Skip to main content
Top
Published in: BMC Medical Imaging 1/2020

01-12-2020 | Magnetic Resonance Imaging | Research article

The impact of 18F-FDOPA-PET/MRI image fusion in detecting liver metastasis in patients with neuroendocrine tumors of the gastrointestinal tract

Authors: O. Barachini, R. Bernt, S. Mirzaei, C. Pirich, K. Hergan, S. Zandieh

Published in: BMC Medical Imaging | Issue 1/2020

Login to get access

Abstract

Background

This study assesses the value of image fusion using 18F-fluoro-L-DOPA (18F-DOPA) positron emission tomography (PET) and magnetic resonance imaging (MRI) for examining patients with neuroendocrine tumors (NETs) and a suspicion of metastasis of the liver.

Methods

Eleven patients (five women and six men aged between 20 and 81, with a mean age of 54.6 years) were included in the study. All patients underwent whole-body 18F-DOPA PET examinations and contrast-enhanced MRI with diffusion-weighted sequences (DWS). Image fusion was performed using a semiautomatic voxel-based algorithm. Images obtained using PET and MRI were assessed separately. Side-by-side evaluations of fused PET/MRI images were also performed.

Results

In total, 55 liver lesions (52 liver metastases and 3 benign lesions) were detected in the 11 patients. Sensitivity detection for liver lesions was higher when using PET/CT than when using contrast-enhanced MRI without DWSs and lower than using MRI with DWSs. The sensitivity of PET/MRI image fusion in the detection of liver metastasis was significantly higher than that of MRI with DWSs (P < 0.05).

Conclusion

Images of the liver obtained using PET and MRI in patients with NETs exhibited characteristic features. These findings suggest that an appropriate combination of available imaging modalities can optimize patient evaluations.
Literature
1.
go back to reference Ilett EE, et al. Neuroendocrine carcinomas of the gastroenteropancreatic system: a comprehensive review. Diagnostics (Basel, Switzerland). 2015;5:119–76. Ilett EE, et al. Neuroendocrine carcinomas of the gastroenteropancreatic system: a comprehensive review. Diagnostics (Basel, Switzerland). 2015;5:119–76.
2.
go back to reference Fraenkel M, Kim M, Faggiano A, de Herder WW, Valk GD. Incidence of gastroenteropancreatic neuroendocrine tumours: a systematic review of the literature. Endocr Relat Cancer. 2014;21:153–63.CrossRef Fraenkel M, Kim M, Faggiano A, de Herder WW, Valk GD. Incidence of gastroenteropancreatic neuroendocrine tumours: a systematic review of the literature. Endocr Relat Cancer. 2014;21:153–63.CrossRef
3.
go back to reference Yao JC, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.CrossRef Yao JC, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.CrossRef
4.
go back to reference Anlauf M. Neuroendocrine neoplasms of the gastroenteropancreatic system: pathology and classification. Horm Metab Res. 2011;43:825–31.CrossRef Anlauf M. Neuroendocrine neoplasms of the gastroenteropancreatic system: pathology and classification. Horm Metab Res. 2011;43:825–31.CrossRef
5.
go back to reference Pavel M, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103:172–85.CrossRef Pavel M, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103:172–85.CrossRef
6.
go back to reference Auernhammer CJ, Goke B. Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin. Gut. 2011;60:1009–21.CrossRef Auernhammer CJ, Goke B. Therapeutic strategies for advanced neuroendocrine carcinomas of jejunum/ileum and pancreatic origin. Gut. 2011;60:1009–21.CrossRef
11.
go back to reference Armbruster M, et al. Evaluation of neuroendocrine liver metastases: a comparison of dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography/computed tomography. Investig Radiol. 2014;49:7–14.CrossRef Armbruster M, et al. Evaluation of neuroendocrine liver metastases: a comparison of dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography/computed tomography. Investig Radiol. 2014;49:7–14.CrossRef
12.
go back to reference Moryoussef F, et al. Impact of liver and whole-body diffusion-weighted MRI for neuroendocrine tumors on patient management: a pilot study. Neuroendocrinology. 2017;104:264–72.CrossRef Moryoussef F, et al. Impact of liver and whole-body diffusion-weighted MRI for neuroendocrine tumors on patient management: a pilot study. Neuroendocrinology. 2017;104:264–72.CrossRef
13.
go back to reference d'Assignies G, et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013;268:390–9.CrossRef d'Assignies G, et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013;268:390–9.CrossRef
14.
go back to reference Rufini V, et al. Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging. 2012;37:1004–20.CrossRef Rufini V, et al. Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging. 2012;37:1004–20.CrossRef
15.
go back to reference Fiebrich HB, de Jong JR, Kema IP, et al. Total 18F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour. Eur J Nucl Med Mol Imaging. 2011;38:1854–61.CrossRef Fiebrich HB, de Jong JR, Kema IP, et al. Total 18F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour. Eur J Nucl Med Mol Imaging. 2011;38:1854–61.CrossRef
16.
go back to reference Imperiale A, et al. 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med. 2014;55:367–72.CrossRef Imperiale A, et al. 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med. 2014;55:367–72.CrossRef
17.
go back to reference Koopmans KP, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006;7:728–34.CrossRef Koopmans KP, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006;7:728–34.CrossRef
18.
go back to reference Koopmans KP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26:1489–95.CrossRef Koopmans KP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26:1489–95.CrossRef
19.
go back to reference Schreiter NF, et al. Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours. Eur Radiol. 2012;22:458–67.CrossRef Schreiter NF, et al. Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours. Eur Radiol. 2012;22:458–67.CrossRef
20.
go back to reference Beiderwellen KJ, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Investig Radiol. 2013;48:273–9.CrossRef Beiderwellen KJ, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Investig Radiol. 2013;48:273–9.CrossRef
21.
go back to reference Gaertner FC, et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Investig Radiol. 2013;48:263–72.CrossRef Gaertner FC, et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Investig Radiol. 2013;48:263–72.CrossRef
22.
go back to reference Hope TA, et al. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging. 2015;40:1432–40.CrossRef Hope TA, et al. Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging. 2015;40:1432–40.CrossRef
