Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2023

14-12-2022 | Magnetic Resonance Imaging | Review

Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms

Authors: Aaryani Tipirneni-Sajja, Sarah Brasher, Utsav Shrestha, Hayden Johnson, Cara Morin, Sanjaya K. Satapathy

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 4/2023

Login to get access

Abstract

Quantitative magnetic resonance imaging (MRI) techniques are emerging as non-invasive alternatives to biopsy for assessment of diffuse liver diseases of iron overload, steatosis and fibrosis. For testing and validating the accuracy of these techniques, phantoms are often used as stand-ins to human tissue to mimic diffuse liver pathologies. However, currently, there is no standardization in the preparation of MRI-based liver phantoms for mimicking iron overload, steatosis, fibrosis or a combination of these pathologies as various sizes and types of materials are used to mimic the same liver disease. Liver phantoms that mimic specific MR features of diffuse liver diseases observed in vivo are important for testing and calibrating new MRI techniques and for evaluating signal models to accurately quantify these features. In this study, we review the liver morphology associated with these diffuse diseases, discuss the quantitative MR techniques for assessing these liver pathologies, and comprehensively examine published liver phantom studies and discuss their benefits and limitations.
Literature
1.
go back to reference Labranche R, Gilbert G, Cerny M, Vu KN, Soulieres D, Olivie D, Billiard JS, Yokoo T, Tang A (2018) Liver iron quantification with MR imaging: a primer for radiologists. Radiographics 38(2):392–412PubMedCrossRef Labranche R, Gilbert G, Cerny M, Vu KN, Soulieres D, Olivie D, Billiard JS, Yokoo T, Tang A (2018) Liver iron quantification with MR imaging: a primer for radiologists. Radiographics 38(2):392–412PubMedCrossRef
2.
go back to reference Cho YJ, Kim WS, Choi YH, Lee SB, Lee S, Cheon JE, Paek M, Woo S (2020) Validation and feasibility of liver T1 mapping using free breathing MOLLI sequence in children and young adults. Sci Rep 10(1):18390PubMedPubMedCentralCrossRef Cho YJ, Kim WS, Choi YH, Lee SB, Lee S, Cheon JE, Paek M, Woo S (2020) Validation and feasibility of liver T1 mapping using free breathing MOLLI sequence in children and young adults. Sci Rep 10(1):18390PubMedPubMedCentralCrossRef
3.
go back to reference Deng J, Fishbein MH, Rigsby CK, Zhang G, Schoeneman SE, Donaldson JS (2014) Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Pediatr Radiol 44(11):1379–1387PubMedCrossRef Deng J, Fishbein MH, Rigsby CK, Zhang G, Schoeneman SE, Donaldson JS (2014) Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease. Pediatr Radiol 44(11):1379–1387PubMedCrossRef
5.
go back to reference Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, Koteish A, Brancati FL, Clark JM (2013) Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 178(1):38–45PubMedPubMedCentralCrossRef Lazo M, Hernaez R, Eberhardt MS, Bonekamp S, Kamel I, Guallar E, Koteish A, Brancati FL, Clark JM (2013) Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 178(1):38–45PubMedPubMedCentralCrossRef
6.
go back to reference Nelson JE, Klintworth H, Kowdley KV (2012) Iron metabolism in nonalcoholic fatty liver disease. Curr Gastroenterol Rep 14(1):8–16PubMedCrossRef Nelson JE, Klintworth H, Kowdley KV (2012) Iron metabolism in nonalcoholic fatty liver disease. Curr Gastroenterol Rep 14(1):8–16PubMedCrossRef
7.
go back to reference Janiszewski PM, Oeffinger KC, Church TS, Dunn AL, Eshelman DA, Victor RG, Brooks S, Turoff AJ, Sinclair E, Murray JC, Bashore L, Ross R (2007) Abdominal obesity, liver fat, and muscle composition in survivors of childhood acute lymphoblastic leukemia. J Clin Endocrinol Metab 92(10):3816–3821PubMedCrossRef Janiszewski PM, Oeffinger KC, Church TS, Dunn AL, Eshelman DA, Victor RG, Brooks S, Turoff AJ, Sinclair E, Murray JC, Bashore L, Ross R (2007) Abdominal obesity, liver fat, and muscle composition in survivors of childhood acute lymphoblastic leukemia. J Clin Endocrinol Metab 92(10):3816–3821PubMedCrossRef
8.
go back to reference Yokoo T, Browning JD (2014) Fat and iron quantification in the liver: past, present, and future. Top Magn Reson Imaging 23(2):73–94PubMedCrossRef Yokoo T, Browning JD (2014) Fat and iron quantification in the liver: past, present, and future. Top Magn Reson Imaging 23(2):73–94PubMedCrossRef
9.
go back to reference Harris R, Harman DJ, Card TR, Aithal GP, Guha IN (2017) Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol Hepatol 2(4):288–297PubMedCrossRef Harris R, Harman DJ, Card TR, Aithal GP, Guha IN (2017) Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterol Hepatol 2(4):288–297PubMedCrossRef
10.
go back to reference Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113(20):4853–4855PubMedPubMedCentralCrossRef Hankins JS, McCarville MB, Loeffler RB, Smeltzer MP, Onciu M, Hoffer FA, Li CS, Wang WC, Ware RE, Hillenbrand CM (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113(20):4853–4855PubMedPubMedCentralCrossRef
11.
go back to reference St Pierre TG, El-Beshlawy A, Elalfy M, Al Jefri A, Al Zir K, Daar S, Habr D, Kriemler-Krahn U, Taher A (2014) Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 71(6):2215–2223PubMedCrossRef St Pierre TG, El-Beshlawy A, Elalfy M, Al Jefri A, Al Zir K, Daar S, Habr D, Kriemler-Krahn U, Taher A (2014) Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 71(6):2215–2223PubMedCrossRef
12.
go back to reference Zhao R, Hernando D, Harris DT, Hinshaw LA, Li K, Ananthakrishnan L, Bashir MR, Duan X, Ghasabeh MA, Kamel IR, Lowry C, Mahesh M, Marin D, Miller J, Pickhardt PJ, Shaffer J, Yokoo T, Brittain JH, Reeder SB (2021) Multisite multivendor validation of a quantitative MRI and CT compatible fat phantom. Med Phys 48(8):4375–4386PubMedCrossRef Zhao R, Hernando D, Harris DT, Hinshaw LA, Li K, Ananthakrishnan L, Bashir MR, Duan X, Ghasabeh MA, Kamel IR, Lowry C, Mahesh M, Marin D, Miller J, Pickhardt PJ, Shaffer J, Yokoo T, Brittain JH, Reeder SB (2021) Multisite multivendor validation of a quantitative MRI and CT compatible fat phantom. Med Phys 48(8):4375–4386PubMedCrossRef
13.
go back to reference Hernando D, Sharma SD, AliyariGhasabeh M, Alvis BD, Arora SS, Hamilton G, Pan L, Shaffer JM, Sofue K, Szeverenyi NM, Welch EB, Yuan Q, Bashir MR, Kamel IR, Rice MJ, Sirlin CB, Yokoo T, Reeder SB (2017) Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med 77(4):1516–1524PubMedCrossRef Hernando D, Sharma SD, AliyariGhasabeh M, Alvis BD, Arora SS, Hamilton G, Pan L, Shaffer JM, Sofue K, Szeverenyi NM, Welch EB, Yuan Q, Bashir MR, Kamel IR, Rice MJ, Sirlin CB, Yokoo T, Reeder SB (2017) Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med 77(4):1516–1524PubMedCrossRef
14.
go back to reference Pickhardt PJ, Graffy PM, Reeder SB, Hernando D, Li K (2018) Quantification of liver fat content with unenhanced MDCT: phantom and clinical correlation with MRI proton density fat fraction. AJR Am J Roentgenol 211(3):W151–W157PubMedPubMedCentralCrossRef Pickhardt PJ, Graffy PM, Reeder SB, Hernando D, Li K (2018) Quantification of liver fat content with unenhanced MDCT: phantom and clinical correlation with MRI proton density fat fraction. AJR Am J Roentgenol 211(3):W151–W157PubMedPubMedCentralCrossRef
15.
go back to reference Hu HH, Yokoo T, Bashir MR, Sirlin CB, Hernando D, Malyarenko D, Chenevert TL, Smith MA, Serai SD, Middleton MS, Henderson WC, Hamilton G, Shaffer J, Shu Y, Tkach JA, Trout AT, Obuchowski N, Brittain JH, Jackson EF, Reeder SB, Committee RQIBAPB (2021) Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology 298(3):640–651PubMedCrossRef Hu HH, Yokoo T, Bashir MR, Sirlin CB, Hernando D, Malyarenko D, Chenevert TL, Smith MA, Serai SD, Middleton MS, Henderson WC, Hamilton G, Shaffer J, Shu Y, Tkach JA, Trout AT, Obuchowski N, Brittain JH, Jackson EF, Reeder SB, Committee RQIBAPB (2021) Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology 298(3):640–651PubMedCrossRef
16.
go back to reference Ehman RL (2022) Magnetic resonance elastography: from invention to standard of care. Abdom Radiol (NY) 47(9):3028–3036PubMedCrossRef Ehman RL (2022) Magnetic resonance elastography: from invention to standard of care. Abdom Radiol (NY) 47(9):3028–3036PubMedCrossRef
17.
go back to reference Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF (2019) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 49(7):e101–e121PubMedCrossRef Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF (2019) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 49(7):e101–e121PubMedCrossRef
20.
go back to reference Krafft AJ, Loeffler RB, Song R, Bian X, McCarville MB, Hankins JS, Hillenbrand CM (2016) Does fat suppression via chemically selective saturation affect R2*-MRI for transfusional iron overload assessment? A clinical evaluation at 1.5T and 3T. Magn Reson Med 76(2):591–601PubMedCrossRef Krafft AJ, Loeffler RB, Song R, Bian X, McCarville MB, Hankins JS, Hillenbrand CM (2016) Does fat suppression via chemically selective saturation affect R2*-MRI for transfusional iron overload assessment? A clinical evaluation at 1.5T and 3T. Magn Reson Med 76(2):591–601PubMedCrossRef
21.
go back to reference Hong W, He Q, Fan S, Carl M, Shao H, Chen J, Chang EY, Du J (2017) Imaging and quantification of iron-oxide nanoparticles (IONP) using MP-RAGE and UTE based sequences. Magn Reson Med 78(1):226–232PubMedCrossRef Hong W, He Q, Fan S, Carl M, Shao H, Chen J, Chang EY, Du J (2017) Imaging and quantification of iron-oxide nanoparticles (IONP) using MP-RAGE and UTE based sequences. Magn Reson Med 78(1):226–232PubMedCrossRef
22.
go back to reference Hines CD, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB (2009) T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 30(5):1215–1222PubMedPubMedCentralCrossRef Hines CD, Yu H, Shimakawa A, McKenzie CA, Brittain JH, Reeder SB (2009) T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 30(5):1215–1222PubMedPubMedCentralCrossRef
23.
go back to reference Oudry J, Chen J, Glaser KJ, Miette V, Sandrin L, Ehman RL (2009) Cross-validation of magnetic resonance elastography and ultrasound-based transient elastography: a preliminary phantom study. J Magn Reson Imaging 30(5):1145–1150PubMedPubMedCentralCrossRef Oudry J, Chen J, Glaser KJ, Miette V, Sandrin L, Ehman RL (2009) Cross-validation of magnetic resonance elastography and ultrasound-based transient elastography: a preliminary phantom study. J Magn Reson Imaging 30(5):1145–1150PubMedPubMedCentralCrossRef
24.
go back to reference Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, Mishra PK, Grande JP, Macura SI, Lerman LO (2017) Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology 283(1):77–86PubMedCrossRef Jiang K, Ferguson CM, Ebrahimi B, Tang H, Kline TL, Burningham TA, Mishra PK, Grande JP, Macura SI, Lerman LO (2017) Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis. Radiology 283(1):77–86PubMedCrossRef
25.
go back to reference Alustiza JM, Emparanza JI, Castiella A, Casado A, Garrido A, Aldazabal P, San Vicente M, Garcia N, Asensio AB, Banales J, Salvador E, Moyua A, Arozena X, Zarco M, Jauregui L, Vicente O (2015) Measurement of liver iron concentration by MRI is reproducible. Biomed Res Int 2015:294024PubMedPubMedCentralCrossRef Alustiza JM, Emparanza JI, Castiella A, Casado A, Garrido A, Aldazabal P, San Vicente M, Garcia N, Asensio AB, Banales J, Salvador E, Moyua A, Arozena X, Zarco M, Jauregui L, Vicente O (2015) Measurement of liver iron concentration by MRI is reproducible. Biomed Res Int 2015:294024PubMedPubMedCentralCrossRef
26.
go back to reference Morisaka H, Motosugi U, Glaser KJ, Ichikawa S, Ehman RL, Sano K, Ichikawa T, Onishi H (2017) Comparison of diagnostic accuracies of two- and three-dimensional MR elastography of the liver. J Magn Reson Imaging 45(4):1163–1170PubMedCrossRef Morisaka H, Motosugi U, Glaser KJ, Ichikawa S, Ehman RL, Sano K, Ichikawa T, Onishi H (2017) Comparison of diagnostic accuracies of two- and three-dimensional MR elastography of the liver. J Magn Reson Imaging 45(4):1163–1170PubMedCrossRef
27.
go back to reference Reeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA, Brittain JH (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29(6):1332–1339PubMedPubMedCentralCrossRef Reeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA, Brittain JH (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29(6):1332–1339PubMedPubMedCentralCrossRef
28.
29.
go back to reference Tipirneni-Sajja A, Krafft AJ, Loeffler RB, Song R, Bahrami A, Hankins JS, Hillenbrand CM (2019) Autoregressive moving average modeling for hepatic iron quantification in the presence of fat. J Magn Reson Imaging 50(5):1620–1632PubMedPubMedCentralCrossRef Tipirneni-Sajja A, Krafft AJ, Loeffler RB, Song R, Bahrami A, Hankins JS, Hillenbrand CM (2019) Autoregressive moving average modeling for hepatic iron quantification in the presence of fat. J Magn Reson Imaging 50(5):1620–1632PubMedPubMedCentralCrossRef
30.
go back to reference Zhao R, Hamilton G, Brittain JH, Reeder SB, Hernando D (2021) Design and evaluation of quantitative MRI phantoms to mimic the simultaneous presence of fat, iron, and fibrosis in the liver. Magn Reson Med 85(2):734–747PubMedCrossRef Zhao R, Hamilton G, Brittain JH, Reeder SB, Hernando D (2021) Design and evaluation of quantitative MRI phantoms to mimic the simultaneous presence of fat, iron, and fibrosis in the liver. Magn Reson Med 85(2):734–747PubMedCrossRef
31.
go back to reference Ahmad MS, Makhamrah O, Suardi N, Shukri A, Razak NNANA, Mohammad H (2021) Agarose and wax tissue-mimicking phantom for dynamic magnetic resonance imaging of the liver. J Med Clin Res Rev 5(12):11CrossRef Ahmad MS, Makhamrah O, Suardi N, Shukri A, Razak NNANA, Mohammad H (2021) Agarose and wax tissue-mimicking phantom for dynamic magnetic resonance imaging of the liver. J Med Clin Res Rev 5(12):11CrossRef
32.
go back to reference In E, Naguib H, Haider M (2014) Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles. J Med Imaging (Bellingham) 1(3):035502PubMedCrossRef In E, Naguib H, Haider M (2014) Mechanical stability analysis of carrageenan-based polymer gel for magnetic resonance imaging liver phantom with lesion particles. J Med Imaging (Bellingham) 1(3):035502PubMedCrossRef
33.
go back to reference Keenan KE, Ainslie M, Barker AJ, Boss MA, Cecil KM, Charles C, Chenevert TL, Clarke L, Evelhoch JL, Finn P, Gembris D, Gunter JL, Hill DLG, Jack CR Jr, Jackson EF, Liu G, Russek SE, Sharma SD, Steckner M, Stupic KF, Trzasko JD, Yuan C, Zheng J (2018) Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med 79(1):48–61PubMedCrossRef Keenan KE, Ainslie M, Barker AJ, Boss MA, Cecil KM, Charles C, Chenevert TL, Clarke L, Evelhoch JL, Finn P, Gembris D, Gunter JL, Hill DLG, Jack CR Jr, Jackson EF, Liu G, Russek SE, Sharma SD, Steckner M, Stupic KF, Trzasko JD, Yuan C, Zheng J (2018) Quantitative magnetic resonance imaging phantoms: a review and the need for a system phantom. Magn Reson Med 79(1):48–61PubMedCrossRef
34.
go back to reference Stupic KF, Ainslie M, Boss MA, Charles C, Dienstfrey AM, Evelhoch JL, Finn P, Gimbutas Z, Gunter JL, Hill DLG, Jack CR, Jackson EF, Karaulanov T, Keenan KE, Liu G, Martin MN, Prasad PV, Rentz NS, Yuan C, Russek SE (2021) A standard system phantom for magnetic resonance imaging. Magn Reson Med 86(3):1194–1211PubMedPubMedCentralCrossRef Stupic KF, Ainslie M, Boss MA, Charles C, Dienstfrey AM, Evelhoch JL, Finn P, Gimbutas Z, Gunter JL, Hill DLG, Jack CR, Jackson EF, Karaulanov T, Keenan KE, Liu G, Martin MN, Prasad PV, Rentz NS, Yuan C, Russek SE (2021) A standard system phantom for magnetic resonance imaging. Magn Reson Med 86(3):1194–1211PubMedPubMedCentralCrossRef
35.
go back to reference Kato H, Kuroda M, Yoshimura K, Yoshida A, Hanamoto K, Kawasaki S, Shibuya K, Kanazawa S (2005) Composition of MRI phantom equivalent to human tissues. Med Phys 32(10):3199–3208PubMedCrossRef Kato H, Kuroda M, Yoshimura K, Yoshida A, Hanamoto K, Kawasaki S, Shibuya K, Kanazawa S (2005) Composition of MRI phantom equivalent to human tissues. Med Phys 32(10):3199–3208PubMedCrossRef
36.
go back to reference Hoffman DH, Ayoola A, Nickel D, Han F, Chandarana H, Shanbhogue KP (2020) T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom Radiol (NY) 45(3):692–700PubMedCrossRef Hoffman DH, Ayoola A, Nickel D, Han F, Chandarana H, Shanbhogue KP (2020) T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom Radiol (NY) 45(3):692–700PubMedCrossRef
37.
go back to reference Obmann VC, Mertineit N, Marx C, Berzigotti A, Ebner L, Heverhagen JT, Christe A, Huber AT (2019) Liver MR relaxometry at 3T—segmental normal T1 and T2* values in patients without focal or diffuse liver disease and in patients with increased liver fat and elevated liver stiffness. Sci Rep 9(1):8106PubMedPubMedCentralCrossRef Obmann VC, Mertineit N, Marx C, Berzigotti A, Ebner L, Heverhagen JT, Christe A, Huber AT (2019) Liver MR relaxometry at 3T—segmental normal T1 and T2* values in patients without focal or diffuse liver disease and in patients with increased liver fat and elevated liver stiffness. Sci Rep 9(1):8106PubMedPubMedCentralCrossRef
38.
go back to reference Ahmad MS, Suardi N, Shukri A, Mohammad H, Oglat AA, Alarab A, Makhamrah O (2020) Chemical characteristics, motivation and strategies in choice of materials used as liver phantom: a literature review. J Med Ultrasound 28(1):7–16PubMedPubMedCentral Ahmad MS, Suardi N, Shukri A, Mohammad H, Oglat AA, Alarab A, Makhamrah O (2020) Chemical characteristics, motivation and strategies in choice of materials used as liver phantom: a literature review. J Med Ultrasound 28(1):7–16PubMedPubMedCentral
39.
go back to reference Mathur-De Vre R, Grimee R, Parmentier F, Binet J (1985) The use of agar gel as a basic reference material for calibrating relaxation times and imaging parameters. Magn Reson Med 2(2):176–179PubMedCrossRef Mathur-De Vre R, Grimee R, Parmentier F, Binet J (1985) The use of agar gel as a basic reference material for calibrating relaxation times and imaging parameters. Magn Reson Med 2(2):176–179PubMedCrossRef
40.
go back to reference Yoshimura K, Kato H, Kuroda M, Yoshida A, Hanamoto K, Tanaka A, Tsunoda M, Kanazawa S, Shibuya K, Kawasaki S, Hiraki Y (2003) Development of a tissue-equivalent MRI phantom using carrageenan gel. Magn Reson Med 50(5):1011–1017PubMedCrossRef Yoshimura K, Kato H, Kuroda M, Yoshida A, Hanamoto K, Tanaka A, Tsunoda M, Kanazawa S, Shibuya K, Kawasaki S, Hiraki Y (2003) Development of a tissue-equivalent MRI phantom using carrageenan gel. Magn Reson Med 50(5):1011–1017PubMedCrossRef
41.
go back to reference Mobini N, Malekzadeh M, Haghighatkhah H, Saligheh Rad H (2020) A hybrid (iron-fat-water) phantom for liver iron overload quantification in the presence of contaminating fat using magnetic resonance imaging. MAGMA 33(3):385–392PubMedCrossRef Mobini N, Malekzadeh M, Haghighatkhah H, Saligheh Rad H (2020) A hybrid (iron-fat-water) phantom for liver iron overload quantification in the presence of contaminating fat using magnetic resonance imaging. MAGMA 33(3):385–392PubMedCrossRef
42.
go back to reference Szurowska E, Sikorska K, Izycka-Swieszewska E, Nowicki T, Romanowski T, Bielawski KP, Studniarek M (2010) The role of MR imaging in detection of hepatic iron overload in patients with cirrhosis of different origins. BMC Gastroenterol 10:13PubMedPubMedCentralCrossRef Szurowska E, Sikorska K, Izycka-Swieszewska E, Nowicki T, Romanowski T, Bielawski KP, Studniarek M (2010) The role of MR imaging in detection of hepatic iron overload in patients with cirrhosis of different origins. BMC Gastroenterol 10:13PubMedPubMedCentralCrossRef
43.
go back to reference Chang JS, Taouli B, Salibi N, Hecht EM, Chin DG, Lee VS (2006) Opposed-phase MRI for fat quantification in fat-water phantoms with 1H MR spectroscopy to resolve ambiguity of fat or water dominance. AJR Am J Roentgenol 187(1):W103-106PubMedCrossRef Chang JS, Taouli B, Salibi N, Hecht EM, Chin DG, Lee VS (2006) Opposed-phase MRI for fat quantification in fat-water phantoms with 1H MR spectroscopy to resolve ambiguity of fat or water dominance. AJR Am J Roentgenol 187(1):W103-106PubMedCrossRef
45.
go back to reference Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40(5):1003–1021PubMedPubMedCentralCrossRef Hernando D, Levin YS, Sirlin CB, Reeder SB (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40(5):1003–1021PubMedPubMedCentralCrossRef
46.
go back to reference Pietrangelo A (2004) Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 350(23):2383–2397PubMedCrossRef Pietrangelo A (2004) Hereditary hemochromatosis—a new look at an old disease. N Engl J Med 350(23):2383–2397PubMedCrossRef
47.
go back to reference Franca M, Alberich-Bayarri A, Marti-Bonmati L, Oliveira P, Costa FE, Porto G, Vizcaino JR, Gonzalez JS, Ribeiro E, Oliveira J, Pessegueiro Miranda H (2017) Accurate simultaneous quantification of liver steatosis and iron overload in diffuse liver diseases with MRI. Abdom Radiol (NY) 42(5):1434–1443PubMedCrossRef Franca M, Alberich-Bayarri A, Marti-Bonmati L, Oliveira P, Costa FE, Porto G, Vizcaino JR, Gonzalez JS, Ribeiro E, Oliveira J, Pessegueiro Miranda H (2017) Accurate simultaneous quantification of liver steatosis and iron overload in diffuse liver diseases with MRI. Abdom Radiol (NY) 42(5):1434–1443PubMedCrossRef
48.
go back to reference Berdoukas V, Bohane T, Tobias V, De Silva K, Fraser I, Aessopos A, Lindeman R (2005) Liver iron concentration and fibrosis in a cohort of transfusion-dependent patients on long-term desferrioxamine therapy. Hematol J 5(7):572–578PubMedCrossRef Berdoukas V, Bohane T, Tobias V, De Silva K, Fraser I, Aessopos A, Lindeman R (2005) Liver iron concentration and fibrosis in a cohort of transfusion-dependent patients on long-term desferrioxamine therapy. Hematol J 5(7):572–578PubMedCrossRef
49.
go back to reference Brown K, Subramony C, May W, Megason G, Liu H, Bishop P, Walker T, Nowicki MJ (2009) Hepatic iron overload in children with sickle cell anemia on chronic transfusion therapy. J Pediatr Hematol Oncol 31(5):309–312PubMedCrossRef Brown K, Subramony C, May W, Megason G, Liu H, Bishop P, Walker T, Nowicki MJ (2009) Hepatic iron overload in children with sickle cell anemia on chronic transfusion therapy. J Pediatr Hematol Oncol 31(5):309–312PubMedCrossRef
50.
go back to reference Risdon RA, Barry M, Flynn DM (1975) Transfusional iron overload: the relationship between tissue iron concentration and hepatic fibrosis in thalassaemia. J Pathol 116(2):83–95PubMedCrossRef Risdon RA, Barry M, Flynn DM (1975) Transfusional iron overload: the relationship between tissue iron concentration and hepatic fibrosis in thalassaemia. J Pathol 116(2):83–95PubMedCrossRef
51.
go back to reference Thakerngpol K, Fucharoen S, Boonyaphipat P, Srisook K, Sahaphong S, Vathanophas V, Stitnimankarn T (1996) Liver injury due to iron overload in thalassemia: histopathologic and ultrastructural studies. Biometals 9(2):177–183PubMedCrossRef Thakerngpol K, Fucharoen S, Boonyaphipat P, Srisook K, Sahaphong S, Vathanophas V, Stitnimankarn T (1996) Liver injury due to iron overload in thalassemia: histopathologic and ultrastructural studies. Biometals 9(2):177–183PubMedCrossRef
52.
go back to reference Chmieliauskas S, Banionis D, Laima S, Andriuskeviciute G, Mazeikiene S, Stasiuniene J, Jasulaitis A, Jarmalaite S (2017) Autopsy relevance determining hemochromatosis: case report. Medicine (Baltimore) 96(49):e8788PubMedCrossRef Chmieliauskas S, Banionis D, Laima S, Andriuskeviciute G, Mazeikiene S, Stasiuniene J, Jasulaitis A, Jarmalaite S (2017) Autopsy relevance determining hemochromatosis: case report. Medicine (Baltimore) 96(49):e8788PubMedCrossRef
53.
go back to reference Iancu TC, Deugnier Y, Halliday JW, Powell LW, Brissot P (1997) Ultrastructural sequences during liver iron overload in genetic hemochromatosis. J Hepatol 27(4):628–638PubMedCrossRef Iancu TC, Deugnier Y, Halliday JW, Powell LW, Brissot P (1997) Ultrastructural sequences during liver iron overload in genetic hemochromatosis. J Hepatol 27(4):628–638PubMedCrossRef
55.
go back to reference Guindi M (2011) Hemochromatosis. In: Saxena R (ed) Practical hepatic pathology: a diagnostic approach, W.B. Saunders, pp 177–189 Guindi M (2011) Hemochromatosis. In: Saxena R (ed) Practical hepatic pathology: a diagnostic approach, W.B. Saunders, pp 177–189
56.
go back to reference Ghugre NR (2008) Calibration of iron-mediated MRI relaxation by Monte Carlo modeling. Dissertation, University of Southern California Ghugre NR (2008) Calibration of iron-mediated MRI relaxation by Monte Carlo modeling. Dissertation, University of Southern California
57.
go back to reference Brittenham GM, Badman DG (2003) Noninvasive measurement of iron: report of an NIDDK workshop. Blood J Am Soc Hematol 101(1):15–19 Brittenham GM, Badman DG (2003) Noninvasive measurement of iron: report of an NIDDK workshop. Blood J Am Soc Hematol 101(1):15–19
58.
go back to reference Wortmann AC, Froehlich PE, Pinto RB, Magalhães RB, Alvares-da-Silva MR, Ferreira JJ, Silveira TR (2007) Hepatic iron quantification by atomic absorption spectrophotometry: full validation of an analytical methodusing a fast sample preparation. Spectroscopy 21:161–167CrossRef Wortmann AC, Froehlich PE, Pinto RB, Magalhães RB, Alvares-da-Silva MR, Ferreira JJ, Silveira TR (2007) Hepatic iron quantification by atomic absorption spectrophotometry: full validation of an analytical methodusing a fast sample preparation. Spectroscopy 21:161–167CrossRef
59.
go back to reference Henninger B (2018) Demystifying liver iron concentration measurements with MRI. Eur Radiol 28(6):2535–2536PubMedCrossRef Henninger B (2018) Demystifying liver iron concentration measurements with MRI. Eur Radiol 28(6):2535–2536PubMedCrossRef
60.
go back to reference St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, Pootrakul P, Robins E, Lindeman R (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105(2):855–861PubMedCrossRef St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, Pootrakul P, Robins E, Lindeman R (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105(2):855–861PubMedCrossRef
61.
go back to reference Alexopoulou E, Stripeli F, Baras P, Seimenis I, Kattamis A, Ladis V, Efstathopoulos E, Brountzos EN, Kelekis AD, Kelekis NL (2006) R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. J Magn Reson Imaging 23(2):163–170PubMedCrossRef Alexopoulou E, Stripeli F, Baras P, Seimenis I, Kattamis A, Ladis V, Efstathopoulos E, Brountzos EN, Kelekis AD, Kelekis NL (2006) R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. J Magn Reson Imaging 23(2):163–170PubMedCrossRef
62.
go back to reference Bonny JM, Zanca M, Boire JY, Veyre A (1996) T2 maximum likelihood estimation from multiple spin-echo magnitude images. Magn Reson Med 36(2):287–293PubMedCrossRef Bonny JM, Zanca M, Boire JY, Veyre A (1996) T2 maximum likelihood estimation from multiple spin-echo magnitude images. Magn Reson Med 36(2):287–293PubMedCrossRef
63.
go back to reference Voskaridou E, Douskou M, Terpos E, Papassotiriou I, Stamoulakatou A, Ourailidis A, Loutradi A, Loukopoulos D (2004) Magnetic resonance imaging in the evaluation of iron overload in patients with beta thalassaemia and sickle cell disease. Br J Haematol 126(5):736–742PubMedCrossRef Voskaridou E, Douskou M, Terpos E, Papassotiriou I, Stamoulakatou A, Ourailidis A, Loutradi A, Loukopoulos D (2004) Magnetic resonance imaging in the evaluation of iron overload in patients with beta thalassaemia and sickle cell disease. Br J Haematol 126(5):736–742PubMedCrossRef
64.
go back to reference Chandarana H, Lim RP, Jensen JH, Hajdu CH, Losada M, Babb JS, Huffman S, Taouli B (2009) Hepatic iron deposition in patients with liver disease: preliminary experience with breath-hold multiecho T2*-weighted sequence. AJR Am J Roentgenol 193(5):1261–1267PubMedCrossRef Chandarana H, Lim RP, Jensen JH, Hajdu CH, Losada M, Babb JS, Huffman S, Taouli B (2009) Hepatic iron deposition in patients with liver disease: preliminary experience with breath-hold multiecho T2*-weighted sequence. AJR Am J Roentgenol 193(5):1261–1267PubMedCrossRef
65.
go back to reference Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, Pennell DJ (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 18(1):33–39PubMedCrossRef Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, Pennell DJ (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 18(1):33–39PubMedCrossRef
66.
go back to reference Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106(4):1460–1465PubMedPubMedCentralCrossRef Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106(4):1460–1465PubMedPubMedCentralCrossRef
67.
go back to reference Krafft AJ, Loeffler RB, Song R, Tipirneni-Sajja A, McCarville MB, Robson MD, Hankins JS, Hillenbrand CM (2017) Quantitative ultrashort echo time imaging for assessment of massive iron overload at 15 and 3 Tesla. Magn Reson Med 78(5):1839–1851PubMedPubMedCentralCrossRef Krafft AJ, Loeffler RB, Song R, Tipirneni-Sajja A, McCarville MB, Robson MD, Hankins JS, Hillenbrand CM (2017) Quantitative ultrashort echo time imaging for assessment of massive iron overload at 15 and 3 Tesla. Magn Reson Med 78(5):1839–1851PubMedPubMedCentralCrossRef
68.
go back to reference Tipirneni-Sajja A, Loeffler RB, Krafft AJ, Sajewski AN, Ogg RJ, Hankins JS, Hillenbrand CM (2019) Ultrashort echo time imaging for quantification of hepatic iron overload: comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data. J Magn Reson Imaging 49(5):1475–1488PubMedCrossRef Tipirneni-Sajja A, Loeffler RB, Krafft AJ, Sajewski AN, Ogg RJ, Hankins JS, Hillenbrand CM (2019) Ultrashort echo time imaging for quantification of hepatic iron overload: comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data. J Magn Reson Imaging 49(5):1475–1488PubMedCrossRef
69.
go back to reference Doyle EK, Toy K, Valdez B, Chia JM, Coates T, Wood JC (2018) Ultra-short echo time images quantify high liver iron. Magn Reson Med 79(3):1579–1585PubMedCrossRef Doyle EK, Toy K, Valdez B, Chia JM, Coates T, Wood JC (2018) Ultra-short echo time images quantify high liver iron. Magn Reson Med 79(3):1579–1585PubMedCrossRef
70.
go back to reference Sharma P, Altbach M, Galons JP, Kalb B, Martin DR (2014) Measurement of liver fat fraction and iron with MRI and MR spectroscopy techniques. Diagn Interv Radiol 20(1):17–26PubMed Sharma P, Altbach M, Galons JP, Kalb B, Martin DR (2014) Measurement of liver fat fraction and iron with MRI and MR spectroscopy techniques. Diagn Interv Radiol 20(1):17–26PubMed
71.
go back to reference Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM (2012) Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 35(5):1125–1132PubMedCrossRef Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM (2012) Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 35(5):1125–1132PubMedCrossRef
72.
go back to reference Wang Y (2012) Principles of magnetic resonance imaging: physics concepts, pulse sequences, and biomedical applications. CreateSpace Independent Publishing Platform, Scotts valley Wang Y (2012) Principles of magnetic resonance imaging: physics concepts, pulse sequences, and biomedical applications. CreateSpace Independent Publishing Platform, Scotts valley
73.
go back to reference Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42(1):23–41PubMedCrossRef Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42(1):23–41PubMedCrossRef
74.
go back to reference Dong J, Liu T, Chen F, Zhou D, Dimov A, Raj A, Cheng Q, Spincemaille P, Wang Y (2015) Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping. IEEE Trans Med Imaging 34(2):531–540PubMedCrossRef Dong J, Liu T, Chen F, Zhou D, Dimov A, Raj A, Cheng Q, Spincemaille P, Wang Y (2015) Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping. IEEE Trans Med Imaging 34(2):531–540PubMedCrossRef
75.
go back to reference Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, Wang Y (2011) A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 24(9):1129–1136PubMedPubMedCentralCrossRef Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, Wang Y (2011) A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 24(9):1129–1136PubMedPubMedCentralCrossRef
76.
go back to reference Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y (2011) Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 66(3):777–783PubMedCrossRef Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y (2011) Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 66(3):777–783PubMedCrossRef
77.
go back to reference Tipirneni-Sajja A, Loeffler RB, Hankins JS, Morin C, Hillenbrand CM (2021) Quantitative susceptibility mapping using a multispectral autoregressive moving average model to assess hepatic iron overload. J Magn Reson Imaging 54(3):721–727PubMedPubMedCentralCrossRef Tipirneni-Sajja A, Loeffler RB, Hankins JS, Morin C, Hillenbrand CM (2021) Quantitative susceptibility mapping using a multispectral autoregressive moving average model to assess hepatic iron overload. J Magn Reson Imaging 54(3):721–727PubMedPubMedCentralCrossRef
78.
go back to reference Sharma SD, Hernando D, Horng DE, Reeder SB (2015) Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 74(3):673–683PubMedCrossRef Sharma SD, Hernando D, Horng DE, Reeder SB (2015) Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 74(3):673–683PubMedCrossRef
79.
go back to reference Sharma SD, Fischer R, Schoennagel BP, Nielsen P, Kooijman H, Yamamura J, Adam G, Bannas P, Hernando D, Reeder SB (2017) MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med 78(1):264–270PubMedCrossRef Sharma SD, Fischer R, Schoennagel BP, Nielsen P, Kooijman H, Yamamura J, Adam G, Bannas P, Hernando D, Reeder SB (2017) MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med 78(1):264–270PubMedCrossRef
80.
go back to reference Lin H, Wei H, He N, Fu C, Cheng S, Shen J, Wang B, Yan X, Liu C, Yan F (2018) Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification. Eur Radiol 28(8):3494–3504PubMedPubMedCentralCrossRef Lin H, Wei H, He N, Fu C, Cheng S, Shen J, Wang B, Yan X, Liu C, Yan F (2018) Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification. Eur Radiol 28(8):3494–3504PubMedPubMedCentralCrossRef
81.
go back to reference Li J, Lin H, Liu T, Zhang Z, Prince MR, Gillen K, Yan X, Song Q, Hua T, Zhao X, Zhang M, Zhao Y, Li G, Tang G, Yang G, Brittenham GM, Wang Y (2018) Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration. J Magn Reson Imaging 48(4):1069–1079PubMedPubMedCentralCrossRef Li J, Lin H, Liu T, Zhang Z, Prince MR, Gillen K, Yan X, Song Q, Hua T, Zhao X, Zhang M, Zhao Y, Li G, Tang G, Yang G, Brittenham GM, Wang Y (2018) Quantitative susceptibility mapping (QSM) minimizes interference from cellular pathology in R2* estimation of liver iron concentration. J Magn Reson Imaging 48(4):1069–1079PubMedPubMedCentralCrossRef
82.
go back to reference Zhu A, Colgan TJ, Reeder SB, Hernando D (2018) Test–retest repeatability of R2* mapping and quantitative susceptibility mapping for liver iron quantification. In: Joint Annual Meeting ISMRM-ESMRMB, Paris Zhu A, Colgan TJ, Reeder SB, Hernando D (2018) Test–retest repeatability of R2* mapping and quantitative susceptibility mapping for liver iron quantification. In: Joint Annual Meeting ISMRM-ESMRMB, Paris
83.
go back to reference Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F, Ropele S, Rauscher A (2020) The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain. Neuroimage 220:117080PubMedCrossRef Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F, Ropele S, Rauscher A (2020) The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain. Neuroimage 220:117080PubMedCrossRef
84.
go back to reference Baldock C, Harris PJ, Piercy AR, Healy B (2001) Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method. Aust Phys Eng Sci Med 24(1):19–30CrossRef Baldock C, Harris PJ, Piercy AR, Healy B (2001) Experimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method. Aust Phys Eng Sci Med 24(1):19–30CrossRef
85.
go back to reference Ibrahim EH, Khalifa AM, Eldaly AK (2016) MRI T2* imaging for assessment of liver iron overload: study of different data analysis approaches. Acta Radiol 57(12):1453–1459PubMedCrossRef Ibrahim EH, Khalifa AM, Eldaly AK (2016) MRI T2* imaging for assessment of liver iron overload: study of different data analysis approaches. Acta Radiol 57(12):1453–1459PubMedCrossRef
86.
go back to reference Nath S, Kaittanis C, Ramachandran V, Dalal N, Perez JM (2009) Synthesis, magnetic characterization and sensing applications of novel dextran-coated iron oxide nanorods. Chem Mater 21(8):1761–1767PubMedPubMedCentralCrossRef Nath S, Kaittanis C, Ramachandran V, Dalal N, Perez JM (2009) Synthesis, magnetic characterization and sensing applications of novel dextran-coated iron oxide nanorods. Chem Mater 21(8):1761–1767PubMedPubMedCentralCrossRef
87.
go back to reference Predescu AM, Matei E, Berbecaru AC, Pantilimon C, Dragan C, Vidu R, Predescu C, Kuncser V (2018) Synthesis and characterization of dextran-coated iron oxide nanoparticles. R Soc Open Sci 5(3):171525PubMedPubMedCentralCrossRef Predescu AM, Matei E, Berbecaru AC, Pantilimon C, Dragan C, Vidu R, Predescu C, Kuncser V (2018) Synthesis and characterization of dextran-coated iron oxide nanoparticles. R Soc Open Sci 5(3):171525PubMedPubMedCentralCrossRef
88.
go back to reference Lu X, Ma Y, Chang EY, He Q, Searleman A, von Drygalski A, Du J (2018) Simultaneous quantitative susceptibility mapping (QSM) and R2* for high iron concentration quantification with 3D ultrashort echo time sequences: An echo dependence study. Magn Reson Med 79(4):2315–2322PubMedPubMedCentralCrossRef Lu X, Ma Y, Chang EY, He Q, Searleman A, von Drygalski A, Du J (2018) Simultaneous quantitative susceptibility mapping (QSM) and R2* for high iron concentration quantification with 3D ultrashort echo time sequences: An echo dependence study. Magn Reson Med 79(4):2315–2322PubMedPubMedCentralCrossRef
89.
go back to reference Lee SS, Lee Y, Kim N, Kim SW, Byun JH, Park SH, Lee MG, Ha HK (2011) Hepatic fat quantification using chemical shift MR imaging and MR spectroscopy in the presence of hepatic iron deposition: validation in phantoms and in patients with chronic liver disease. J Magn Reson Imaging 33(6):1390–1398PubMedCrossRef Lee SS, Lee Y, Kim N, Kim SW, Byun JH, Park SH, Lee MG, Ha HK (2011) Hepatic fat quantification using chemical shift MR imaging and MR spectroscopy in the presence of hepatic iron deposition: validation in phantoms and in patients with chronic liver disease. J Magn Reson Imaging 33(6):1390–1398PubMedCrossRef
90.
go back to reference Brown GC, Cowin GJ, Galloway GJ (2017) A USPIO doped gel phantom for R2* relaxometry. MAGMA 30(1):15–27PubMedCrossRef Brown GC, Cowin GJ, Galloway GJ (2017) A USPIO doped gel phantom for R2* relaxometry. MAGMA 30(1):15–27PubMedCrossRef
91.
go back to reference Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35–40PubMedPubMedCentral Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35–40PubMedPubMedCentral
92.
go back to reference Chandarana H, Do RK, Mussi TC, Jensen JH, Hajdu CH, Babb JS, Taouli B (2012) The effect of liver iron deposition on hepatic apparent diffusion coefficient values in cirrhosis. AJR Am J Roentgenol 199(4):803–808PubMedCrossRef Chandarana H, Do RK, Mussi TC, Jensen JH, Hajdu CH, Babb JS, Taouli B (2012) The effect of liver iron deposition on hepatic apparent diffusion coefficient values in cirrhosis. AJR Am J Roentgenol 199(4):803–808PubMedCrossRef
93.
go back to reference Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK (2016) MRI contrast agents: classification and application (Review). Int J Mol Med 38(5):1319–1326PubMedCrossRef Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK (2016) MRI contrast agents: classification and application (Review). Int J Mol Med 38(5):1319–1326PubMedCrossRef
94.
95.
go back to reference Yokoo T, Yuan Q, Senegas J, Wiethoff AJ, Pedrosa I (2015) Quantitative R2* MRI of the liver with rician noise models for evaluation of hepatic iron overload: Simulation, phantom, and early clinical experience. J Magn Reson Imaging 42(6):1544–1559PubMedCrossRef Yokoo T, Yuan Q, Senegas J, Wiethoff AJ, Pedrosa I (2015) Quantitative R2* MRI of the liver with rician noise models for evaluation of hepatic iron overload: Simulation, phantom, and early clinical experience. J Magn Reson Imaging 42(6):1544–1559PubMedCrossRef
96.
go back to reference Kee Y, Sandino CM, Syed AB, Cheng JY, Shimakawa A, Colgan TJ, Hernando D, Vasanawala SS (2021) Free-breathing R2* mapping of hepatic iron overload in children using 3D multi-echo UTE cones MRI. Magn Reson Med 85(5):2608–2621PubMedPubMedCentralCrossRef Kee Y, Sandino CM, Syed AB, Cheng JY, Shimakawa A, Colgan TJ, Hernando D, Vasanawala SS (2021) Free-breathing R2* mapping of hepatic iron overload in children using 3D multi-echo UTE cones MRI. Magn Reson Med 85(5):2608–2621PubMedPubMedCentralCrossRef
97.
go back to reference Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, Wai-Sun Wong V, Yilmaz Y, George J, Fan J (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69(6):2672–2682PubMedCrossRef Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, Wai-Sun Wong V, Yilmaz Y, George J, Fan J (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69(6):2672–2682PubMedCrossRef
98.
go back to reference Bellentani S, Saccoccio G, Masutti F, Crocè LS, Brandi G, Sasso F, Cristanini G, Tiribelli C (2000) Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 132(2):112–117PubMedCrossRef Bellentani S, Saccoccio G, Masutti F, Crocè LS, Brandi G, Sasso F, Cristanini G, Tiribelli C (2000) Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 132(2):112–117PubMedCrossRef
99.
go back to reference Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6):1387–1395PubMedCrossRef Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6):1387–1395PubMedCrossRef
102.
go back to reference Lai J, Wang HL, Zhang X, Wang H, Liu X (2022) Pathologic diagnosis of nonalcoholic fatty liver disease. Arch Pathol Lab Med 146(8):940–946PubMedCrossRef Lai J, Wang HL, Zhang X, Wang H, Liu X (2022) Pathologic diagnosis of nonalcoholic fatty liver disease. Arch Pathol Lab Med 146(8):940–946PubMedCrossRef
103.
go back to reference Tanikawa K (1968) Ultrastructural aspects of the liver and its disorders. Igaku Shoin Ltd, Tokyo Tanikawa K (1968) Ultrastructural aspects of the liver and its disorders. Igaku Shoin Ltd, Tokyo
104.
go back to reference Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321PubMedCrossRef Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321PubMedCrossRef
105.
go back to reference Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288(2):E462-468PubMedCrossRef Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288(2):E462-468PubMedCrossRef
106.
go back to reference Caussy C, Reeder SB, Sirlin CB, Loomba R (2018) Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials. Hepatology 68(2):763–772PubMedCrossRef Caussy C, Reeder SB, Sirlin CB, Loomba R (2018) Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials. Hepatology 68(2):763–772PubMedCrossRef
107.
go back to reference Hernando D, Sharma SD, Kramer H, Reeder SB (2014) On the confounding effect of temperature on chemical shift-encoded fat quantification. Magn Reson Med 72(2):464–470PubMedCrossRef Hernando D, Sharma SD, Kramer H, Reeder SB (2014) On the confounding effect of temperature on chemical shift-encoded fat quantification. Magn Reson Med 72(2):464–470PubMedCrossRef
108.
go back to reference Navaratna R, Zhao R, Colgan TJ, Hu HH, Bydder M, Yokoo T, Bashir MR, Middleton MS, Serai SD, Malyarenko D, Chenevert T, Smith M, Henderson W, Hamilton G, Shu Y, Sirlin CB, Tkach JA, Trout AT, Brittain JH, Hernando D, Reeder SB, Committee RQIBA-PDFFB (2021) Temperature-corrected proton density fat fraction estimation using chemical shift-encoded MRI in phantoms. Magn Reson Med 86(1):69–81PubMedPubMedCentralCrossRef Navaratna R, Zhao R, Colgan TJ, Hu HH, Bydder M, Yokoo T, Bashir MR, Middleton MS, Serai SD, Malyarenko D, Chenevert T, Smith M, Henderson W, Hamilton G, Shu Y, Sirlin CB, Tkach JA, Trout AT, Brittain JH, Hernando D, Reeder SB, Committee RQIBA-PDFFB (2021) Temperature-corrected proton density fat fraction estimation using chemical shift-encoded MRI in phantoms. Magn Reson Med 86(1):69–81PubMedPubMedCentralCrossRef
109.
go back to reference Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ (2015) Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 5(4):320–328PubMedPubMedCentralCrossRef Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ (2015) Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J Clin Exp Hepatol 5(4):320–328PubMedPubMedCentralCrossRef
110.
go back to reference Bydder M, Girard O, Hamilton G (2011) Mapping the double bonds in triglycerides. Magn Reson Imaging 29(8):1041–1046PubMedCrossRef Bydder M, Girard O, Hamilton G (2011) Mapping the double bonds in triglycerides. Magn Reson Imaging 29(8):1041–1046PubMedCrossRef
111.
go back to reference Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB, Middleton MS (2011) In vivo characterization of the liver fat (1)H MR spectrum. NMR Biomed 24(7):784–790PubMedCrossRef Hamilton G, Yokoo T, Bydder M, Cruite I, Schroeder ME, Sirlin CB, Middleton MS (2011) In vivo characterization of the liver fat (1)H MR spectrum. NMR Biomed 24(7):784–790PubMedCrossRef
112.
go back to reference Kurhanewicz J, Vigneron DB, Nelson SJ (2000) Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2(1–2):166–189PubMedPubMedCentralCrossRef Kurhanewicz J, Vigneron DB, Nelson SJ (2000) Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2(1–2):166–189PubMedPubMedCentralCrossRef
113.
go back to reference Cassidy FH, Yokoo T, Aganovic L, Hanna RF, Bydder M, Middleton MS, Hamilton G, Chavez AD, Schwimmer JB, Sirlin CB (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 29(1):231–260PubMedCrossRef Cassidy FH, Yokoo T, Aganovic L, Hanna RF, Bydder M, Middleton MS, Hamilton G, Chavez AD, Schwimmer JB, Sirlin CB (2009) Fatty liver disease: MR imaging techniques for the detection and quantification of liver steatosis. Radiographics 29(1):231–260PubMedCrossRef
114.
go back to reference Omoumi P (2022) The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol 51(7):1365–1369PubMedCrossRef Omoumi P (2022) The Dixon method in musculoskeletal MRI: from fat-sensitive to fat-specific imaging. Skeletal Radiol 51(7):1365–1369PubMedCrossRef
115.
go back to reference Hayashi T, Saitoh S, Takahashi J, Tsuji Y, Ikeda K, Kobayashi M, Kawamura Y, Fujii T, Inoue M, Miyati T, Kumada H (2017) Hepatic fat quantification using the two-point Dixon method and fat color maps based on non-alcoholic fatty liver disease activity score. Hepatol Res 47(5):455–464PubMedCrossRef Hayashi T, Saitoh S, Takahashi J, Tsuji Y, Ikeda K, Kobayashi M, Kawamura Y, Fujii T, Inoue M, Miyati T, Kumada H (2017) Hepatic fat quantification using the two-point Dixon method and fat color maps based on non-alcoholic fatty liver disease activity score. Hepatol Res 47(5):455–464PubMedCrossRef
116.
go back to reference Clarke CN, Choi H, Hou P, Davis CH, Ma J, Rashid A, Vauthey JN, Aloia TA (2017) Using MRI to non-invasively and accurately quantify preoperative hepatic steatosis. HPB (Oxford) 19(8):706–712PubMedCrossRef Clarke CN, Choi H, Hou P, Davis CH, Ma J, Rashid A, Vauthey JN, Aloia TA (2017) Using MRI to non-invasively and accurately quantify preoperative hepatic steatosis. HPB (Oxford) 19(8):706–712PubMedCrossRef
117.
go back to reference Pacifico L, Martino MD, Catalano C, Panebianco V, Bezzi M, Anania C, Chiesa C (2011) T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease. World J Gastroenterol 17(25):3012–3019PubMedPubMedCentralCrossRef Pacifico L, Martino MD, Catalano C, Panebianco V, Bezzi M, Anania C, Chiesa C (2011) T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease. World J Gastroenterol 17(25):3012–3019PubMedPubMedCentralCrossRef
118.
go back to reference Kim G, Giannini C, Pierpont B, Feldstein AE, Santoro N, Kursawe R, Shaw M, Duran E, Goldberg R, Dziura J, Caprio S (2013) Longitudinal effects of MRI-measured hepatic steatosis on biomarkers of glucose homeostasis and hepatic apoptosis in obese youth. Diabetes Care 36(1):130–136PubMedCrossRef Kim G, Giannini C, Pierpont B, Feldstein AE, Santoro N, Kursawe R, Shaw M, Duran E, Goldberg R, Dziura J, Caprio S (2013) Longitudinal effects of MRI-measured hepatic steatosis on biomarkers of glucose homeostasis and hepatic apoptosis in obese youth. Diabetes Care 36(1):130–136PubMedCrossRef
119.
go back to reference Lins CF, Salmon CEG, Nogueira-Barbosa MH (2021) Applications of the Dixon technique in the evaluation of the musculoskeletal system. Radiol Bras 54(1):33–42PubMedPubMedCentralCrossRef Lins CF, Salmon CEG, Nogueira-Barbosa MH (2021) Applications of the Dixon technique in the evaluation of the musculoskeletal system. Radiol Bras 54(1):33–42PubMedPubMedCentralCrossRef
120.
121.
go back to reference Bhat V, Velandai S, Belliappa V, Illayraja J, Halli KG, Gopalakrishnan G (2017) Quantification of liver fat with mDIXON magnetic resonance imaging, comparison with the computed tomography and the biopsy. J Clin Diagn Res 11(7):TC06-TC10PubMedPubMedCentral Bhat V, Velandai S, Belliappa V, Illayraja J, Halli KG, Gopalakrishnan G (2017) Quantification of liver fat with mDIXON magnetic resonance imaging, comparison with the computed tomography and the biopsy. J Clin Diagn Res 11(7):TC06-TC10PubMedPubMedCentral
122.
go back to reference Reeder SB, Sirlin CB (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin 18(3):337–357CrossRef Reeder SB, Sirlin CB (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin 18(3):337–357CrossRef
123.
go back to reference Kuhn JP, Jahn C, Hernando D, Siegmund W, Hadlich S, Mayerle J, Pfannmoller J, Langner S, Reeder S (2014) T1 bias in chemical shift-encoded liver fat-fraction: role of the flip angle. J Magn Reson Imaging 40(4):875–883PubMedCrossRef Kuhn JP, Jahn C, Hernando D, Siegmund W, Hadlich S, Mayerle J, Pfannmoller J, Langner S, Reeder S (2014) T1 bias in chemical shift-encoded liver fat-fraction: role of the flip angle. J Magn Reson Imaging 40(4):875–883PubMedCrossRef
124.
go back to reference Wang X, Colgan TJ, Hinshaw LA, Roberts NT, Bancroft LCH, Hamilton G, Hernando D, Reeder SB (2020) T1 -corrected quantitative chemical shift-encoded MRI. Magn Reson Med 83(6):2051–2063PubMedCrossRef Wang X, Colgan TJ, Hinshaw LA, Roberts NT, Bancroft LCH, Hamilton G, Hernando D, Reeder SB (2020) T1 -corrected quantitative chemical shift-encoded MRI. Magn Reson Med 83(6):2051–2063PubMedCrossRef
125.
go back to reference Eggers H, Bornert P (2014) Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging 40(2):251–268PubMedCrossRef Eggers H, Bornert P (2014) Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging 40(2):251–268PubMedCrossRef
126.
go back to reference Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34(4):729–749PubMedPubMedCentralCrossRef Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34(4):729–749PubMedPubMedCentralCrossRef
127.
go back to reference Henninger B, Zoller H, Kannengiesser S, Zhong X, Jaschke W, Kremser C (2017) 3D multiecho dixon for the evaluation of hepatic iron and fat in a clinical setting. J Magn Reson Imaging 46(3):793–800PubMedCrossRef Henninger B, Zoller H, Kannengiesser S, Zhong X, Jaschke W, Kremser C (2017) 3D multiecho dixon for the evaluation of hepatic iron and fat in a clinical setting. J Magn Reson Imaging 46(3):793–800PubMedCrossRef
128.
go back to reference Kuhn JP, Hernando D, Mensel B, Kruger PC, Ittermann T, Mayerle J, Hosten N, Reeder SB (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39(6):1494–1501PubMedCrossRef Kuhn JP, Hernando D, Mensel B, Kruger PC, Ittermann T, Mayerle J, Hosten N, Reeder SB (2014) Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 39(6):1494–1501PubMedCrossRef
129.
go back to reference Yokoo T, Shiehmorteza M, Hamilton G, Wolfson T, Schroeder ME, Middleton MS, Bydder M, Gamst AC, Kono Y, Kuo A, Patton HM, Horgan S, Lavine JE, Schwimmer JB, Sirlin CB (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258(3):749–759PubMedPubMedCentralCrossRef Yokoo T, Shiehmorteza M, Hamilton G, Wolfson T, Schroeder ME, Middleton MS, Bydder M, Gamst AC, Kono Y, Kuo A, Patton HM, Horgan S, Lavine JE, Schwimmer JB, Sirlin CB (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258(3):749–759PubMedPubMedCentralCrossRef
130.
go back to reference Idilman IS, Keskin O, Celik A, Savas B, Elhan AH, Idilman R, Karcaaltincaba M (2016) A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Acta Radiol 57(3):271–278PubMedCrossRef Idilman IS, Keskin O, Celik A, Savas B, Elhan AH, Idilman R, Karcaaltincaba M (2016) A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Acta Radiol 57(3):271–278PubMedCrossRef
131.
go back to reference Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, Gamst AC, Middleton M, Brunt EM, Loomba R, Lavine JE, Schwimmer JB, Sirlin CB (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267(2):422–431PubMedPubMedCentralCrossRef Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, Gamst AC, Middleton M, Brunt EM, Loomba R, Lavine JE, Schwimmer JB, Sirlin CB (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267(2):422–431PubMedPubMedCentralCrossRef
132.
go back to reference Tang A, Desai A, Hamilton G, Wolfson T, Gamst A, Lam J, Clark L, Hooker J, Chavez T, Ang BD, Middleton MS, Peterson M, Loomba R, Sirlin CB (2015) Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 274(2):416–425PubMedCrossRef Tang A, Desai A, Hamilton G, Wolfson T, Gamst A, Lam J, Clark L, Hooker J, Chavez T, Ang BD, Middleton MS, Peterson M, Loomba R, Sirlin CB (2015) Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 274(2):416–425PubMedCrossRef
133.
go back to reference Beyer C, Hutton C, Andersson A, Imajo K, Nakajima A, Kiker D, Banerjee R, Dennis A (2021) Comparison between magnetic resonance and ultrasound-derived indicators of hepatic steatosis in a pooled NAFLD cohort. PLoS One 16(4):e0249491PubMedPubMedCentralCrossRef Beyer C, Hutton C, Andersson A, Imajo K, Nakajima A, Kiker D, Banerjee R, Dennis A (2021) Comparison between magnetic resonance and ultrasound-derived indicators of hepatic steatosis in a pooled NAFLD cohort. PLoS One 16(4):e0249491PubMedPubMedCentralCrossRef
134.
go back to reference Chebrolu VV, Hines CD, Yu H, Pineda AR, Shimakawa A, McKenzie CA, Samsonov A, Brittain JH, Reeder SB (2010) Independent estimation of T* 2 for water and fat for improved accuracy of fat quantification. Magn Reson Med 63(4):849–857PubMedPubMedCentralCrossRef Chebrolu VV, Hines CD, Yu H, Pineda AR, Shimakawa A, McKenzie CA, Samsonov A, Brittain JH, Reeder SB (2010) Independent estimation of T* 2 for water and fat for improved accuracy of fat quantification. Magn Reson Med 63(4):849–857PubMedPubMedCentralCrossRef
135.
go back to reference Horng DE, Hernando D, Hines CD, Reeder SB (2013) Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 37(2):414–422PubMedCrossRef Horng DE, Hernando D, Hines CD, Reeder SB (2013) Comparison of R2* correction methods for accurate fat quantification in fatty liver. J Magn Reson Imaging 37(2):414–422PubMedCrossRef
136.
go back to reference Hernando D, Kramer JH, Reeder SB (2013) Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation. Magn Reson Med 70(5):1319–1331PubMedPubMedCentralCrossRef Hernando D, Kramer JH, Reeder SB (2013) Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation. Magn Reson Med 70(5):1319–1331PubMedPubMedCentralCrossRef
137.
go back to reference Taylor BA, Hwang KP, Hazle JD, Stafford RJ (2009) Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition. Med Phys 36(3):753–764PubMedPubMedCentralCrossRef Taylor BA, Hwang KP, Hazle JD, Stafford RJ (2009) Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition. Med Phys 36(3):753–764PubMedPubMedCentralCrossRef
138.
go back to reference Krafft AJ, Taylor BA, Lin H, Loeffler RB, Hillenbrand CM (2013) A systematic evaluation of an auto regressive moving average (ARMA) model for fat-water quantification and simultaneous T2* mapping. In: International Society of Magnetic Resonance in Medicine, Salt Lake City, Utah Krafft AJ, Taylor BA, Lin H, Loeffler RB, Hillenbrand CM (2013) A systematic evaluation of an auto regressive moving average (ARMA) model for fat-water quantification and simultaneous T2* mapping. In: International Society of Magnetic Resonance in Medicine, Salt Lake City, Utah
139.
go back to reference Pooler BD, Hernando D, Ruby JA, Ishii H, Shimakawa A, Reeder SB (2018) Validation of a motion-robust 2D sequential technique for quantification of hepatic proton density fat fraction during free breathing. J Magn Reson Imaging 48(6):1578–1585PubMedPubMedCentralCrossRef Pooler BD, Hernando D, Ruby JA, Ishii H, Shimakawa A, Reeder SB (2018) Validation of a motion-robust 2D sequential technique for quantification of hepatic proton density fat fraction during free breathing. J Magn Reson Imaging 48(6):1578–1585PubMedPubMedCentralCrossRef
140.
go back to reference Jaubert O, Cruz G, Bustin A, Schneider T, Lavin B, Koken P, Hajhosseiny R, Doneva M, Rueckert D, Botnar RM, Prieto C (2020) Water-fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med 83(6):2107–2123PubMedCrossRef Jaubert O, Cruz G, Bustin A, Schneider T, Lavin B, Koken P, Hajhosseiny R, Doneva M, Rueckert D, Botnar RM, Prieto C (2020) Water-fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med 83(6):2107–2123PubMedCrossRef
141.
go back to reference Schneider E, Remer EM, Obuchowski NA, McKenzie CA, Ding X, Navaneethan SD (2021) Long-term inter-platform reproducibility, bias, and linearity of commercial PDFF MRI methods for fat quantification: a multi-center, multi-vendor phantom study. Eur Radiol 31(10):7566–7574PubMedCrossRef Schneider E, Remer EM, Obuchowski NA, McKenzie CA, Ding X, Navaneethan SD (2021) Long-term inter-platform reproducibility, bias, and linearity of commercial PDFF MRI methods for fat quantification: a multi-center, multi-vendor phantom study. Eur Radiol 31(10):7566–7574PubMedCrossRef
142.
go back to reference Bernard CP, Liney GP, Manton DJ, Turnbull LW, Langton CM (2008) Comparison of fat quantification methods: a phantom study at 3.0T. J Magn Reson Imaging 27(1):192–197PubMedCrossRef Bernard CP, Liney GP, Manton DJ, Turnbull LW, Langton CM (2008) Comparison of fat quantification methods: a phantom study at 3.0T. J Magn Reson Imaging 27(1):192–197PubMedCrossRef
143.
go back to reference Peng XG, Ju S, Qin Y, Fang F, Cui X, Liu G, Ni Y, Teng GJ (2011) Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy. J Lipid Res 52(10):1847–1855PubMedCrossRef Peng XG, Ju S, Qin Y, Fang F, Cui X, Liu G, Ni Y, Teng GJ (2011) Quantification of liver fat in mice: comparing dual-echo Dixon imaging, chemical shift imaging, and 1H-MR spectroscopy. J Lipid Res 52(10):1847–1855PubMedCrossRef
144.
go back to reference Leporq B, Lambert SA, Ronot M, Vilgrain V, Van Beers BE (2014) Quantification of the triglyceride fatty acid composition with 3.0 T MRI. NMR Biomed 27(10):1211–1221PubMedCrossRef Leporq B, Lambert SA, Ronot M, Vilgrain V, Van Beers BE (2014) Quantification of the triglyceride fatty acid composition with 3.0 T MRI. NMR Biomed 27(10):1211–1221PubMedCrossRef
145.
go back to reference Fukuzawa K, Hayashi T, Takahashi J, Yoshihara C, Tano M, Kotoku J, Saitoh S (2017) Evaluation of six-point modified dixon and magnetic resonance spectroscopy for fat quantification: a fat-water-iron phantom study. Radiol Phys Technol 10(3):349–358PubMedCrossRef Fukuzawa K, Hayashi T, Takahashi J, Yoshihara C, Tano M, Kotoku J, Saitoh S (2017) Evaluation of six-point modified dixon and magnetic resonance spectroscopy for fat quantification: a fat-water-iron phantom study. Radiol Phys Technol 10(3):349–358PubMedCrossRef
146.
go back to reference Hayashi T, Fukuzawa K, Yamazaki H, Konno T, Miyati T, Kotoku J, Oba H, Kondo H, Toyoda K, Saitoh S (2018) Multicenter, multivendor phantom study to validate proton density fat fraction and T2* values calculated using vendor-provided 6-point DIXON methods. Clin Imaging 51:38–42PubMedCrossRef Hayashi T, Fukuzawa K, Yamazaki H, Konno T, Miyati T, Kotoku J, Oba H, Kondo H, Toyoda K, Saitoh S (2018) Multicenter, multivendor phantom study to validate proton density fat fraction and T2* values calculated using vendor-provided 6-point DIXON methods. Clin Imaging 51:38–42PubMedCrossRef
147.
go back to reference Kim HJ, Cho HJ, Kim B, You MW, Lee JH, Huh J, Kim JK (2019) Accuracy and precision of proton density fat fraction measurement across field strengths and scan intervals: a phantom and human study. J Magn Reson Imaging 50(1):305–314PubMedCrossRef Kim HJ, Cho HJ, Kim B, You MW, Lee JH, Huh J, Kim JK (2019) Accuracy and precision of proton density fat fraction measurement across field strengths and scan intervals: a phantom and human study. J Magn Reson Imaging 50(1):305–314PubMedCrossRef
148.
go back to reference Mashhood A, Railkar R, Yokoo T, Levin Y, Clark L, Fox-Bosetti S, Middleton MS, Riek J, Kauh E, Dardzinski BJ, Williams D, Sirlin C, Shire NJ (2013) Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging. J Magn Reson Imaging 37(6):1359–1370PubMedCrossRef Mashhood A, Railkar R, Yokoo T, Levin Y, Clark L, Fox-Bosetti S, Middleton MS, Riek J, Kauh E, Dardzinski BJ, Williams D, Sirlin C, Shire NJ (2013) Reproducibility of hepatic fat fraction measurement by magnetic resonance imaging. J Magn Reson Imaging 37(6):1359–1370PubMedCrossRef
149.
go back to reference Water in Mineral Oil in Water (W–O–W) Double Emulsion Production using SDS, PGPR and Tween® 80 as Emulsifiers (2019). Dolomite Microfluidics Water in Mineral Oil in Water (W–O–W) Double Emulsion Production using SDS, PGPR and Tween® 80 as Emulsifiers (2019). Dolomite Microfluidics
151.
go back to reference Zdrali E, Etienne G, Smolentsev N, Amstad E, Roke S (2019) The interfacial structure of nano- and micron-sized oil and water droplets stabilized with SDS and Span80. J Chem Phys 150(20):204704PubMedCrossRef Zdrali E, Etienne G, Smolentsev N, Amstad E, Roke S (2019) The interfacial structure of nano- and micron-sized oil and water droplets stabilized with SDS and Span80. J Chem Phys 150(20):204704PubMedCrossRef
152.
go back to reference Wang Q, Ye F, Ma P, Chen F, Che Y, Zhao X, Yang L (2019) Quantitative magnetic resonance imaging evaluation of hepatic fat content with iron deposition: will it be disturbed? J Int Med Res 47(5):1958–1974PubMedPubMedCentralCrossRef Wang Q, Ye F, Ma P, Chen F, Che Y, Zhao X, Yang L (2019) Quantitative magnetic resonance imaging evaluation of hepatic fat content with iron deposition: will it be disturbed? J Int Med Res 47(5):1958–1974PubMedPubMedCentralCrossRef
153.
go back to reference Fritz V, Martirosian P, Machann J, Daniels R, Schick F (2022) A comparison of emulsifiers for the formation of oil-in-water emulsions: stability of the emulsions within 9 h after production and MR signal properties. MAGMA 35(3):401–410PubMedCrossRef Fritz V, Martirosian P, Machann J, Daniels R, Schick F (2022) A comparison of emulsifiers for the formation of oil-in-water emulsions: stability of the emulsions within 9 h after production and MR signal properties. MAGMA 35(3):401–410PubMedCrossRef
154.
go back to reference Nahmias Y, Berthiaume F, Yarmush ML (2007) Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 103:309–329PubMed Nahmias Y, Berthiaume F, Yarmush ML (2007) Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 103:309–329PubMed
155.
go back to reference Khurana A, Sayed N, Allawadhi P, Weiskirchen R (2021) It’s all about the spaces between cells: role of extracellular matrix in liver fibrosis. Ann Transl Med 9(8):728PubMedPubMedCentralCrossRef Khurana A, Sayed N, Allawadhi P, Weiskirchen R (2021) It’s all about the spaces between cells: role of extracellular matrix in liver fibrosis. Ann Transl Med 9(8):728PubMedPubMedCentralCrossRef
156.
go back to reference Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Ronnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D (2017) The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv Drug Deliv Rev 121:43–56PubMedCrossRef Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Ronnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D (2017) The good and the bad collagens of fibrosis—their role in signaling and organ function. Adv Drug Deliv Rev 121:43–56PubMedCrossRef
158.
go back to reference Chen G, Xia B, Fu Q, Huang X, Wang F, Chen Z, Lv Y (2019) Matrix mechanics as regulatory factors and therapeutic targets in hepatic fibrosis. Int J Biol Sci 15(12):2509–2521PubMedPubMedCentralCrossRef Chen G, Xia B, Fu Q, Huang X, Wang F, Chen Z, Lv Y (2019) Matrix mechanics as regulatory factors and therapeutic targets in hepatic fibrosis. Int J Biol Sci 15(12):2509–2521PubMedPubMedCentralCrossRef
159.
go back to reference Bazrafshan Z, Stylios GK (2019) Spinnability of collagen as a biomimetic material: a review. Int J Biol Macromol 129:693–705PubMedCrossRef Bazrafshan Z, Stylios GK (2019) Spinnability of collagen as a biomimetic material: a review. Int J Biol Macromol 129:693–705PubMedCrossRef
160.
go back to reference Civan JM (2019) Hepatic Fibrosis. merckmanuals.com/professional/hepatic-and-biliary-disorders/fibrosis-and-cirrhosis/hepatic-fibrosis. Civan JM (2019) Hepatic Fibrosis. merckmanuals.com/professional/hepatic-and-biliary-disorders/fibrosis-and-cirrhosis/hepatic-fibrosis.
161.
go back to reference Milic S, Mikolasevic I, Orlic L, Devcic E, Starcevic-Cizmarevic N, Stimac D, Kapovic M, Ristic S (2016) The role of iron and iron overload in chronic liver disease. Med Sci Monit 22:2144–2151PubMedPubMedCentralCrossRef Milic S, Mikolasevic I, Orlic L, Devcic E, Starcevic-Cizmarevic N, Stimac D, Kapovic M, Ristic S (2016) The role of iron and iron overload in chronic liver disease. Med Sci Monit 22:2144–2151PubMedPubMedCentralCrossRef
162.
go back to reference Puri P, Sanyal AJ (2012) Nonalcoholic fatty liver disease: definitions, risk factors, and workup. Clin Liver Dis (Hoboken) 1(4):99–103PubMedCrossRef Puri P, Sanyal AJ (2012) Nonalcoholic fatty liver disease: definitions, risk factors, and workup. Clin Liver Dis (Hoboken) 1(4):99–103PubMedCrossRef
163.
go back to reference Idilman IS, Li J, Yin M, Venkatesh SK (2020) MR elastography of liver: current status and future perspectives. Abdom Radiol (NY) 45(11):3444–3462PubMedCrossRef Idilman IS, Li J, Yin M, Venkatesh SK (2020) MR elastography of liver: current status and future perspectives. Abdom Radiol (NY) 45(11):3444–3462PubMedCrossRef
164.
go back to reference Guglielmo FF, Venkatesh SK, Mitchell DG (2019) Liver MR elastography technique and image interpretation: pearls and pitfalls. Radiographics 39(7):1983–2002PubMedCrossRef Guglielmo FF, Venkatesh SK, Mitchell DG (2019) Liver MR elastography technique and image interpretation: pearls and pitfalls. Radiographics 39(7):1983–2002PubMedCrossRef
165.
go back to reference Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37(3):544–555PubMedPubMedCentralCrossRef Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37(3):544–555PubMedPubMedCentralCrossRef
167.
go back to reference Wang Y, Ganger DR, Levitsky J, Sternick LA, McCarthy RJ, Chen ZE, Fasanati CW, Bolster B, Shah S, Zuehlsdorff S, Omary RA, Ehman RL, Miller FH (2011) Assessment of chronic hepatitis and fibrosis: comparison of MR elastography and diffusion-weighted imaging. AJR Am J Roentgenol 196(3):553–561PubMedPubMedCentralCrossRef Wang Y, Ganger DR, Levitsky J, Sternick LA, McCarthy RJ, Chen ZE, Fasanati CW, Bolster B, Shah S, Zuehlsdorff S, Omary RA, Ehman RL, Miller FH (2011) Assessment of chronic hepatitis and fibrosis: comparison of MR elastography and diffusion-weighted imaging. AJR Am J Roentgenol 196(3):553–561PubMedPubMedCentralCrossRef
168.
go back to reference Serai SD, Obuchowski NA, Venkatesh SK, Sirlin CB, Miller FH, Ashton E, Cole PE, Ehman RL (2017) Repeatability of MR elastography of liver: a meta-analysis. Radiology 285(1):92–100PubMedCrossRef Serai SD, Obuchowski NA, Venkatesh SK, Sirlin CB, Miller FH, Ashton E, Cole PE, Ehman RL (2017) Repeatability of MR elastography of liver: a meta-analysis. Radiology 285(1):92–100PubMedCrossRef
169.
go back to reference Ozturk A, Olson MC, Samir AE, Venkatesh SK (2022) Liver fibrosis assessment: MR and US elastography. Abdom Radiol (NY) 47(9):3037–3050PubMedCrossRef Ozturk A, Olson MC, Samir AE, Venkatesh SK (2022) Liver fibrosis assessment: MR and US elastography. Abdom Radiol (NY) 47(9):3037–3050PubMedCrossRef
170.
go back to reference Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound elastography and MR elastography for assessing liver fibrosis: part 2, diagnostic performance, confounders, and future directions. AJR Am J Roentgenol 205(1):33–40PubMedPubMedCentralCrossRef Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound elastography and MR elastography for assessing liver fibrosis: part 2, diagnostic performance, confounders, and future directions. AJR Am J Roentgenol 205(1):33–40PubMedPubMedCentralCrossRef
171.
go back to reference Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207–1213PubMedPubMedCentralCrossRef Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207–1213PubMedPubMedCentralCrossRef
172.
go back to reference Akkaya HE, Erden A, Kuru Oz D, Unal S, Erden I (2018) Magnetic resonance elastography: basic principles, technique, and clinical applications in the liver. Diagn Interv Radiol 24(6):328–335PubMedPubMedCentralCrossRef Akkaya HE, Erden A, Kuru Oz D, Unal S, Erden I (2018) Magnetic resonance elastography: basic principles, technique, and clinical applications in the liver. Diagn Interv Radiol 24(6):328–335PubMedPubMedCentralCrossRef
173.
175.
go back to reference Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S (2014) Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 60(1):69–77PubMedPubMedCentralCrossRef Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S (2014) Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 60(1):69–77PubMedPubMedCentralCrossRef
176.
go back to reference Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM (2020) Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol 26(2):109–133PubMedPubMedCentralCrossRef Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM (2020) Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol 26(2):109–133PubMedPubMedCentralCrossRef
177.
go back to reference Li Z, Sun J, Hu X, Huang N, Han G, Chen L, Zhou Y, Bai W, Yang X (2016) Assessment of liver fibrosis by variable flip angle T1 mapping at 30T. J Magn Reson Imaging 43(3):698–703PubMedCrossRef Li Z, Sun J, Hu X, Huang N, Han G, Chen L, Zhou Y, Bai W, Yang X (2016) Assessment of liver fibrosis by variable flip angle T1 mapping at 30T. J Magn Reson Imaging 43(3):698–703PubMedCrossRef
178.
go back to reference Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18(1):89PubMedPubMedCentralCrossRef Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18(1):89PubMedPubMedCentralCrossRef
179.
go back to reference Ding Y, Rao SX, Zhu T, Chen CZ, Li RC, Zeng MS (2015) Liver fibrosis staging using T1 mapping on gadoxetic acid-enhanced MRI compared with DW imaging. Clin Radiol 70(10):1096–1103PubMedCrossRef Ding Y, Rao SX, Zhu T, Chen CZ, Li RC, Zeng MS (2015) Liver fibrosis staging using T1 mapping on gadoxetic acid-enhanced MRI compared with DW imaging. Clin Radiol 70(10):1096–1103PubMedCrossRef
180.
go back to reference Heye T, Yang SR, Bock M, Brost S, Weigand K, Longerich T, Kauczor HU, Hosch W (2012) MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 22(6):1224–1232PubMedCrossRef Heye T, Yang SR, Bock M, Brost S, Weigand K, Longerich T, Kauczor HU, Hosch W (2012) MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 22(6):1224–1232PubMedCrossRef
181.
go back to reference Haimerl M, Utpatel K, Verloh N, Zeman F, Fellner C, Nickel D, Teufel A, Fichtner-Feigl S, Evert M, Stroszczynski C, Wiggermann P (2017) Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis. Sci Rep 7:41429PubMedPubMedCentralCrossRef Haimerl M, Utpatel K, Verloh N, Zeman F, Fellner C, Nickel D, Teufel A, Fichtner-Feigl S, Evert M, Stroszczynski C, Wiggermann P (2017) Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis. Sci Rep 7:41429PubMedPubMedCentralCrossRef
182.
go back to reference Sheng RF, Wang HQ, Yang L, Jin KP, Xie YH, Fu CX, Zeng MS (2017) Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance. Dig Liver Dis 49(7):789–795PubMedCrossRef Sheng RF, Wang HQ, Yang L, Jin KP, Xie YH, Fu CX, Zeng MS (2017) Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance. Dig Liver Dis 49(7):789–795PubMedCrossRef
183.
go back to reference Elsafty HG, El Shafey M, El Arabawy R, Mahrous MR, Dawoud TM (2021) Could native T1 mapping replace late gadolinium enhancement in the assessment of myocardial fibrosis in patients with cardiomyopathy? Egypt J Radiol Nucl Med 52(1):222CrossRef Elsafty HG, El Shafey M, El Arabawy R, Mahrous MR, Dawoud TM (2021) Could native T1 mapping replace late gadolinium enhancement in the assessment of myocardial fibrosis in patients with cardiomyopathy? Egypt J Radiol Nucl Med 52(1):222CrossRef
184.
go back to reference Mojtahed A, Kelly CJ, Herlihy AH, Kin S, Wilman HR, McKay A, Kelly M, Milanesi M, Neubauer S, Thomas EL, Bell JD, Banerjee R, Harisinghani M (2019) Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases. Abdom Radiol (NY) 44(1):72–84PubMedCrossRef Mojtahed A, Kelly CJ, Herlihy AH, Kin S, Wilman HR, McKay A, Kelly M, Milanesi M, Neubauer S, Thomas EL, Bell JD, Banerjee R, Harisinghani M (2019) Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases. Abdom Radiol (NY) 44(1):72–84PubMedCrossRef
185.
go back to reference Hoad CL, Palaniyappan N, Kaye P, Chernova Y, James MW, Costigan C, Austin A, Marciani L, Gowland PA, Guha IN, Francis ST, Aithal GP (2015) A study of T(1) relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed 28(6):706–714PubMedCrossRef Hoad CL, Palaniyappan N, Kaye P, Chernova Y, James MW, Costigan C, Austin A, Marciani L, Gowland PA, Guha IN, Francis ST, Aithal GP (2015) A study of T(1) relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed 28(6):706–714PubMedCrossRef
186.
go back to reference Obmann VC, Berzigotti A, Catucci D, Ebner L, Grani C, Heverhagen JT, Christe A, Huber AT (2021) T1 mapping of the liver and the spleen in patients with liver fibrosis-does normalization to the blood pool increase the predictive value? Eur Radiol 31(6):4308–4318PubMedCrossRef Obmann VC, Berzigotti A, Catucci D, Ebner L, Grani C, Heverhagen JT, Christe A, Huber AT (2021) T1 mapping of the liver and the spleen in patients with liver fibrosis-does normalization to the blood pool increase the predictive value? Eur Radiol 31(6):4308–4318PubMedCrossRef
187.
go back to reference Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29(6):1615–1635PubMedCrossRef Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, Peterson M, Kono Y, Santillan C, Casola G, Sirlin CB (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29(6):1615–1635PubMedCrossRef
188.
go back to reference Talwalkar JA, Yin M, Fidler JL, Sanderson SO, Kamath PS, Ehman RL (2008) Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology 47(1):332–342PubMedCrossRef Talwalkar JA, Yin M, Fidler JL, Sanderson SO, Kamath PS, Ehman RL (2008) Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology 47(1):332–342PubMedCrossRef
189.
go back to reference Girometti R, Furlan A, Esposito G, Bazzocchi M, Como G, Soldano F, Isola M, Toniutto P, Zuiani C (2008) Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences. J Magn Reson Imaging 28(2):411–419PubMedCrossRef Girometti R, Furlan A, Esposito G, Bazzocchi M, Como G, Soldano F, Isola M, Toniutto P, Zuiani C (2008) Relevance of b-values in evaluating liver fibrosis: a study in healthy and cirrhotic subjects using two single-shot spin-echo echo-planar diffusion-weighted sequences. J Magn Reson Imaging 28(2):411–419PubMedCrossRef
190.
go back to reference Zhu J, Zhang J, Gao JY, Li JN, Yang DW, Chen M, Zhou C, Yang ZH (2017) Apparent diffusion coefficient normalization of normal liver: will it improve the reproducibility of diffusion-weighted imaging at different MR scanners as a new biomarker? Medicine (Baltimore) 96(3):e5910PubMedCrossRef Zhu J, Zhang J, Gao JY, Li JN, Yang DW, Chen M, Zhou C, Yang ZH (2017) Apparent diffusion coefficient normalization of normal liver: will it improve the reproducibility of diffusion-weighted imaging at different MR scanners as a new biomarker? Medicine (Baltimore) 96(3):e5910PubMedCrossRef
191.
go back to reference Mostafa MA, Kamal O, Yassin A, Nagi MA, Ahmed OA, Ahmed HA (2020) The diagnostic value of normalized ADC using spleen as reference organ in assessment liver fibrosis. Egypt J Radiol Nucl Med 51(1):112CrossRef Mostafa MA, Kamal O, Yassin A, Nagi MA, Ahmed OA, Ahmed HA (2020) The diagnostic value of normalized ADC using spleen as reference organ in assessment liver fibrosis. Egypt J Radiol Nucl Med 51(1):112CrossRef
192.
