Skip to main content
Top
Published in: Experimental Hematology & Oncology 1/2024

Open Access 01-12-2024 | Mantle Cell Lymphoma | Research

The HSP90-MYC-CDK9 network drives therapeutic resistance in mantle cell lymphoma

Authors: Fangfang Yan, Vivian Jiang, Alexa Jordan, Yuxuan Che, Yang Liu, Qingsong Cai, Yu Xue, Yijing Li, Joseph McIntosh, Zhihong Chen, Jovanny Vargas, Lei Nie, Yixin Yao, Heng-Huan Lee, Wei Wang, JohnNelson R. Bigcal, Maria Badillo, Jitendra Meena, Christopher Flowers, Jia Zhou, Zhongming Zhao, Lukas M. Simon, Michael Wang

Published in: Experimental Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton’s tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jain P, Wang ML. Mantle cell lymphoma in 2022-A comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am J Hematol. 2022;97(5):638–56.PubMedCrossRef Jain P, Wang ML. Mantle cell lymphoma in 2022-A comprehensive update on molecular pathogenesis, risk stratification, clinical approach, and current and novel treatments. Am J Hematol. 2022;97(5):638–56.PubMedCrossRef
2.
go back to reference Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.PubMedPubMedCentralCrossRef Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.PubMedPubMedCentralCrossRef
3.
go back to reference Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659–67.PubMedCrossRef Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659–67.PubMedCrossRef
4.
go back to reference Song YQ, Zhou KS, Zou DH, Zhou JF, Hu JD, Yang HY, et al. Safety and activity of the investigational Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) in patients with mantle cell lymphoma from a phase 2 trial. Blood. 2018;132(Suppl 1):148.CrossRef Song YQ, Zhou KS, Zou DH, Zhou JF, Hu JD, Yang HY, et al. Safety and activity of the investigational Bruton tyrosine kinase inhibitor zanubrutinib (BGB-3111) in patients with mantle cell lymphoma from a phase 2 trial. Blood. 2018;132(Suppl 1):148.CrossRef
5.
go back to reference Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory Mantle-Cell Lymphoma. N Engl J Med. 2020;382(14):1331–42.PubMedPubMedCentralCrossRef Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory Mantle-Cell Lymphoma. N Engl J Med. 2020;382(14):1331–42.PubMedPubMedCentralCrossRef
6.
go back to reference Cheah CY, Chihara D, Romaguera JE, Fowler NH, Seymour JF, Hagemeister FB, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26(6):1175–9.PubMedCrossRef Cheah CY, Chihara D, Romaguera JE, Fowler NH, Seymour JF, Hagemeister FB, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26(6):1175–9.PubMedCrossRef
7.
go back to reference Jain P, Nastoupil L, Westin J, Lee HJ, Navsaria L, Steiner RE, et al. Outcomes and management of patients with mantle cell lymphoma after progression on brexucabtagene autoleucel therapy. Br J Haematol. 2021;192(2):e38–42.PubMedCrossRef Jain P, Nastoupil L, Westin J, Lee HJ, Navsaria L, Steiner RE, et al. Outcomes and management of patients with mantle cell lymphoma after progression on brexucabtagene autoleucel therapy. Br J Haematol. 2021;192(2):e38–42.PubMedCrossRef
8.
go back to reference Pula B, Golos A, Gorniak P, Jamroziak K. Overcoming ibrutinib resistance in chronic lymphocytic leukemia. Cancers (Basel). 2019;11(12):1834.PubMedCrossRef Pula B, Golos A, Gorniak P, Jamroziak K. Overcoming ibrutinib resistance in chronic lymphocytic leukemia. Cancers (Basel). 2019;11(12):1834.PubMedCrossRef
9.
go back to reference Zhang L, Guo H, Zhang H, Yao YX, Liu Y, Zhang SJ, et al. Genetically defined metabolic targets overcome ibrutinib resistance in mantle cell lymphoma. Blood. 2019;134(Suppl 1):395.CrossRef Zhang L, Guo H, Zhang H, Yao YX, Liu Y, Zhang SJ, et al. Genetically defined metabolic targets overcome ibrutinib resistance in mantle cell lymphoma. Blood. 2019;134(Suppl 1):395.CrossRef
10.
11.
go back to reference Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, et al. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med. 2019;11:491.CrossRef Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, et al. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med. 2019;11:491.CrossRef
12.
go back to reference Zhang S, Jiang VC, Han G, Hao D, Lian J, Liu Y, et al. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat Commun. 2021;12(1):2877.ADSPubMedPubMedCentralCrossRef Zhang S, Jiang VC, Han G, Hao D, Lian J, Liu Y, et al. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat Commun. 2021;12(1):2877.ADSPubMedPubMedCentralCrossRef
13.