23.
go back to reference Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. 3rd ed. Hoboken: Wiley; 2003.CrossRef Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. 3rd ed. Hoboken: Wiley; 2003.CrossRef
24.
go back to reference Yu MH, Lee JM, Hur BY, et al. Gadoxetic acid-enhanced MRI and diffusion-weighted imaging for the detection of colorectal liver metastases after neoadjuvant chemotherapy. Eur Radiol. 2015;25:2428–36.CrossRef Yu MH, Lee JM, Hur BY, et al. Gadoxetic acid-enhanced MRI and diffusion-weighted imaging for the detection of colorectal liver metastases after neoadjuvant chemotherapy. Eur Radiol. 2015;25:2428–36.CrossRef
25.
go back to reference Grazioli L, Ambrosini R, Frittoli B, et al. Primary benign liver lesions. Eur J Radiol. 2017;95:378–98.CrossRef Grazioli L, Ambrosini R, Frittoli B, et al. Primary benign liver lesions. Eur J Radiol. 2017;95:378–98.CrossRef
27.
go back to reference Corrias G, Monti S, Horvat N, et al. Imaging features of malignant abdominal neuroendocrine tumors with rare presentation. Clin Imaging. 2018;51:59–64.CrossRef Corrias G, Monti S, Horvat N, et al. Imaging features of malignant abdominal neuroendocrine tumors with rare presentation. Clin Imaging. 2018;51:59–64.CrossRef
28.
go back to reference Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.CrossRef Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.CrossRef
29.
go back to reference Carideo L, Prosperi D, Panzuto F, et al. Role of combined [68Ga]Ga-DOTA-SST analogues and [18F] FDG PET/CT in the management of GEP-NENs: a systematic review. J Clin Med. 2019;8(7):1032.CrossRef Carideo L, Prosperi D, Panzuto F, et al. Role of combined [68Ga]Ga-DOTA-SST analogues and [18F] FDG PET/CT in the management of GEP-NENs: a systematic review. J Clin Med. 2019;8(7):1032.CrossRef
30.
go back to reference Tirosh A, Kebebew E. The utility of 68Ga-DOTATATE positron-emission tomography/computed tomography in the diagnosis, management, follow-up and prognosis of neuroendocrine tumors. Future Oncol. 2018;14(2):111–22.CrossRef Tirosh A, Kebebew E. The utility of 68Ga-DOTATATE positron-emission tomography/computed tomography in the diagnosis, management, follow-up and prognosis of neuroendocrine tumors. Future Oncol. 2018;14(2):111–22.CrossRef
31.
go back to reference Beuthien-Baumann B. 18F-DOPA-PET in neuroendocrine tumours (NET). Nuklearmediziner. 2009;32(2):131–4.CrossRef Beuthien-Baumann B. 18F-DOPA-PET in neuroendocrine tumours (NET). Nuklearmediziner. 2009;32(2):131–4.CrossRef
32.
go back to reference Hoegerle S, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220(2):373–80.CrossRef Hoegerle S, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220(2):373–80.CrossRef
33.
go back to reference Armbruster M, Zech CJ, Sourbron S, Ceelen F, Auernhammer CJ, Rist C, Haug A, Singnurkar A, Reiser MF, Sommer WH. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J Magn Reson Imaging. 2014;40(2):457–66.CrossRef Armbruster M, Zech CJ, Sourbron S, Ceelen F, Auernhammer CJ, Rist C, Haug A, Singnurkar A, Reiser MF, Sommer WH. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J Magn Reson Imaging. 2014;40(2):457–66.CrossRef
34.
go back to reference Shenoy-Bhangle A, Baliyan V, Kordbacheh H, Guimaraes AR, Kambadakone A. Diffusion weighted magnetic resonance imaging of liver: principles, clinical applications and recent updates. World J Hepatol. 2017;9(26):1081–91.CrossRef Shenoy-Bhangle A, Baliyan V, Kordbacheh H, Guimaraes AR, Kambadakone A. Diffusion weighted magnetic resonance imaging of liver: principles, clinical applications and recent updates. World J Hepatol. 2017;9(26):1081–91.CrossRef
35.
go back to reference Vilgrain V, Esvan M, Ronot M, Caumont-Prim A, Aubé C, Chatellier G. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases. Eur Radiol. 2016;26:4595–615.CrossRef Vilgrain V, Esvan M, Ronot M, Caumont-Prim A, Aubé C, Chatellier G. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases. Eur Radiol. 2016;26:4595–615.CrossRef
36.
go back to reference Belousova E, Karmazanovsky G, Kriger A, et al. Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumor grades. Clin Radiol. 2017;72(2):150–8.CrossRef Belousova E, Karmazanovsky G, Kriger A, et al. Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumor grades. Clin Radiol. 2017;72(2):150–8.CrossRef
37.
go back to reference Kaltenbach B, Wichmann JL, Pfeifer S, et al. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT. Eur J Radiol. 2018;105:20–4.CrossRef Kaltenbach B, Wichmann JL, Pfeifer S, et al. Iodine quantification to distinguish hepatic neuroendocrine tumor metastasis from hepatocellular carcinoma at dual-source dual-energy liver CT. Eur J Radiol. 2018;105:20–4.CrossRef
Metadata
Title
The impact of 18F-FDOPA-PET/MRI image fusion in detecting liver metastasis in patients with neuroendocrine tumors of the gastrointestinal tract
Authors
O. Barachini
R. Bernt
S. Mirzaei
C. Pirich
K. Hergan
S. Zandieh
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2020
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-020-00424-z

Other articles of this Issue 1/2020

BMC Medical Imaging 1/2020 Go to the issue