Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Magnetic Resonance Imaging | Research

Radiomics based of deep medullary veins on susceptibility-weighted imaging in infants: predicting the severity of brain injury of neonates with perinatal asphyxia

Authors: Xiamei Zhuang, Huashan Lin, Junwei Li, Yan Yin, Xiao Dong, Ke Jin

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Objective

This study aimed to apply radiomics analysis of the change of deep medullary veins (DMV) on susceptibility-weighted imaging (SWI), and to distinguish mild hypoxic-ischemic encephalopathy (HIE) from moderate-to-severe HIE in neonates.

Methods

A total of 190 neonates with HIE (24 mild HIE and 166 moderate-to-severe HIE) were included in this study. All of them were born at 37 gestational weeks or later. The DMVs were manually included in the regions of interest (ROI). For the purpose of identifying optimal radiomics features and to construct Rad-scores, 1316 features were extracted. LASSO regression was used to identify the optimal radiomics features. Using the Red-score and the clinical independent factor, a nomogram was constructed. In order to evaluate the performance of the different models, receiver operating characteristic (ROC) curve analysis was applied. Decision curve analysis (DCA) was implemented to evaluate the clinical utility.

Results

A total of 15 potential predictors were selected and contributed to Red-score construction. Compared with the radiomics model, the nomogram combined model incorporating Red-score and urea nitrogen did not better distinguish between the mild HIE and moderate-to-severe HIE group. For the training cohort, the AUC of the radiomics model and the combined nomogram model was 0.84 and 0.84. For the validation cohort, the AUC of the radiomics model and the combined nomogram model was 0.80 and 0.79, respectively. The addition of clinical characteristics to the nomogram failed to distinguish mild HIE from moderate-to-severe HIE group.

Conclusion

We developed a radiomics model and combined nomogram model as an indicator to distinguish mild HIE from moderate-to-severe HIE group.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chau V, Poskitt KJ, Dunham CP, et al. Magnetic resonance imaging in the encephalopathic term newborn. Curr Pediatr Rev. 2014;10(1):28–36.CrossRef Chau V, Poskitt KJ, Dunham CP, et al. Magnetic resonance imaging in the encephalopathic term newborn. Curr Pediatr Rev. 2014;10(1):28–36.CrossRef
3.
go back to reference Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696–705.CrossRef Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976;33(10):696–705.CrossRef
4.
go back to reference Rutherford M, Ramenghi LA, Edwards AD, et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol. 2009;9(1):39–45.CrossRef Rutherford M, Ramenghi LA, Edwards AD, et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol. 2009;9(1):39–45.CrossRef
5.
go back to reference Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol. 2007;29(1):9–17.CrossRef Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. Am J Neuroradiol. 2007;29(1):9–17.CrossRef
6.
go back to reference Arrigoni F, Parazzini C, Righini A, et al. Deep medullary vein involvement in neonates with brain damage: an MR imaging study. AJNR Am J Neuroradiol. 2011;32(11):2030–6.CrossRef Arrigoni F, Parazzini C, Righini A, et al. Deep medullary vein involvement in neonates with brain damage: an MR imaging study. AJNR Am J Neuroradiol. 2011;32(11):2030–6.CrossRef
7.
go back to reference Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34(18):2157–64.CrossRef Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34(18):2157–64.CrossRef
9.
go back to reference Pei Q, Yi X, Chen C, et al. Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer. Eur Radiol. 2021;32(1):714–24.CrossRef Pei Q, Yi X, Chen C, et al. Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer. Eur Radiol. 2021;32(1):714–24.CrossRef
12.
go back to reference Kim HG, Choi JW, Han M, et al. Texture analysis of deep medullary veins on susceptibility-weighted imaging in infants: evaluating developmental and ischemic changes. Eur Radiol. 2020;30(5):2594–603.CrossRef Kim HG, Choi JW, Han M, et al. Texture analysis of deep medullary veins on susceptibility-weighted imaging in infants: evaluating developmental and ischemic changes. Eur Radiol. 2020;30(5):2594–603.CrossRef
14.
go back to reference Jia TY, Xiong JF, Li XY, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol. 2019;29(9):4742–50.CrossRef Jia TY, Xiong JF, Li XY, et al. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Eur Radiol. 2019;29(9):4742–50.CrossRef
15.
go back to reference Shankaran S, McDonald SA, Laptook AR, et al. Neonatal magnetic resonance imaging pattern of brain injury as a biomarker of childhood outcomes following a trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2015;167(5):987-93.e3.CrossRef Shankaran S, McDonald SA, Laptook AR, et al. Neonatal magnetic resonance imaging pattern of brain injury as a biomarker of childhood outcomes following a trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2015;167(5):987-93.e3.CrossRef
16.
go back to reference Mukherjee D, Kalita D, Das D, et al. Clinico-epidemiological profile, etiology, and imaging in neonatal stroke: an observational study from Eastern India. Neurol India. 2021;69(1):62–5.CrossRef Mukherjee D, Kalita D, Das D, et al. Clinico-epidemiological profile, etiology, and imaging in neonatal stroke: an observational study from Eastern India. Neurol India. 2021;69(1):62–5.CrossRef
17.
go back to reference Friedman DP. Abnormalities of the deep medullary white matter veins: MR imaging findings. Am J Roentgenol. 1997;168(4):1103–8.CrossRef Friedman DP. Abnormalities of the deep medullary white matter veins: MR imaging findings. Am J Roentgenol. 1997;168(4):1103–8.CrossRef
18.
go back to reference Zhang L, Gao J, Zhao Y, et al. The application of magnetic resonance imaging and diffusion-weighted imaging in the diagnosis of hypoxic-ischemic encephalopathy and kernicterus in premature infants. Transl Pediatr. 2021;10(4):958–66.CrossRef Zhang L, Gao J, Zhao Y, et al. The application of magnetic resonance imaging and diffusion-weighted imaging in the diagnosis of hypoxic-ischemic encephalopathy and kernicterus in premature infants. Transl Pediatr. 2021;10(4):958–66.CrossRef
19.
go back to reference Machie M, Weeke L, de Vries LS, et al. MRI score ability to detect abnormalities in mild hypoxic-ischemic encephalopathy. Pediatr Neurol. 2020;116:32–8.CrossRef Machie M, Weeke L, de Vries LS, et al. MRI score ability to detect abnormalities in mild hypoxic-ischemic encephalopathy. Pediatr Neurol. 2020;116:32–8.CrossRef
20.
go back to reference Lally PJ, Montaldo P, Oliveira V, et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol. 2018;18(1):35–45.CrossRef Lally PJ, Montaldo P, Oliveira V, et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol. 2018;18(1):35–45.CrossRef
22.
go back to reference Young A, Poretti A, Bosemani T, et al. Sensitivity of susceptibility-weighted imaging in detecting developmental venous anomalies and associated cavernomas and microhemorrhages in children. Neuroradiology. 2017;59(8):797–802.CrossRef Young A, Poretti A, Bosemani T, et al. Sensitivity of susceptibility-weighted imaging in detecting developmental venous anomalies and associated cavernomas and microhemorrhages in children. Neuroradiology. 2017;59(8):797–802.CrossRef
23.
go back to reference Meoded A, Poretti A, Benson JE, et al. Evaluation of the ischemic penumbra focusing on the venous drainage: the role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke. J Neuroradiol. 2013;41(2):108–16.CrossRef Meoded A, Poretti A, Benson JE, et al. Evaluation of the ischemic penumbra focusing on the venous drainage: the role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke. J Neuroradiol. 2013;41(2):108–16.CrossRef
24.
go back to reference Wagner F, Haenggi MM, Wagner B, et al. The value of susceptibility-weighted imaging (SWI) in patients with non-neonatal hypoxic-ischemic encephalopathy. Resuscitation. 2015;88:75–80.CrossRef Wagner F, Haenggi MM, Wagner B, et al. The value of susceptibility-weighted imaging (SWI) in patients with non-neonatal hypoxic-ischemic encephalopathy. Resuscitation. 2015;88:75–80.CrossRef
25.
go back to reference Kitamura G, Kido D, Wycliffe N, et al. Hypoxic-ischemic injury: utility of susceptibility-weighted imaging. Pediatr Neurol. 2011;45(4):220–4.CrossRef Kitamura G, Kido D, Wycliffe N, et al. Hypoxic-ischemic injury: utility of susceptibility-weighted imaging. Pediatr Neurol. 2011;45(4):220–4.CrossRef
26.
go back to reference Liauw L, van der Grond J, van den Berg-Huysmans AA, et al. Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology. 2008;247(1):204–12.CrossRef Liauw L, van der Grond J, van den Berg-Huysmans AA, et al. Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology. 2008;247(1):204–12.CrossRef
27.
go back to reference Boichot C, Walker PM, Durand C, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239(3):839–48.CrossRef Boichot C, Walker PM, Durand C, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239(3):839–48.CrossRef
Metadata
Title
Radiomics based of deep medullary veins on susceptibility-weighted imaging in infants: predicting the severity of brain injury of neonates with perinatal asphyxia
Authors
Xiamei Zhuang
Huashan Lin
Junwei Li
Yan Yin
Xiao Dong
Ke Jin
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-022-00954-y

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue