and sporadic Ovarioan Cancer. JAMA. 2000;283:2260–5.CrossRefPubMed
15.
go back to reference Cass I, Baldwin RL, Varkey T. Improved Survival in Women with BRCA-Associated Ovarian Carcinoma. Cancer. 2003;97(9):2187–95.CrossRefPubMed Cass I, Baldwin RL, Varkey T. Improved Survival in Women with BRCA-Associated Ovarian Carcinoma. Cancer. 2003;97(9):2187–95.CrossRefPubMed
16.
go back to reference Choudhury A, Zhao H, Jalali F, Al Rashid S, Ran J, Supiot S, Kiltie AE, Bristow RG. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Can Ther. 2009;8(1):203–13.CrossRef Choudhury A, Zhao H, Jalali F, Al Rashid S, Ran J, Supiot S, Kiltie AE, Bristow RG. Targeting homologous recombination using imatinib results in enhanced tumor cell chemosensitivity and radiosensitivity. Mol Can Ther. 2009;8(1):203–13.CrossRef
17.
go back to reference Bryant HE, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.CrossRefPubMed Bryant HE, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.CrossRefPubMed
18.
go back to reference Farmer H, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.CrossRefPubMed Farmer H, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.CrossRefPubMed
19.
go back to reference Fong PC, Yap TA, Boss DS, et al. Poly(ADP) - Ribose Polymerase Inhibition: Frequent Durable Responses in BRCA Ovarian Cancer Correlating with Platinum-Free Interval. J Clin Oncol. 2010;28(15):2512–9.CrossRefPubMed Fong PC, Yap TA, Boss DS, et al. Poly(ADP) - Ribose Polymerase Inhibition: Frequent Durable Responses in BRCA Ovarian Cancer Correlating with Platinum-Free Interval. J Clin Oncol. 2010;28(15):2512–9.CrossRefPubMed
20.
go back to reference Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian Cancer. N Engl J Med. 2012;366:1382–92.CrossRefPubMed Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian Cancer. N Engl J Med. 2012;366:1382–92.CrossRefPubMed
21.
go back to reference Mirza MR, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375:2154–64.CrossRefPubMed Mirza MR, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375:2154–64.CrossRefPubMed
22.
go back to reference Wang H, Wang H, Powell SN, Iliakis G, Wang Y. ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res. 2004;64(19):7139–43.CrossRefPubMed Wang H, Wang H, Powell SN, Iliakis G, Wang Y. ATR affecting cell radiosensitivity is dependent on homologous recombination repair but independent of nonhomologous end joining. Cancer Res. 2004;64(19):7139–43.CrossRefPubMed
23.
go back to reference Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell line. Br J Cancer. 2011;105:372–81.CrossRefPubMedPubMedCentral Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell line. Br J Cancer. 2011;105:372–81.CrossRefPubMedPubMedCentral
24.
25.
go back to reference Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20.CrossRefPubMed Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. 2003;4:712–20.CrossRefPubMed
26.
go back to reference Beucher A, Birraux J, Tchouandong L, Barton O, et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 2009;28:3413–27.CrossRefPubMedPubMedCentral Beucher A, Birraux J, Tchouandong L, Barton O, et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 2009;28:3413–27.CrossRefPubMedPubMedCentral
27.
go back to reference Burma S, Chen BP, Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair. 2006;5(9–10):1042–8.CrossRefPubMed Burma S, Chen BP, Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair. 2006;5(9–10):1042–8.CrossRefPubMed
28.
go back to reference Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22:5792–812.CrossRefPubMed Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 2003;22:5792–812.CrossRefPubMed
29.
go back to reference McCormick A, S.N., Curtin NJ, Edmondson RJ, (n.d.) Non Homologous End Joining pathways defects in human cancers. McCormick A, S.N., Curtin NJ, Edmondson RJ, (n.d.) Non Homologous End Joining pathways defects in human cancers.
30.