go back to reference Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.ADSPubMedPubMedCentralCrossRef Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.ADSPubMedPubMedCentralCrossRef
14.
go back to reference Hao Y, Hao S, Andersen-Nissen E, Mauck Iii WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–87.PubMedPubMedCentralCrossRef Hao Y, Hao S, Andersen-Nissen E, Mauck Iii WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–87.PubMedPubMedCentralCrossRef
15.
go back to reference Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902.PubMedPubMedCentralCrossRef Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902.PubMedPubMedCentralCrossRef
17.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300.MathSciNet Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300.MathSciNet
18.
go back to reference Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–205.PubMedPubMedCentralCrossRef Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–205.PubMedPubMedCentralCrossRef
20.
go back to reference Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502.ADSPubMedPubMedCentralCrossRef Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566(7745):496–502.ADSPubMedPubMedCentralCrossRef
21.
go back to reference van den Berge K, de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y, et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat Commun. 2020;11(1):1201.ADSPubMedPubMedCentralCrossRef van den Berge K, de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y, et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat Commun. 2020;11(1):1201.ADSPubMedPubMedCentralCrossRef
22.
go back to reference Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput Biol. 2019;15(3): e1006701.PubMedPubMedCentralCrossRef Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput Biol. 2019;15(3): e1006701.PubMedPubMedCentralCrossRef
23.
go back to reference Zhang Y, Park C, Bennett C, Thornton M, Kim D. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 2021;31:1290–5.PubMedPubMedCentralCrossRef Zhang Y, Park C, Bennett C, Thornton M, Kim D. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 2021;31:1290–5.PubMedPubMedCentralCrossRef
24.
go back to reference Shumate A, Wong B, Pertea G, Pertea M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. Plos Comput Biol. 2022;18(6): e1009730.ADSPubMedPubMedCentralCrossRef Shumate A, Wong B, Pertea G, Pertea M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. Plos Comput Biol. 2022;18(6): e1009730.ADSPubMedPubMedCentralCrossRef
25.
go back to reference Jiang VC, Hao D, Jain P, Li Y, Cai Q, Yao Y, et al. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer. 2022;21(1):185.PubMedPubMedCentralCrossRef Jiang VC, Hao D, Jain P, Li Y, Cai Q, Yao Y, et al. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer. 2022;21(1):185.PubMedPubMedCentralCrossRef
26.
go back to reference Jain P, Tang GL, Yin CC, Ok CY, Navsaria L, Badillo M, et al. Complex karyotype is a significant predictor for worst outcomes in patients with mantle cell lymphoma (MCL) treated with BTK Inhibitors - comprehensive analysis of 396 patients. Blood. 2020;136(Suppl 1):32–3.CrossRef Jain P, Tang GL, Yin CC, Ok CY, Navsaria L, Badillo M, et al. Complex karyotype is a significant predictor for worst outcomes in patients with mantle cell lymphoma (MCL) treated with BTK Inhibitors - comprehensive analysis of 396 patients. Blood. 2020;136(Suppl 1):32–3.CrossRef
27.
go back to reference Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.PubMedPubMedCentralCrossRef Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.PubMedPubMedCentralCrossRef
28.
go back to reference Bacon CW, D’Orso I. CDK9: a signaling hub for transcriptional control. Transcription. 2019;10(2):57–75.PubMedCrossRef Bacon CW, D’Orso I. CDK9: a signaling hub for transcriptional control. Transcription. 2019;10(2):57–75.PubMedCrossRef
29.
go back to reference Haghverdi L, Buttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016;13(10):845–8.PubMedCrossRef Haghverdi L, Buttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016;13(10):845–8.PubMedCrossRef
31.
go back to reference Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 2013;32(10):1284–95.PubMedCrossRef Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 2013;32(10):1284–95.PubMedCrossRef
32.
go back to reference Lee J, Zhang LL, Wu W, Guo H, Li Y, Sukhanova M, et al. Activation of MYC, a bona fide client of HSP90, contributes to intrinsic ibrutinib resistance in mantle cell lymphoma. Blood Adv. 2018;2(16):2039–51.PubMedPubMedCentralCrossRef Lee J, Zhang LL, Wu W, Guo H, Li Y, Sukhanova M, et al. Activation of MYC, a bona fide client of HSP90, contributes to intrinsic ibrutinib resistance in mantle cell lymphoma. Blood Adv. 2018;2(16):2039–51.PubMedPubMedCentralCrossRef
33.
go back to reference Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov. 2020;19(1):23–38.PubMedCrossRef Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov. 2020;19(1):23–38.PubMedCrossRef
34.
go back to reference Miao W, Li L, Zhao Y, Dai X, Chen X, Wang Y. HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N(6)-methyladenosine. Nat Commun. 2019;10(1):3613.ADSPubMedPubMedCentralCrossRef Miao W, Li L, Zhao Y, Dai X, Chen X, Wang Y. HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N(6)-methyladenosine. Nat Commun. 2019;10(1):3613.ADSPubMedPubMedCentralCrossRef
35.
go back to reference Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19(1):23–36.PubMedCrossRef Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19(1):23–36.PubMedCrossRef
36.
go back to reference Wang L, Tang G, Medeiros LJ, Xu J, Huang W, Yin CC, et al. MYC rearrangement but not extra MYC copies is an independent prognostic factor in patients with mantle cell lymphoma. Haematologica. 2021;106(5):1381–9.PubMedCrossRef Wang L, Tang G, Medeiros LJ, Xu J, Huang W, Yin CC, et al. MYC rearrangement but not extra MYC copies is an independent prognostic factor in patients with mantle cell lymphoma. Haematologica. 2021;106(5):1381–9.PubMedCrossRef
37.
go back to reference Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122(24):3884–91.PubMedCrossRef Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122(24):3884–91.PubMedCrossRef
38.
go back to reference Dani C, Blanchard JM, Piechaczyk M, El Sabouty S, Marty L, Jeanteur P. Extreme instability of myc mRNA in normal and transformed human cells. Proc Natl Acad Sci USA. 1984;81(22):7046–50.ADSPubMedPubMedCentralCrossRef Dani C, Blanchard JM, Piechaczyk M, El Sabouty S, Marty L, Jeanteur P. Extreme instability of myc mRNA in normal and transformed human cells. Proc Natl Acad Sci USA. 1984;81(22):7046–50.ADSPubMedPubMedCentralCrossRef
39.
go back to reference Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol. 2000;20(7):2423–35.PubMedPubMedCentralCrossRef Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol. 2000;20(7):2423–35.PubMedPubMedCentralCrossRef
41.
go back to reference Wang M, Zhao XH, Jiang HJ, Yan JC, Sotomayor E, Shain KH, et al. CDK9 as a new therapeutic vulnerability for ibrutinib resistance in mantle cell lymphoma (MCL). Blood. 2020;136(Suppl 1):34–5. Wang M, Zhao XH, Jiang HJ, Yan JC, Sotomayor E, Shain KH, et al. CDK9 as a new therapeutic vulnerability for ibrutinib resistance in mantle cell lymphoma (MCL). Blood. 2020;136(Suppl 1):34–5.
42.
go back to reference Poole CJ, Zheng W, Lee H, Young D, Lodh A, Chadli A, et al. Targeting the MYC oncogene in Burkitt lymphoma through HSP90 inhibition. Cancers (Basel). 2018;10(11):448.PubMedCrossRef Poole CJ, Zheng W, Lee H, Young D, Lodh A, Chadli A, et al. Targeting the MYC oncogene in Burkitt lymphoma through HSP90 inhibition. Cancers (Basel). 2018;10(11):448.PubMedCrossRef
43.
go back to reference Jacobson C, Kopp N, Layer JV, Redd RA, Tschuri S, Haebe S, et al. HSP90 inhibition overcomes ibrutinib resistance in mantle cell lymphoma. Blood. 2016;128(21):2517–26.PubMedCrossRef Jacobson C, Kopp N, Layer JV, Redd RA, Tschuri S, Haebe S, et al. HSP90 inhibition overcomes ibrutinib resistance in mantle cell lymphoma. Blood. 2016;128(21):2517–26.PubMedCrossRef
44.
go back to reference Miao W, Li L, Zhao Y, Dai X, Chen X, Wang Y. HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N6-methyladenosine. Nat Commun. 2019;10(1):3613.ADSPubMedPubMedCentralCrossRef Miao W, Li L, Zhao Y, Dai X, Chen X, Wang Y. HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N6-methyladenosine. Nat Commun. 2019;10(1):3613.ADSPubMedPubMedCentralCrossRef
Metadata
Title
The HSP90-MYC-CDK9 network drives therapeutic resistance in mantle cell lymphoma
Authors
Fangfang Yan
Vivian Jiang
Alexa Jordan
Yuxuan Che
Yang Liu
Qingsong Cai
Yu Xue
Yijing Li
Joseph McIntosh
Zhihong Chen
Jovanny Vargas
Lei Nie
Yixin Yao
Heng-Huan Lee
Wei Wang
JohnNelson R. Bigcal
Maria Badillo
Jitendra Meena
Christopher Flowers
Jia Zhou
Zhongming Zhao
Lukas M. Simon
Michael Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Experimental Hematology & Oncology / Issue 1/2024
Electronic ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-024-00484-9

Other articles of this Issue 1/2024

Experimental Hematology & Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine