Skip to main content
Top
Published in: European Radiology 5/2009

01-05-2009 | Experimental

Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver

Authors: Alain Luciani, Claire Wilhelm, Patrick Bruneval, Patrick Cunin, Gwennhael Autret, Alain Rahmouni, Olivier Clément, Florence Gazeau

Published in: European Radiology | Issue 5/2009

Login to get access

Abstract

The purpose of this study was to determine whether an external magnet field can induce preferential trafficking of magnetically labeled Huh7 hepatoma cells to the liver following liver cell transplantation. Huh7 hepatoma cells were labeled with anionic magnetic nanoparticles (AMNP) and tagged with a fluorescent membrane marker (PKH67). Iron-uptake was measured by magnetophoresis. Twenty C57Bl6 mice received an intrasplenic injection of 2 × 106 labeled cells. An external magnet (0.29 T; 25 T/m) was placed over the liver of 13 randomly selected animals (magnet group), while the remaining 7 animals served as controls. MRI (1.5 T) and confocal fluorescence microscopy (CFM) were performed 10 days post-transplantation. The presence and location of labeled cells within the livers were compared in the magnet group and controls, and confronted with histological analysis representing the standard of reference. Mean iron content per cell was 6 pg. Based on histology, labeled cells were more frequently present within recipient livers in the magnet group (p < 0.01) where their distribution was preferentially peri-vascular (p < 0.05). MRI and CFM gave similar results for the overall detection of transplanted cells (kappa = 0.828) and for the identification of peri-vascular cells (kappa = 0.78). Application of an external magnet can modify the trafficking of transplanted cells, especially by promoting the formation of perivascular aggregates.
Literature
1.
go back to reference Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499PubMedCrossRef Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499PubMedCrossRef
2.
go back to reference Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504PubMedCrossRef Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504PubMedCrossRef
3.
go back to reference Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRef Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRef
4.
go back to reference Arbab AS, Liu W, Frank JA (2006) Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3:427–439PubMedCrossRef Arbab AS, Liu W, Frank JA (2006) Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3:427–439PubMedCrossRef
5.
go back to reference Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980PubMedCrossRef Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6:974–980PubMedCrossRef
6.
go back to reference Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496PubMedCrossRef Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496PubMedCrossRef
7.
go back to reference Pislaru SV, Harbuzariu A, Agarwal G, Witt T, Gulati R, Sandhu NP, Mueske C, Kalra M, Simari RD, Sandhu GS (2006) Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation 114:I314–I318PubMedCrossRef Pislaru SV, Harbuzariu A, Agarwal G, Witt T, Gulati R, Sandhu NP, Mueske C, Kalra M, Simari RD, Sandhu GS (2006) Magnetic forces enable rapid endothelialization of synthetic vascular grafts. Circulation 114:I314–I318PubMedCrossRef
8.
go back to reference Wilhelm C, Bal L, Smirnov P, Galy-Fauroux I, Clement O, Gazeau F, Emmerich J (2007) Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28:3797–3806PubMedCrossRef Wilhelm C, Bal L, Smirnov P, Galy-Fauroux I, Clement O, Gazeau F, Emmerich J (2007) Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28:3797–3806PubMedCrossRef
9.
go back to reference Wilhelm C, Riviere C, Biais N (2007) Magnetic control of Dictyostelium aggregation. Phys Rev E Stat Nonlin Soft Matter Phys 75:041906PubMed Wilhelm C, Riviere C, Biais N (2007) Magnetic control of Dictyostelium aggregation. Phys Rev E Stat Nonlin Soft Matter Phys 75:041906PubMed
10.
go back to reference Ino K, Ito A, Honda H (2007) Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng 97:1309–1317PubMedCrossRef Ino K, Ito A, Honda H (2007) Cell patterning using magnetite nanoparticles and magnetic force. Biotechnol Bioeng 97:1309–1317PubMedCrossRef
11.
12.
