Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Malaria | Research

Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience?

Authors: Elison E. Kemibala, Agenor Mafra-Neto, Jesse Saroli, Rodrigo Silva, Anitha Philbert, Kija Ng’habi, Woodbridge A. Foster, Teun Dekker, Leonard E. G. Mboera

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Mosquitoes use odours to find energy resources, blood hosts and oviposition sites. While these odour sources are normally spatio-temporally segregated in a mosquito’s life history, here this study explored to what extent a combination of flower- and human-mimicking synthetic volatiles would attract the malaria vector Anopheles gambiae sensu stricto (s.s.)

Methods

In the laboratory and in large (80 m2) outdoor cages in Tanzania, nulliparous and parous A. gambiae s.s. were offered choices between a blend of human skin volatiles (Skin Lure), a blend of floral volatiles (Vectrax), or a combination thereof. The blends consisted of odours that induce distinct, non-overlapping activation patterns in the olfactory circuitry, in sensory neurons expressing olfactory receptors (ORs) and ionotropic receptors (IRs), respectively. Catches were compared between treatments.

Results

In the laboratory nulliparous and parous mosquitoes preferred skin odours and combinations thereof over floral odours. However, in semi-field settings nulliparous were significantly more caught with floral odours, whereas no differences were observed for parous females. Combining floral and human volatiles did not augment attractiveness.

Conclusions

Nulliparous and parous A. gambiae s.s. are attracted to combinations of odours derived from spatio-temporally segregated resources in mosquito life-history (floral and human volatiles). This is favourable as mosquito populations are comprised of individuals whose nutritional and developmental state steer them to diverging odours sources, baits that attract irrespective of mosquito status could enhance overall effectiveness and use in monitoring and control. However, combinations of floral and skin odours did not augment attraction in semi-field settings, in spite of the fact that these blends activate distinct sets of sensory neurons. Instead, mosquito preference appeared to be modulated by blood meal experience from floral to a more generic attraction to odour blends. Results are discussed both from an odour coding, as well as from an application perspective.
Literature
1.
go back to reference Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJC, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008;372:1545–54.PubMedPubMedCentral Ceesay SJ, Casals-Pascual C, Erskine J, Anya SE, Duah NO, Fulford AJC, et al. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet. 2008;372:1545–54.PubMedPubMedCentral
2.
go back to reference O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the burden of malaria in sub-Saharan Africa. Lancet. 2010;10:545–55.PubMed O’Meara WP, Mangeni JN, Steketee R, Greenwood B. Changes in the burden of malaria in sub-Saharan Africa. Lancet. 2010;10:545–55.PubMed
3.
go back to reference Steketee RW, Campbell CC. Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J. 2010;9:299.PubMedPubMedCentral Steketee RW, Campbell CC. Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Malar J. 2010;9:299.PubMedPubMedCentral
4.
go back to reference Pigott DM, Atun R, Moyes CL, Simon IH, Peter WG. Funding for malaria control 2006–2010: a comprehensive global assessment. Malar J. 2012;11:246.PubMedPubMedCentral Pigott DM, Atun R, Moyes CL, Simon IH, Peter WG. Funding for malaria control 2006–2010: a comprehensive global assessment. Malar J. 2012;11:246.PubMedPubMedCentral
5.
go back to reference Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.PubMed Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.PubMed
6.
go back to reference Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, et al. The decline in paediatric malaria admissions on the coast of Kenya. Malar J. 2007;6:151.PubMedPubMedCentral Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, et al. The decline in paediatric malaria admissions on the coast of Kenya. Malar J. 2007;6:151.PubMedPubMedCentral
7.
go back to reference Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.PubMedPubMedCentral Otten M, Aregawi M, Were W, Karema C, Medin A, Bekele W, et al. Evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J. 2009;8:14.PubMedPubMedCentral
8.
go back to reference Eckert E, Florey LS, Tongren JE, Salgado SR, Rukundo A, Habimana JP, et al. Impact evaluation of malaria control interventions on morbidity and all-cause child mortality in Rwanda, 2000–2010. Am J Trop Med Hyg. 2017;97(3 Suppl):99–110.PubMedPubMedCentral Eckert E, Florey LS, Tongren JE, Salgado SR, Rukundo A, Habimana JP, et al. Impact evaluation of malaria control interventions on morbidity and all-cause child mortality in Rwanda, 2000–2010. Am J Trop Med Hyg. 2017;97(3 Suppl):99–110.PubMedPubMedCentral
9.
go back to reference Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria J. 2012;10:80. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malaria J. 2012;10:80.
10.
go back to reference Corbel V, N’Guessan R. Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors. London: IntechOpen Publ; 2013. Corbel V, N’Guessan R. Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. In: Manguin S, editor. Anopheles mosquitoes: new insights into malaria vectors. London: IntechOpen Publ; 2013.
12.
go back to reference Nauen R. Insecticide resistance in disease vectors of public health importance. Pest Manag Sci. 2007;63:628–33.PubMed Nauen R. Insecticide resistance in disease vectors of public health importance. Pest Manag Sci. 2007;63:628–33.PubMed
13.
go back to reference Najera JA, Gonzalez-Silva M, Alonzo PL. Some lessons for the future from the global malaria eradication programme (1955–1969). PLoS Med. 2011;8:e1000412.PubMedPubMedCentral Najera JA, Gonzalez-Silva M, Alonzo PL. Some lessons for the future from the global malaria eradication programme (1955–1969). PLoS Med. 2011;8:e1000412.PubMedPubMedCentral
14.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.PubMed Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.PubMed
15.
go back to reference Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci USA. 2012;109:19063–70.PubMed Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, et al. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc Natl Acad Sci USA. 2012;109:19063–70.PubMed
16.
go back to reference Kabula B, Tungu P, Malima R, Rowland M, Minja J, Wililo R, et al. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complex in Tanzania. Med Vet Entomol. 2014;28:244–52.PubMed Kabula B, Tungu P, Malima R, Rowland M, Minja J, Wililo R, et al. Distribution and spread of pyrethroid and DDT resistance among the Anopheles gambiae complex in Tanzania. Med Vet Entomol. 2014;28:244–52.PubMed
18.
go back to reference Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.PubMed Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.PubMed
19.
go back to reference Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–74.PubMed Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–74.PubMed
20.
go back to reference Bentley MD, Day JF. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol. 1989;34:401–21.PubMed Bentley MD, Day JF. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol. 1989;34:401–21.PubMed
21.
22.
go back to reference Bowen MF. The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol. 1991;36:139–58.PubMed Bowen MF. The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol. 1991;36:139–58.PubMed
23.
go back to reference Mafra-Neto A, Saroli J, Da Silva RO, Mboera LEG, White GB, Woodbridge F, et al. Getting them where they live—semiochemical-based strategies to address major gaps in vector control programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. Adv Biorational Control Med V Pests. 2018;7:101–52. Mafra-Neto A, Saroli J, Da Silva RO, Mboera LEG, White GB, Woodbridge F, et al. Getting them where they live—semiochemical-based strategies to address major gaps in vector control programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. Adv Biorational Control Med V Pests. 2018;7:101–52.
24.
go back to reference Mafra-Neto A, Dekker T. Novel odor-based strategies for integrated management of vectors of disease. Curr Opin Insect Sci. 2019;34:105–11.PubMedPubMedCentral Mafra-Neto A, Dekker T. Novel odor-based strategies for integrated management of vectors of disease. Curr Opin Insect Sci. 2019;34:105–11.PubMedPubMedCentral
25.
go back to reference Lewis WJ, Martin WR. Semiochemicals for use with parasitoids: status and future. J Chem Ecol. 1990;16:3067–89.PubMed Lewis WJ, Martin WR. Semiochemicals for use with parasitoids: status and future. J Chem Ecol. 1990;16:3067–89.PubMed
26.
go back to reference Moraes MCB, Pareja M, Laumann RA, Borges MS. The chemical volatiles (semiochemicals) produced by neotropical stink bugs (Hemiptera: Pentatomidae). Neotrop Entomol. 2008;37:489–505.PubMed Moraes MCB, Pareja M, Laumann RA, Borges MS. The chemical volatiles (semiochemicals) produced by neotropical stink bugs (Hemiptera: Pentatomidae). Neotrop Entomol. 2008;37:489–505.PubMed
27.
go back to reference Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e8951.PubMedPubMedCentral Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE. 2010;5:e8951.PubMedPubMedCentral
28.
go back to reference Allan SA, Bernier UR, Kline DL. Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol. 2006;43:226–31. Allan SA, Bernier UR, Kline DL. Laboratory evaluation of avian odors for mosquito (Diptera: Culicidae) attraction. J Med Entomol. 2006;43:226–31.
29.
go back to reference Dekker T, Steib B, Cardé RT, Geier M. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol. 2002;16:91–8.PubMed Dekker T, Steib B, Cardé RT, Geier M. L-lactic acid: a human-signifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol. 2002;16:91–8.PubMed
30.
go back to reference Njiru BN, Mukabana WR, Takken W, Knols BG. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J. 2006;5:39.PubMedPubMedCentral Njiru BN, Mukabana WR, Takken W, Knols BG. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J. 2006;5:39.PubMedPubMedCentral
31.
go back to reference Nyasembe VO, Tchouassi DP, Mbogo CM. Linalool oxide: generalist plant-based lure for mosquito disease vectors. Parasit Vectors. 2015;8:581.PubMedPubMedCentral Nyasembe VO, Tchouassi DP, Mbogo CM. Linalool oxide: generalist plant-based lure for mosquito disease vectors. Parasit Vectors. 2015;8:581.PubMedPubMedCentral
32.
go back to reference Menger DJ, Van Loon JJ, Takken W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol. 2014;28:407–13.PubMed Menger DJ, Van Loon JJ, Takken W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol. 2014;28:407–13.PubMed
33.
go back to reference Whitney AQ, Günter CM, Edita ER, Sandra AA, Kristopher LA, John CB, et al. Evaluation of attractive toxic sugar bait (ATSB)—barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop. 2014;131:104–10. Whitney AQ, Günter CM, Edita ER, Sandra AA, Kristopher LA, John CB, et al. Evaluation of attractive toxic sugar bait (ATSB)—barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida. Acta Trop. 2014;131:104–10.
34.
go back to reference Van Loon JJ, Smallegange RC, Bukovinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 2015;41:567–73.PubMedPubMedCentral Van Loon JJ, Smallegange RC, Bukovinszkiné-Kiss G, Jacobs F, De Rijk M, Mukabana WR, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 2015;41:567–73.PubMedPubMedCentral
35.
36.
go back to reference Scott-Fiorenzano JM, Fulcher AP, Seeger KE. Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasit Vectors. 2017;10:9.PubMedPubMedCentral Scott-Fiorenzano JM, Fulcher AP, Seeger KE. Evaluations of dual attractant toxic sugar baits for surveillance and control of Aedes aegypti and Aedes albopictus in Florida. Parasit Vectors. 2017;10:9.PubMedPubMedCentral
37.
go back to reference Jacob WJ, Tchouassi DP, Lagat ZO, Mathenge EM, Mweresad CK, Torto B. Independent and interactive effect of plant- and mammalian- based odors on the response of the malaria vector, Anopheles gambiae. Acta Trop. 2018;185:98–106.PubMed Jacob WJ, Tchouassi DP, Lagat ZO, Mathenge EM, Mweresad CK, Torto B. Independent and interactive effect of plant- and mammalian- based odors on the response of the malaria vector, Anopheles gambiae. Acta Trop. 2018;185:98–106.PubMed
38.
go back to reference Omondia WP, Owino EA, Odongo D, Mwangangi JM, Torto B, Tchouassi DP. Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Acta Trop. 2019;200:105163. Omondia WP, Owino EA, Odongo D, Mwangangi JM, Torto B, Tchouassi DP. Differential response to plant- and human-derived odorants in field surveillance of the dengue vector, Aedes aegypti. Acta Trop. 2019;200:105163.
39.
40.
go back to reference Knols BG, Njiru BN, Mathenge EM. Malaria Sphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J. 2002;1:19.PubMedPubMedCentral Knols BG, Njiru BN, Mathenge EM. Malaria Sphere: a greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar J. 2002;1:19.PubMedPubMedCentral
41.
go back to reference Schorkopf DP, Christos GS, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.PubMedPubMedCentral Schorkopf DP, Christos GS, Mboera LEG, Mafra-Neto A, Ignell R, Dekker T. Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control. PLoS Negl Trop Dis. 2016;10:e0005043.PubMedPubMedCentral
42.
go back to reference Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.PubMed Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–63.PubMed
43.
go back to reference Wickham H. Ggplot2: elegant graphics for data analysis. 2nd ed. Cham: Springer; 2016. Wickham H. Ggplot2: elegant graphics for data analysis. 2nd ed. Cham: Springer; 2016.
44.
go back to reference Sparks JT, Botsko G, Swale DR, Boland LM, Patel SS, Dickens C. Membrane proteins mediating reception and transduction in chemosensory neurons in mosquitoes. Front Physiol. 2018;9:1309.PubMedPubMedCentral Sparks JT, Botsko G, Swale DR, Boland LM, Patel SS, Dickens C. Membrane proteins mediating reception and transduction in chemosensory neurons in mosquitoes. Front Physiol. 2018;9:1309.PubMedPubMedCentral
45.
go back to reference Sijua KP, Bill SH, Rickard I. Immunocytochemical localization of serotonin in the central and peripheral chemosensory system of mosquitoes. Arthrop Struct Dev. 2008;37:248–59. Sijua KP, Bill SH, Rickard I. Immunocytochemical localization of serotonin in the central and peripheral chemosensory system of mosquitoes. Arthrop Struct Dev. 2008;37:248–59.
46.
go back to reference Kline DL, Takken W, Wood JR, Carlson DA. Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, l-lactic acid and phenols as attractants for mosquitoes. Med Vet Entomol. 1990;4:383–91.PubMed Kline DL, Takken W, Wood JR, Carlson DA. Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, l-lactic acid and phenols as attractants for mosquitoes. Med Vet Entomol. 1990;4:383–91.PubMed
47.
go back to reference Kline DL, Bernier UR, Hogsette JA. Efficacy of three attractant blends tested in combination with carbon dioxide against natural populations of mosquitoes and biting flies at the lower Suwannee Wildlife Refuge. J Am Mosq Control Assoc. 2012;28:123–7.PubMed Kline DL, Bernier UR, Hogsette JA. Efficacy of three attractant blends tested in combination with carbon dioxide against natural populations of mosquitoes and biting flies at the lower Suwannee Wildlife Refuge. J Am Mosq Control Assoc. 2012;28:123–7.PubMed
48.
go back to reference Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR. Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol. 2003;40:653–6.PubMed Bernier UR, Kline DL, Posey KH, Booth MM, Yost RA, Barnard DR. Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. J Med Entomol. 2003;40:653–6.PubMed
49.
go back to reference Williams CR, Bergbauer R, Geier M, Kline DL, Bernier UR, Russell RC, Ritchie SA. Laboratory and field assessment of some kairomones blends for host seeking Aedes aegypti. J Am Mosq Control Assoc. 2006;22:641–7.PubMed Williams CR, Bergbauer R, Geier M, Kline DL, Bernier UR, Russell RC, Ritchie SA. Laboratory and field assessment of some kairomones blends for host seeking Aedes aegypti. J Am Mosq Control Assoc. 2006;22:641–7.PubMed
50.
go back to reference Hoel DF, Kline DL, Allan SA, Grant A. Evaluation of carbon dioxide, 1-octen- 3-ol, and lactic acid as baits in mosquito magnet™ pro traps for Aedes albopictus in North Central Florida. J Am Mosq Control Assoc. 2007;23:11–7.PubMed Hoel DF, Kline DL, Allan SA, Grant A. Evaluation of carbon dioxide, 1-octen- 3-ol, and lactic acid as baits in mosquito magnet™ pro traps for Aedes albopictus in North Central Florida. J Am Mosq Control Assoc. 2007;23:11–7.PubMed
51.
go back to reference Müller GC, Xue RD, Schlein Y. Differential attraction of Aedes albopictus in the field to flowers, fruits, and honeydew. Acta Trop. 2011;118:45–9.PubMed Müller GC, Xue RD, Schlein Y. Differential attraction of Aedes albopictus in the field to flowers, fruits, and honeydew. Acta Trop. 2011;118:45–9.PubMed
52.
53.
go back to reference Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS ONE. 2014;9:e89818.PubMedPubMedCentral Nyasembe VO, Tchouassi DP, Kirwa HK, Foster WA, Teal PEA, Borgemeister C, et al. Development and assessment of plant-based synthetic odor baits for surveillance and control of malaria vectors. PLoS ONE. 2014;9:e89818.PubMedPubMedCentral
54.
go back to reference Baker T, Fadamiro H, Cosse A. Moth uses fine tuning for odour resolution. Nature. 1998;393:530. Baker T, Fadamiro H, Cosse A. Moth uses fine tuning for odour resolution. Nature. 1998;393:530.
55.
go back to reference Vickers NJ, Christensen TA, Baker TC, Hildebrand JG. Odour-plume dynamics influence the brain’s olfactory code. Nature. 2001;410:466–70.PubMed Vickers NJ, Christensen TA, Baker TC, Hildebrand JG. Odour-plume dynamics influence the brain’s olfactory code. Nature. 2001;410:466–70.PubMed
56.
go back to reference Foster WA, Takken W. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res. 2004;94:145–57.PubMed Foster WA, Takken W. Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae (Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res. 2004;94:145–57.PubMed
57.
go back to reference Missbach C, Dwek HKMD, Vegol H, Vilcinskas A, Stensmyr MC, Hansson BS, et al. Evolution of insect olfactory receptors. eLife. 2014;3:e02115.PubMedPubMedCentral Missbach C, Dwek HKMD, Vegol H, Vilcinskas A, Stensmyr MC, Hansson BS, et al. Evolution of insect olfactory receptors. eLife. 2014;3:e02115.PubMedPubMedCentral
58.
go back to reference Benton R. On the Origin of smell: odorant receptors in insects. Cell Mol Life Sci. 2006;63:1579–85.PubMed Benton R. On the Origin of smell: odorant receptors in insects. Cell Mol Life Sci. 2006;63:1579–85.PubMed
59.
go back to reference Lebreton S, Becher PG, Hansson BS, Witzgall P. Attraction of Drosophila melanogaster males to food-related and fly odours. J Insect Physiol. 2012;58:125–9.PubMed Lebreton S, Becher PG, Hansson BS, Witzgall P. Attraction of Drosophila melanogaster males to food-related and fly odours. J Insect Physiol. 2012;58:125–9.PubMed
60.
go back to reference Vantaux A, Lefèvre T, Dabiré KR, Cohuet A. Individual experience affects host choice in malaria vector mosquitoes. Parasit Vectors. 2014;7:249.PubMedPubMedCentral Vantaux A, Lefèvre T, Dabiré KR, Cohuet A. Individual experience affects host choice in malaria vector mosquitoes. Parasit Vectors. 2014;7:249.PubMedPubMedCentral
61.
go back to reference Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. J Exp Biol. 2018;221:157131. Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. J Exp Biol. 2018;221:157131.
62.
go back to reference Klowden MJ, Crim JW, Young L, Shrouder LA, Lea AO. Endogenous regulation of mosquito host-seeking behaviour by a neuropeptide. J Insect Physiol. 1994;40:399–406. Klowden MJ, Crim JW, Young L, Shrouder LA, Lea AO. Endogenous regulation of mosquito host-seeking behaviour by a neuropeptide. J Insect Physiol. 1994;40:399–406.
63.
go back to reference Klowden MJ. Endogenous regulation of the attraction of Aedes aegypti mosquitoes. J Am Mosq Control Assoc. 1994;10:326–32.PubMed Klowden MJ. Endogenous regulation of the attraction of Aedes aegypti mosquitoes. J Am Mosq Control Assoc. 1994;10:326–32.PubMed
64.
go back to reference Taparia T, Ignell R, Hill SR. Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito. BMC Genomics. 2017;18:393.PubMedPubMedCentral Taparia T, Ignell R, Hill SR. Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito. BMC Genomics. 2017;18:393.PubMedPubMedCentral
65.
go back to reference Qualls WA, Müller GC, Traore SF. Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar J. 2015;14:301.PubMedPubMedCentral Qualls WA, Müller GC, Traore SF. Indoor use of attractive toxic sugar bait (ATSB) to effectively control malaria vectors in Mali, West Africa. Malar J. 2015;14:301.PubMedPubMedCentral
66.
go back to reference Impoinvil DE, Kongere JO, Foster WA, Njiru BN, Killeen GF, Githure JI, et al. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol. 2004;18:108–15.PubMed Impoinvil DE, Kongere JO, Foster WA, Njiru BN, Killeen GF, Githure JI, et al. Feeding and survival of the malaria vector Anopheles gambiae on plants growing in Kenya. Med Vet Entomol. 2004;18:108–15.PubMed
67.
go back to reference Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–50.PubMed Briegel H. Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990;27:839–50.PubMed
68.
go back to reference Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.PubMed Fernandes L, Briegel H. Reproductive physiology of Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2005;30:11–26.PubMed
Metadata
Title
Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience?
Authors
Elison E. Kemibala
Agenor Mafra-Neto
Jesse Saroli
Rodrigo Silva
Anitha Philbert
Kija Ng’habi
Woodbridge A. Foster
Teun Dekker
Leonard E. G. Mboera
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03395-2

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.