31.
go back to reference West RB, Yaneva M, Lieber MR. Productive and Nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol. 1998;18:5908–20.CrossRefPubMedPubMedCentral West RB, Yaneva M, Lieber MR. Productive and Nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol. 1998;18:5908–20.CrossRefPubMedPubMedCentral
32.
go back to reference Ma Y, Pannicke U, Schwarz K, Leiber MR. Hairpin Opening and Overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002;108:781–94.CrossRefPubMed Ma Y, Pannicke U, Schwarz K, Leiber MR. Hairpin Opening and Overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell. 2002;108:781–94.CrossRefPubMed
34.
go back to reference Ahnesorg P, Smith P, Jackson SP. XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining. Cell. 2005;124(2):287–99. Ahnesorg P, Smith P, Jackson SP. XLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining. Cell. 2005;124(2):287–99.
35.
go back to reference Dueva R, Iliakis G. Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. Transl Cancer Res. 2013;2(3):163–77. Dueva R, Iliakis G. Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. Transl Cancer Res. 2013;2(3):163–77.
36.
go back to reference Kent T, Chandramouly G, McDevitt SM, et al. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase Θ. Nat Struct Mol Biol. 2015;22(3):230–9.CrossRefPubMedPubMedCentral Kent T, Chandramouly G, McDevitt SM, et al. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase Θ. Nat Struct Mol Biol. 2015;22(3):230–9.CrossRefPubMedPubMedCentral
37.
go back to reference Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34(21):6170–82.CrossRefPubMedPubMedCentral Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34(21):6170–82.CrossRefPubMedPubMedCentral
38.
go back to reference Audebert M, Salles B, Calsou P. Involvement of poly(ADP-ribose) polymerase 1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem. 2004;279(53):55117–26.CrossRefPubMed Audebert M, Salles B, Calsou P. Involvement of poly(ADP-ribose) polymerase 1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem. 2004;279(53):55117–26.CrossRefPubMed
39.
go back to reference Mansour WY, Rhein T, Dahm-Daphi J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res. 2010;38(18):6065–77.CrossRefPubMedPubMedCentral Mansour WY, Rhein T, Dahm-Daphi J. The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res. 2010;38(18):6065–77.CrossRefPubMedPubMedCentral
40.
go back to reference McCormick, A., et al., Ovarian Cancers Harbour Defects in Non-Homologous End Joining Resulting in Resistance to Rucaparib. Clin Canc res, 2016. Published OnlineFirst October 4, 2016. McCormick, A., et al., Ovarian Cancers Harbour Defects in Non-Homologous End Joining Resulting in Resistance to Rucaparib. Clin Canc res, 2016. Published OnlineFirst October 4, 2016.
41.
go back to reference Abdel-Fatah T, Arora A, Moseley P, Coveney C, Perry C, Johnson K, Kent C, Ball G, Chan S, Madhusudan S. AMT, ART and DNA-PKcs expressions correlate to adverse clinical outcomes in epithelial ovarian cancers. BBA Clinical. 2014;2:10–7.CrossRefPubMedPubMedCentral Abdel-Fatah T, Arora A, Moseley P, Coveney C, Perry C, Johnson K, Kent C, Ball G, Chan S, Madhusudan S. AMT, ART and DNA-PKcs expressions correlate to adverse clinical outcomes in epithelial ovarian cancers. BBA Clinical. 2014;2:10–7.CrossRefPubMedPubMedCentral
42.
go back to reference Couto CA, Wang HY, Green JC, et al. PARP regulates nonhomologous end joining through retention of Ku at double strand breaks. J Cell Biol. 2011;194(3):367–75.CrossRefPubMedPubMedCentral Couto CA, Wang HY, Green JC, et al. PARP regulates nonhomologous end joining through retention of Ku at double strand breaks. J Cell Biol. 2011;194(3):367–75.CrossRefPubMedPubMedCentral
43.
go back to reference Hochegger H, Dejsuphong D, et al. PARP 1 protects homolgous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J. 2006;25(6):1305–14.CrossRefPubMedPubMedCentral Hochegger H, Dejsuphong D, et al. PARP 1 protects homolgous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J. 2006;25(6):1305–14.CrossRefPubMedPubMedCentral
44.
go back to reference Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly (ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A. 2011;108(8):3406–11.CrossRefPubMedPubMedCentral Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly (ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci U S A. 2011;108(8):3406–11.CrossRefPubMedPubMedCentral
45.
go back to reference Schildkraut JM, Iversen ES, Wilson MA, Clyde MA, et al. Association between DNA damage response and repair genes and risk of invasive serous ovarian Cancer. PLoS One. 2010;5(4):e10061.CrossRefPubMedPubMedCentral Schildkraut JM, Iversen ES, Wilson MA, Clyde MA, et al. Association between DNA damage response and repair genes and risk of invasive serous ovarian Cancer. PLoS One. 2010;5(4):e10061.CrossRefPubMedPubMedCentral
46.
go back to reference Pearce CL, Near AM, Van Den Berg DJ, et al. Validating genetic risk associations for ovarian cancer through the international ovarian Cancer association consortium. Br J Cancer. 2009;100:412–20.CrossRefPubMedPubMedCentral Pearce CL, Near AM, Van Den Berg DJ, et al. Validating genetic risk associations for ovarian cancer through the international ovarian Cancer association consortium. Br J Cancer. 2009;100:412–20.CrossRefPubMedPubMedCentral
47.
go back to reference Ceccaldi R, Liu JC, Amunugama R et al, Homologous recombination deficient tumours are dependent on PolΘ mediated repair. Nature. 2015;518:258–62. Ceccaldi R, Liu JC, Amunugama R et al, Homologous recombination deficient tumours are dependent on PolΘ mediated repair. Nature. 2015;518:258–62.
48.
go back to reference Miao J, Zhang X, Tang QL, Wang XY, Kai L. Prediction value of XRCC1 gene polymorphisms on the survival of ovarian cancer treated by adjuvant chemotherapy. Asian Pac J Cancer Prev. 2012;13:5007–10.CrossRefPubMed Miao J, Zhang X, Tang QL, Wang XY, Kai L. Prediction value of XRCC1 gene polymorphisms on the survival of ovarian cancer treated by adjuvant chemotherapy. Asian Pac J Cancer Prev. 2012;13:5007–10.CrossRefPubMed
49.
go back to reference Adel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, Madhasudan S. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer. 2012;132:2778–86.CrossRef Adel-Fatah T, Sultana R, Abbotts R, Hawkes C, Seedhouse C, Chan S, Madhasudan S. Clinicopathological and functional significance of XRCC1 expression in ovarian cancer. Int J Cancer. 2012;132:2778–86.CrossRef
50.
go back to reference Cooke SL, Ng CK, Melnyk N, Garcia MJ, Hardcastle T, Temple J, Langdon S, Huntsman D, Brenton JD. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29(35):4905–13.CrossRefPubMedPubMedCentral Cooke SL, Ng CK, Melnyk N, Garcia MJ, Hardcastle T, Temple J, Langdon S, Huntsman D, Brenton JD. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma. Oncogene. 2010;29(35):4905–13.CrossRefPubMedPubMedCentral
51.
go back to reference Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, Gabra H. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia. 2011;13(11):1069–80.CrossRefPubMedPubMedCentral Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, Gabra H. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia. 2011;13(11):1069–80.CrossRefPubMedPubMedCentral
52.
go back to reference Ohtaa T, Ohmichi M, et al. Gefitinib (ZD1839) increases the efficacy of cisplatin in ovarian cancer cells. Cancer Biol Ther. 2012;13(6):408–16.CrossRef Ohtaa T, Ohmichi M, et al. Gefitinib (ZD1839) increases the efficacy of cisplatin in ovarian cancer cells. Cancer Biol Ther. 2012;13(6):408–16.CrossRef
53.
go back to reference Diggle CP, Bentley J, et al. Inhibition of double strand break non-homologous end-joining by cisplatin adducts in human cell extracts. Nucleic Acids Res. 2005;33(8):2531–9.CrossRefPubMedPubMedCentral Diggle CP, Bentley J, et al. Inhibition of double strand break non-homologous end-joining by cisplatin adducts in human cell extracts. Nucleic Acids Res. 2005;33(8):2531–9.CrossRefPubMedPubMedCentral
54.
55.
go back to reference Leahy JJ, Golding BT, Griffin RJ, et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU 7441) by screening of chromosome libraries. Bioorg Med Chem Lett. 2004;14:6083–7.CrossRefPubMed Leahy JJ, Golding BT, Griffin RJ, et al. Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU 7441) by screening of chromosome libraries. Bioorg Med Chem Lett. 2004;14:6083–7.CrossRefPubMed
56.
go back to reference Zhao Y, Thomas HD, Batey MA, et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res. 2006;66:5354–62.CrossRefPubMed Zhao Y, Thomas HD, Batey MA, et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res. 2006;66:5354–62.CrossRefPubMed
57.
go back to reference Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, Ball G, Chan S, Rakha EA, Ellis IO, Madhusudan S. Targeting XRCC1 Deficiency in Breats Cancer for Personalised Therapy. Cancer Res. 2012;73(5):1621–34.CrossRefPubMed Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C, Ball G, Chan S, Rakha EA, Ellis IO, Madhusudan S. Targeting XRCC1 Deficiency in Breats Cancer for Personalised Therapy. Cancer Res. 2012;73(5):1621–34.CrossRefPubMed
59.
go back to reference Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.CrossRefPubMed Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.CrossRefPubMed
60.
go back to reference Osorio A, Milne RL, et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014;10(4):e1004256.CrossRefPubMedPubMedCentral Osorio A, Milne RL, et al. DNA glycosylases involved in base excision repair may be associated with cancer risk in BRCA1 and BRCA2 mutation carriers. PLoS Genet. 2014;10(4):e1004256.CrossRefPubMedPubMedCentral
61.
go back to reference Pieretti M, Khattar NH, Smith SA. Common polymorphisms and somatic mutations in human base excision repair genes in ovarian and endometrial cancers. Mut Res Gen. 2001;432:53–9. Pieretti M, Khattar NH, Smith SA. Common polymorphisms and somatic mutations in human base excision repair genes in ovarian and endometrial cancers. Mut Res Gen. 2001;432:53–9.
62.
go back to reference Albertella MR, Lau A, O’Connor MJ. The overexpression of specialized DNA polymerases in cancer. DNA Repair. 2005;4(5):583–93.CrossRefPubMed Albertella MR, Lau A, O’Connor MJ. The overexpression of specialized DNA polymerases in cancer. DNA Repair. 2005;4(5):583–93.CrossRefPubMed
63.
go back to reference Al-Attar A, Gossage L, Fareed KR, et al. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br J Cancer. 2010;102:704–9.CrossRefPubMedPubMedCentral Al-Attar A, Gossage L, Fareed KR, et al. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br J Cancer. 2010;102:704–9.CrossRefPubMedPubMedCentral
64.
go back to reference Huehls AM, Wagner JM, Huntoon CJ, Karnitz LM. Identification of DNA repair pathways that affect the survival of ovarian Cancer cells treated with a poly(ADP-ribose) polymerase inhibitor in a novel drug combination. Mol Pharmacol. 2012;82:767–76.CrossRefPubMedPubMedCentral Huehls AM, Wagner JM, Huntoon CJ, Karnitz LM. Identification of DNA repair pathways that affect the survival of ovarian Cancer cells treated with a poly(ADP-ribose) polymerase inhibitor in a novel drug combination. Mol Pharmacol. 2012;82:767–76.CrossRefPubMedPubMedCentral
66.
go back to reference MJ OC. Targeting the DNA damage response in Cancer. Mol Cell. 2015;60:547–60.CrossRef MJ OC. Targeting the DNA damage response in Cancer. Mol Cell. 2015;60:547–60.CrossRef
67.
go back to reference Boudsocq F, Benaim P, et al. Modulation of Cellular Response to Cisplatin by a Novel Inhibitor of DNA Polymerase. Mol Pharmacol. 2005;67(5):1485–97.CrossRefPubMed Boudsocq F, Benaim P, et al. Modulation of Cellular Response to Cisplatin by a Novel Inhibitor of DNA Polymerase. Mol Pharmacol. 2005;67(5):1485–97.CrossRefPubMed
68.
go back to reference Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase β: activity and mechanism. Bioorg Med Chem. 2008;16:4331–40.CrossRefPubMed Gao Z, Maloney DJ, Dedkova LM, Hecht SM. Inhibitors of DNA polymerase β: activity and mechanism. Bioorg Med Chem. 2008;16:4331–40.CrossRefPubMed
69.
go back to reference Kumamoto-Yonezawa Y, et al. Enhancement of human cancer cell radiosensitivity by conjugated eicosapentaenoic acid - a mammalian DNA polymerase inhibitor. Int J Oncol. 2010;36:577–84.PubMed Kumamoto-Yonezawa Y, et al. Enhancement of human cancer cell radiosensitivity by conjugated eicosapentaenoic acid - a mammalian DNA polymerase inhibitor. Int J Oncol. 2010;36:577–84.PubMed
70.
go back to reference Zhang Y, Wang J, Xiang D, Wang D, Xin X. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) in human ovarian cancer and indentification of the therapeutic potential of APE1/Ref-1 inhibitor. Int J Oncol. 2009;35:1069–79.CrossRefPubMed Zhang Y, Wang J, Xiang D, Wang D, Xin X. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) in human ovarian cancer and indentification of the therapeutic potential of APE1/Ref-1 inhibitor. Int J Oncol. 2009;35:1069–79.CrossRefPubMed
71.
go back to reference Taverna P, Liu L, Hwang HS, et al. Methoxyamine potentiates DNA single strand breaks and double strand breaks induces by temozolomide in colon cancer cells. Mutat Res. 2001;485(4):269–81.CrossRefPubMed Taverna P, Liu L, Hwang HS, et al. Methoxyamine potentiates DNA single strand breaks and double strand breaks induces by temozolomide in colon cancer cells. Mutat Res. 2001;485(4):269–81.CrossRefPubMed
72.
go back to reference Fishel ML, He Y, Smith ML, Kelley MR. Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res. 2007;13(1):260–7.CrossRefPubMed Fishel ML, He Y, Smith ML, Kelley MR. Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin Cancer Res. 2007;13(1):260–7.CrossRefPubMed
73.
go back to reference G-M L. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18:85–98.CrossRef G-M L. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18:85–98.CrossRef
74.
go back to reference Watson P, Bützow R, Lynch HT, et al. The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer. Gynaecol Oncol. 2001;82:223–8.CrossRef Watson P, Bützow R, Lynch HT, et al. The clinical features of ovarian cancer in hereditary nonpolyposis colorectal cancer. Gynaecol Oncol. 2001;82:223–8.CrossRef
75.
go back to reference Jensen KC, Mariappan MR, Putcha GV, Husain A, Chun N, Ford JM, et al. Microsatellite instability and mismatch repair protein defects in ovarian epithelial neoplams in patients 50 years of age and younger. Am J Surg Pathol. 2008;32(7):1029–37.CrossRefPubMed Jensen KC, Mariappan MR, Putcha GV, Husain A, Chun N, Ford JM, et al. Microsatellite instability and mismatch repair protein defects in ovarian epithelial neoplams in patients 50 years of age and younger. Am J Surg Pathol. 2008;32(7):1029–37.CrossRefPubMed
76.
go back to reference Song H, Cicek MS, Dicks E, et al. The contibution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23(17):4703–9.CrossRefPubMedPubMedCentral Song H, Cicek MS, Dicks E, et al. The contibution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23(17):4703–9.CrossRefPubMedPubMedCentral
77.
go back to reference P, K. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis. 2001;22(12):1931–7.CrossRef P, K. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis. 2001;22(12):1931–7.CrossRef
78.