go back to reference Raschzok N, Morgul MH, Pinkernelle J, Vondran FW, Billecke N, Kammer NN, Pless G, Adonopoulou MK, Leist C, Stelter L, Teichgraber U, Schwartlander R, Sauer IM (2008) Imaging of primary human hepatocytes performed with micron-sized iron oxide particles and clinical magnetic resonance tomography. J Cell Mol Med 12:1384–1394PubMedCrossRef Raschzok N, Morgul MH, Pinkernelle J, Vondran FW, Billecke N, Kammer NN, Pless G, Adonopoulou MK, Leist C, Stelter L, Teichgraber U, Schwartlander R, Sauer IM (2008) Imaging of primary human hepatocytes performed with micron-sized iron oxide particles and clinical magnetic resonance tomography. J Cell Mol Med 12:1384–1394PubMedCrossRef
13.
go back to reference Luciani A, Parouchev A, Smirnov P, Braga G, Wilhelm C, Gazeau F, Boudechiche L, L’Hermine-Coulomb A, Dagher I, Franco D, Rahmouni A, Hadchouel M, Weber A, Clement O (2008) In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system-initial experience in mice. Eur Radiol 18:59–69PubMedCrossRef Luciani A, Parouchev A, Smirnov P, Braga G, Wilhelm C, Gazeau F, Boudechiche L, L’Hermine-Coulomb A, Dagher I, Franco D, Rahmouni A, Hadchouel M, Weber A, Clement O (2008) In vivo imaging of transplanted hepatocytes with a 1.5-T clinical MRI system-initial experience in mice. Eur Radiol 18:59–69PubMedCrossRef
14.
go back to reference Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA (2004) In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 15:351–360PubMedCrossRef Arbab AS, Jordan EK, Wilson LB, Yocum GT, Lewis BK, Frank JA (2004) In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther 15:351–360PubMedCrossRef
15.
go back to reference Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, Sandhu GS (2006) Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol 48:1839–1845PubMedCrossRef Pislaru SV, Harbuzariu A, Gulati R, Witt T, Sandhu NP, Simari RD, Sandhu GS (2006) Magnetically targeted endothelial cell localization in stented vessels. J Am Coll Cardiol 48:1839–1845PubMedCrossRef
16.
go back to reference Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, Friedman G, Levy RJ (2008) High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 105:698–703PubMedCrossRef Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, Friedman G, Levy RJ (2008) High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 105:698–703PubMedCrossRef
17.
go back to reference Lubbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95:200–206PubMedCrossRef Lubbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95:200–206PubMedCrossRef
18.
go back to reference Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak F (2003) Magnetic drug targeting-biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11:139–149PubMedCrossRef Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak F (2003) Magnetic drug targeting-biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 11:139–149PubMedCrossRef
19.
go back to reference Fortin-Ripoche JP, Martina MS, Gazeau F, Menager C, Wilhelm C, Bacri JC, Lesieur S, Clement O (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239:415–424PubMedCrossRef Fortin-Ripoche JP, Martina MS, Gazeau F, Menager C, Wilhelm C, Bacri JC, Lesieur S, Clement O (2006) Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 239:415–424PubMedCrossRef
20.
go back to reference Riviere C, Martina MS, Tomita Y, Wilhelm C, Tran Dinh A, Menager C, Pinard E, Lesieur S, Gazeau F, Seylaz J (2007) Magnetic targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: a dynamic imaging study in mice. Radiology 244:439–448PubMedCrossRef Riviere C, Martina MS, Tomita Y, Wilhelm C, Tran Dinh A, Menager C, Pinard E, Lesieur S, Gazeau F, Seylaz J (2007) Magnetic targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: a dynamic imaging study in mice. Radiology 244:439–448PubMedCrossRef
21.
go back to reference Martina MS, Fortin JP, Fournier L, Menager C, Gazeau F, Clement O, Lesieur S (2007) Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Mol Imaging 6:140–146PubMed Martina MS, Fortin JP, Fournier L, Menager C, Gazeau F, Clement O, Lesieur S (2007) Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Mol Imaging 6:140–146PubMed
22.
go back to reference Riviere C, Boudghene FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D, Deux JF (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235:959–967PubMedCrossRef Riviere C, Boudghene FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D, Deux JF (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235:959–967PubMedCrossRef
23.
go back to reference Smirnov P, Lavergne E, Gazeau F, Lewin M, Boissonnas A, Doan BT, Gillet B, Combadiere C, Combadiere B, Clement O (2006) In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell-based anticancer therapy. Magn Reson Med 56:498–508PubMedCrossRef Smirnov P, Lavergne E, Gazeau F, Lewin M, Boissonnas A, Doan BT, Gillet B, Combadiere C, Combadiere B, Clement O (2006) In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell-based anticancer therapy. Magn Reson Med 56:498–508PubMedCrossRef
24.
go back to reference Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654PubMedCrossRef Billotey C, Wilhelm C, Devaud M, Bacri JC, Bittoun J, Gazeau F (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654PubMedCrossRef
25.
go back to reference Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125PubMedCrossRef Wilhelm C, Gazeau F, Bacri JC (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31:118–125PubMedCrossRef
26.
go back to reference Teare GF, Horan PK, Slezak SE, Smith C, Hay JB (1991) Long-term tracking of lymphocytes in vivo: the migration of PKH-labeled lymphocytes. Cell Immunol 134:157–170PubMedCrossRef Teare GF, Horan PK, Slezak SE, Smith C, Hay JB (1991) Long-term tracking of lymphocytes in vivo: the migration of PKH-labeled lymphocytes. Cell Immunol 134:157–170PubMedCrossRef
27.
go back to reference Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson JF, Vicaut E (2004) Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J Vasc Res 41:400–411PubMedCrossRef Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson JF, Vicaut E (2004) Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J Vasc Res 41:400–411PubMedCrossRef
28.
go back to reference D’Hallewin MA, El Khatib S, Leroux A, Bezdetnaya L, Guillemin F (2005) Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J Urol 174:736–740PubMedCrossRef D’Hallewin MA, El Khatib S, Leroux A, Bezdetnaya L, Guillemin F (2005) Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J Urol 174:736–740PubMedCrossRef
29.
go back to reference Pelled G, Dodd SJ, Koretsky AP (2006) Catheter confocal fluorescence imaging and functional magnetic resonance imaging of local and systems level recovery in the regenerating rodent sciatic nerve. Neuroimage 30:847–856PubMedCrossRef Pelled G, Dodd SJ, Koretsky AP (2006) Catheter confocal fluorescence imaging and functional magnetic resonance imaging of local and systems level recovery in the regenerating rodent sciatic nerve. Neuroimage 30:847–856PubMedCrossRef
30.
go back to reference Allen KJ, Cheah DM, Wright PF, Gazeas S, Pettigrew-Buck NE, Deal YH, Mercer JF, Williamson R (2004) Liver cell transplantation leads to repopulation and functional correction in a mouse model of Wilson’s disease. J Gastroenterol Hepatol 19:1283–1290PubMedCrossRef Allen KJ, Cheah DM, Wright PF, Gazeas S, Pettigrew-Buck NE, Deal YH, Mercer JF, Williamson R (2004) Liver cell transplantation leads to repopulation and functional correction in a mouse model of Wilson’s disease. J Gastroenterol Hepatol 19:1283–1290PubMedCrossRef
31.
go back to reference Heyn C, Bowen CV, Rutt BK, Foster PJ (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53:312–320PubMedCrossRef Heyn C, Bowen CV, Rutt BK, Foster PJ (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53:312–320PubMedCrossRef
32.
go back to reference Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906PubMedCrossRef Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906PubMedCrossRef
33.
go back to reference Shapiro EM, Sharer K, Skrtic S, Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249PubMedCrossRef Shapiro EM, Sharer K, Skrtic S, Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249PubMedCrossRef
34.
go back to reference Widder KJ, Morris RM, Poore G, Howard DP Jr, Senyei AE (1981) Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci USA 78:579–581PubMedCrossRef Widder KJ, Morris RM, Poore G, Howard DP Jr, Senyei AE (1981) Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci USA 78:579–581PubMedCrossRef
35.
go back to reference Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693PubMed Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693PubMed
36.
go back to reference Lemke AJ, Senfft von Pilsach MI, Lubbe A, Bergemann C, Riess H, Felix R (2004) MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur Radiol 14:1949–1955PubMedCrossRef Lemke AJ, Senfft von Pilsach MI, Lubbe A, Bergemann C, Riess H, Felix R (2004) MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur Radiol 14:1949–1955PubMedCrossRef
Metadata
Title
Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver
Authors
Alain Luciani
Claire Wilhelm
Patrick Bruneval
Patrick Cunin
Gwennhael Autret
Alain Rahmouni
Olivier Clément
Florence Gazeau
Publication date
01-05-2009
Publisher
Springer-Verlag
Published in
European Radiology / Issue 5/2009
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-008-1262-9

Other articles of this Issue 5/2009

European Radiology 5/2009 Go to the issue