go back to reference Martin LP, Hamilton TC, Schilder RJ. Platinum Resistance: The Role of DNA Repair Pathways. Clin Cancer Res. 2008;14(5):1291–5.CrossRefPubMed Martin LP, Hamilton TC, Schilder RJ. Platinum Resistance: The Role of DNA Repair Pathways. Clin Cancer Res. 2008;14(5):1291–5.CrossRefPubMed
79.
go back to reference Helleman J, van Staveren IL et al. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer. 2006;6(201):201. Helleman J, van Staveren IL et al. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer. 2006;6(201):201.
81.
go back to reference Branch P, Masson M, Aquilina G, et al. Spontaneous development of drug resistance: mismatch repair defects in resistance to cisplatin in human tumor cells. Oncogene. 2000;19:3138–45.CrossRefPubMed Branch P, Masson M, Aquilina G, et al. Spontaneous development of drug resistance: mismatch repair defects in resistance to cisplatin in human tumor cells. Oncogene. 2000;19:3138–45.CrossRefPubMed
82.
go back to reference Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000;60:6039–44.PubMed Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000;60:6039–44.PubMed
83.
go back to reference Herrero AB, Martín-Castellanos C, Marco E, et al. Cross-Talk between Nucleotide Excision and Homologous Recombination DNA Repair Pathways in the Mechanism of Action of Antitumor Trabectedin. Cancer Res. 2006;66(16):8155–62.CrossRefPubMed Herrero AB, Martín-Castellanos C, Marco E, et al. Cross-Talk between Nucleotide Excision and Homologous Recombination DNA Repair Pathways in the Mechanism of Action of Antitumor Trabectedin. Cancer Res. 2006;66(16):8155–62.CrossRefPubMed
84.
go back to reference Patch AM, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.CrossRefPubMed Patch AM, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521(7553):489–94.CrossRefPubMed
85.
go back to reference Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson S, Drew Y, Kyle S, Los G, Hostomsky Z, Edmondson R, Curtin N. Development of a Functional Assay for Homolgous Recombination Status in Primary Culture of Epithelial Ovarian Tumor and Correlation with Sensitivity to Poly(ADP-Ribose) Polymerase Inhibitors. Clinical Cancer Research. 2010;16(8):2344–51.CrossRefPubMed Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson S, Drew Y, Kyle S, Los G, Hostomsky Z, Edmondson R, Curtin N. Development of a Functional Assay for Homolgous Recombination Status in Primary Culture of Epithelial Ovarian Tumor and Correlation with Sensitivity to Poly(ADP-Ribose) Polymerase Inhibitors. Clinical Cancer Research. 2010;16(8):2344–51.CrossRefPubMed
86.
go back to reference Woodhouse L, Mcormick A, O’Donnell R, Kauffmann A, Edmondson R. Development of a functional assay to determine the nucleotide excision repair status of epithelial ovarian cancer. Liverpool: NCRI Cancer Conference; 2014. Woodhouse L, Mcormick A, O’Donnell R, Kauffmann A, Edmondson R. Development of a functional assay to determine the nucleotide excision repair status of epithelial ovarian cancer. Liverpool: NCRI Cancer Conference; 2014.
87.
go back to reference Ceccaldi R, et al. A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 2015;75(4):628–34.CrossRefPubMedPubMedCentral Ceccaldi R, et al. A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 2015;75(4):628–34.CrossRefPubMedPubMedCentral
88.
go back to reference Wang Q-E, Milum K, Han C, Huang Y-W et al Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells Mol Cancer. 2011;10(24):24. Wang Q-E, Milum K, Han C, Huang Y-W et al Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells Mol Cancer. 2011;10(24):24.
89.
go back to reference Buterin T, Hess MT, Gunz D, et al. Trapping of DNA Nucleotide Excision Repair Factors by Nonrepairable Carcinogen Adducts. Cancer Res. 2002;62(15):4229–35.PubMed Buterin T, Hess MT, Gunz D, et al. Trapping of DNA Nucleotide Excision Repair Factors by Nonrepairable Carcinogen Adducts. Cancer Res. 2002;62(15):4229–35.PubMed
90.
go back to reference O'Sullivan R, D P, Curtin N, Kaufmann A, McCormick A, Edmondson RJ. DNA-PK as a biomarker of non-homologous end joining in ovarian cancer. Liverpool: NCRI Cancer Conference; 2014. O'Sullivan R, D P, Curtin N, Kaufmann A, McCormick A, Edmondson RJ. DNA-PK as a biomarker of non-homologous end joining in ovarian cancer. Liverpool: NCRI Cancer Conference; 2014.
91.
go back to reference Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T. DNA ligases: structure, reaction mechanism, and function. Chem Rev. 2006;106:687–99.CrossRefPubMed Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T. DNA ligases: structure, reaction mechanism, and function. Chem Rev. 2006;106:687–99.CrossRefPubMed
92.
go back to reference Heikkinen K, Karppinen SM, Soini Y, Makinen M, Wingvist R, Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibility. J Med Genet. 2003;40(12):e131. Heikkinen K, Karppinen SM, Soini Y, Makinen M, Wingvist R, Mutation screening of Mre11 complex genes: indication of RAD50 involvement in breast and ovarian cancer susceptibility. J Med Genet. 2003;40(12):e131.
94.
go back to reference Caiola E, Porcu L, Fruscio R, et al. DNA-damage response gene polymorphisms and therapeutic outcomes in ovarian cancer. Pharmacogenomics J. 2013;13:159–72.CrossRefPubMed Caiola E, Porcu L, Fruscio R, et al. DNA-damage response gene polymorphisms and therapeutic outcomes in ovarian cancer. Pharmacogenomics J. 2013;13:159–72.CrossRefPubMed
96.
go back to reference Ferry KV, Hamilton TC, Johnson SW. Increased nucleotide excision repair in Cisplatin-resistant ovarian Cancer cells. Biochem Pharmacol. 2000;60:1305–13.CrossRefPubMed Ferry KV, Hamilton TC, Johnson SW. Increased nucleotide excision repair in Cisplatin-resistant ovarian Cancer cells. Biochem Pharmacol. 2000;60:1305–13.CrossRefPubMed
97.
go back to reference Stevens EV, Raffeld M, Espina V, et al. Expression of xeroderma pigmentosum A protein predicts improved outcome in metastatic ovarian carcinoma. Cancer. 2005;103(11):2313–9.CrossRefPubMed Stevens EV, Raffeld M, Espina V, et al. Expression of xeroderma pigmentosum A protein predicts improved outcome in metastatic ovarian carcinoma. Cancer. 2005;103(11):2313–9.CrossRefPubMed
98.
go back to reference Dabholkar M, Thornton K, Vionnet J, Bostick-Bruton F, et al. Increased mRNA levels of Xeroderma Pigmentosum complementation group B (XPB) and Cockayne's syndrome complementation group B (CSB) without increased mRNA levels of multidrug-resistance gene (MDR1) or Methallothionein-II (MT-II) in platinum resistant human ovarina cancer tissues. Biochem Pharmacol. 2000;60:1611–9.CrossRefPubMed Dabholkar M, Thornton K, Vionnet J, Bostick-Bruton F, et al. Increased mRNA levels of Xeroderma Pigmentosum complementation group B (XPB) and Cockayne's syndrome complementation group B (CSB) without increased mRNA levels of multidrug-resistance gene (MDR1) or Methallothionein-II (MT-II) in platinum resistant human ovarina cancer tissues. Biochem Pharmacol. 2000;60:1611–9.CrossRefPubMed
Metadata
Title
DNA damage repair in ovarian cancer: unlocking the heterogeneity
Authors
Mary Ellen Gee
Zahra Faraahi
Aiste McCormick
Richard J. Edmondson
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2018
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-018-0424-x

Other articles of this Issue 1/2018

Journal of Ovarian Research 1/2018 Go to the issue