go back to reference Shin MK, Song JS, Hwang SB, Hwang HP, Kim YJ, Moon WS (2019) Liver fibrosis assessment with diffusion-weighted imaging: value of liver apparent diffusion coefficient normalization using the spleen as a reference organ. Diagnostics (Basel) 9(3):207 Shin MK, Song JS, Hwang SB, Hwang HP, Kim YJ, Moon WS (2019) Liver fibrosis assessment with diffusion-weighted imaging: value of liver apparent diffusion coefficient normalization using the spleen as a reference organ. Diagnostics (Basel) 9(3):207
193.
go back to reference El-Hariri M, Ali TFT, Hussien HIM (2013) Apparent diffusion coefficient (ADC) in liver fibrosis: Usefulness of normalized ADC using the spleen as reference organ. Egypt J Radiol Nucl Med 44(3):441–451CrossRef El-Hariri M, Ali TFT, Hussien HIM (2013) Apparent diffusion coefficient (ADC) in liver fibrosis: Usefulness of normalized ADC using the spleen as reference organ. Egypt J Radiol Nucl Med 44(3):441–451CrossRef
194.
go back to reference Petitclerc L, Sebastiani G, Gilbert G, Cloutier G, Tang A (2017) Liver fibrosis: review of current imaging and MRI quantification techniques. J Magn Reson Imaging 45(5):1276–1295PubMedCrossRef Petitclerc L, Sebastiani G, Gilbert G, Cloutier G, Tang A (2017) Liver fibrosis: review of current imaging and MRI quantification techniques. J Magn Reson Imaging 45(5):1276–1295PubMedCrossRef
195.
go back to reference Leitao HS, Doblas S, d’Assignies G, Garteiser P, Daire JL, Paradis V, Geraldes CF, Vilgrain V, Van Beers BE (2013) Fat deposition decreases diffusion parameters at MRI: a study in phantoms and patients with liver steatosis. Eur Radiol 23(2):461–467PubMedCrossRef Leitao HS, Doblas S, d’Assignies G, Garteiser P, Daire JL, Paradis V, Geraldes CF, Vilgrain V, Van Beers BE (2013) Fat deposition decreases diffusion parameters at MRI: a study in phantoms and patients with liver steatosis. Eur Radiol 23(2):461–467PubMedCrossRef
196.
go back to reference Liu CH, Liang CC, Huang KW, Liu CJ, Chen SI, Lin JW, Hung PH, Tsai HB, Lai MY, Chen PJ, Chen JH, Chen DS, Kao JH (2011) Transient elastography to assess hepatic fibrosis in hemodialysis chronic hepatitis C patients. Clin J Am Soc Nephrol 6(5):1057–1065PubMedPubMedCentralCrossRef Liu CH, Liang CC, Huang KW, Liu CJ, Chen SI, Lin JW, Hung PH, Tsai HB, Lai MY, Chen PJ, Chen JH, Chen DS, Kao JH (2011) Transient elastography to assess hepatic fibrosis in hemodialysis chronic hepatitis C patients. Clin J Am Soc Nephrol 6(5):1057–1065PubMedPubMedCentralCrossRef
197.
go back to reference Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL (2007) Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 58(2):346–353PubMedCrossRef Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL (2007) Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 58(2):346–353PubMedCrossRef
198.
199.
go back to reference Rojas GS, Dies P, Tobón SH (2019) Stiffness of liver-mimicking phantom for magnetic resonance elastography. In: Proceedings of the 15th scientific meeting, Mexican Symposium on Medical Physics, Mexico City, Mexico, p 040007 Rojas GS, Dies P, Tobón SH (2019) Stiffness of liver-mimicking phantom for magnetic resonance elastography. In: Proceedings of the 15th scientific meeting, Mexican Symposium on Medical Physics, Mexico City, Mexico, p 040007
200.
go back to reference Andoh F, Yue JL, Julea F, Tardieu M, Nous C, Page G, Garteiser P, Van Beers BE, Maitre X, Pellot-Barakat C (2021) Multifrequency magnetic resonance elastography for elasticity quantitation and optimal tissue discrimination: a two-platform liver fibrosis mimicking phantom study. NMR Biomed 34(8):e4543PubMedCrossRef Andoh F, Yue JL, Julea F, Tardieu M, Nous C, Page G, Garteiser P, Van Beers BE, Maitre X, Pellot-Barakat C (2021) Multifrequency magnetic resonance elastography for elasticity quantitation and optimal tissue discrimination: a two-platform liver fibrosis mimicking phantom study. NMR Biomed 34(8):e4543PubMedCrossRef
201.
go back to reference Salameh N, Sarracanie M, Armstrong BD, Rosen MS, Comment A (2016) Overhauser-enhanced magnetic resonance elastography. NMR Biomed 29(5):607–613PubMedCrossRef Salameh N, Sarracanie M, Armstrong BD, Rosen MS, Comment A (2016) Overhauser-enhanced magnetic resonance elastography. NMR Biomed 29(5):607–613PubMedCrossRef
202.
go back to reference Kishimoto R, Suga M, Koyama A, Omatsu T, Tachibana Y, Ebner DK, Obata T (2017) Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study. BMJ Open 7(1):e013925PubMedPubMedCentralCrossRef Kishimoto R, Suga M, Koyama A, Omatsu T, Tachibana Y, Ebner DK, Obata T (2017) Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study. BMJ Open 7(1):e013925PubMedPubMedCentralCrossRef
203.
go back to reference Usumura M, Kishimoto R, Ishii K, Hotta E, Kershaw J, Higashi T, Obata T, Suga M (2021) Longitudinal stability of a multimodal visco-elastic polyacrylamide gel phantom for magnetic resonance and ultrasound shear-wave elastography. PLoS ONE 16(5):e0250667PubMedPubMedCentralCrossRef Usumura M, Kishimoto R, Ishii K, Hotta E, Kershaw J, Higashi T, Obata T, Suga M (2021) Longitudinal stability of a multimodal visco-elastic polyacrylamide gel phantom for magnetic resonance and ultrasound shear-wave elastography. PLoS ONE 16(5):e0250667PubMedPubMedCentralCrossRef
204.
go back to reference Kishimoto R, Suga M, Usumura M, Iijima H, Yoshida M, Hachiya H, Shiina T, Yamakawa M, Konno K, Obata T, Yamaguchi T (2022) Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: a comparative study with transient elastography and magnetic resonance elastography. J Med Ultrason (2001) 49(2):143–152PubMedCrossRef Kishimoto R, Suga M, Usumura M, Iijima H, Yoshida M, Hachiya H, Shiina T, Yamakawa M, Konno K, Obata T, Yamaguchi T (2022) Shear wave speed measurement bias in a viscoelastic phantom across six ultrasound elastography systems: a comparative study with transient elastography and magnetic resonance elastography. J Med Ultrason (2001) 49(2):143–152PubMedCrossRef
206.
go back to reference Meneses A, Santabarbara JM, Romero JA, Aliaga R, Maceira AM, Moratal D (2021) Determination of non-invasive biomarkers for the assessment of fibrosis, steatosis and hepatic iron overload by MR image analysis. a pilot study. Diagnostics (Basel) 11(7) Meneses A, Santabarbara JM, Romero JA, Aliaga R, Maceira AM, Moratal D (2021) Determination of non-invasive biomarkers for the assessment of fibrosis, steatosis and hepatic iron overload by MR image analysis. a pilot study. Diagnostics (Basel) 11(7)
207.
go back to reference Tirkes T, Zhao X, Lin C, Stuckey AJ, Li L, Giri S, Nickel D (2019) Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver. MAGMA 32(5):559–566PubMedPubMedCentralCrossRef Tirkes T, Zhao X, Lin C, Stuckey AJ, Li L, Giri S, Nickel D (2019) Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxometry and extracellular volume imaging of the pancreas and liver. MAGMA 32(5):559–566PubMedPubMedCentralCrossRef
208.
go back to reference Statton BK, Smith J, Finnegan ME, Koerzdoerfer G, Quest RA, Grech-Sollars M (2022) Temperature dependence, accuracy, and repeatability of T1 and T2 relaxation times for the ISMRM/NIST system phantom measured using MR fingerprinting. Magn Reson Med 87(3):1446–1460PubMedCrossRef Statton BK, Smith J, Finnegan ME, Koerzdoerfer G, Quest RA, Grech-Sollars M (2022) Temperature dependence, accuracy, and repeatability of T1 and T2 relaxation times for the ISMRM/NIST system phantom measured using MR fingerprinting. Magn Reson Med 87(3):1446–1460PubMedCrossRef
209.
go back to reference Lewis B, Guta A, Mackey S, Gach HM, Mutic S, Green O, Kim T (2021) Evaluation of diffusion-weighted MRI and geometric distortion on a 0.35T MR-LINAC at multiple gantry angles. J Appl Clin Med Phys 22(2):118–125PubMedPubMedCentralCrossRef Lewis B, Guta A, Mackey S, Gach HM, Mutic S, Green O, Kim T (2021) Evaluation of diffusion-weighted MRI and geometric distortion on a 0.35T MR-LINAC at multiple gantry angles. J Appl Clin Med Phys 22(2):118–125PubMedPubMedCentralCrossRef
210.
go back to reference Girometti R, Furlan A, Bazzocchi M, Soldano F, Isola M, Toniutto P, Bitetto D, Zuiani C (2007) Diffusion-weighted MRI in evaluating liver fibrosis: a feasibility study in cirrhotic patients. Radiol Med 112(3):394–408PubMedCrossRef Girometti R, Furlan A, Bazzocchi M, Soldano F, Isola M, Toniutto P, Bitetto D, Zuiani C (2007) Diffusion-weighted MRI in evaluating liver fibrosis: a feasibility study in cirrhotic patients. Radiol Med 112(3):394–408PubMedCrossRef
211.
go back to reference Cui Y, Dyvorne H, Besa C, Cooper N, Taouli B (2015) IVIM Diffusion-weighted Imaging of the Liver at 3.0T: Comparison with 1.5T. Eur J Radiol Open 2:123–128PubMedPubMedCentralCrossRef Cui Y, Dyvorne H, Besa C, Cooper N, Taouli B (2015) IVIM Diffusion-weighted Imaging of the Liver at 3.0T: Comparison with 1.5T. Eur J Radiol Open 2:123–128PubMedPubMedCentralCrossRef
212.
go back to reference Sharma P, Martin DR, Pineda N, Xu Q, Vos M, Anania F, Hu X (2009) Quantitative analysis of T2-correction in single-voxel magnetic resonance spectroscopy of hepatic lipid fraction. J Magn Reson Imaging 29(3):629–635PubMedPubMedCentralCrossRef Sharma P, Martin DR, Pineda N, Xu Q, Vos M, Anania F, Hu X (2009) Quantitative analysis of T2-correction in single-voxel magnetic resonance spectroscopy of hepatic lipid fraction. J Magn Reson Imaging 29(3):629–635PubMedPubMedCentralCrossRef
213.
go back to reference Colgan TJ, Zhao R, Roberts NT, Hernando D, Reeder SB (2021) Limits of fat quantification in the presence of iron overload. J Magn Reson Imaging 54(4):1166–1174PubMedPubMedCentralCrossRef Colgan TJ, Zhao R, Roberts NT, Hernando D, Reeder SB (2021) Limits of fat quantification in the presence of iron overload. J Magn Reson Imaging 54(4):1166–1174PubMedPubMedCentralCrossRef
214.
go back to reference Thangavel K, SaritaŞ EÜ (2017) Aqueous paramagnetic solutions for MRI phantoms at 3 T: a detailed study on relaxivities. Turk J Electr Eng Comput Sci 25:2108–2121CrossRef Thangavel K, SaritaŞ EÜ (2017) Aqueous paramagnetic solutions for MRI phantoms at 3 T: a detailed study on relaxivities. Turk J Electr Eng Comput Sci 25:2108–2121CrossRef
215.
go back to reference Wood JC, Otto-Duessel M, Aguilar M, Nick H, Nelson MD, Coates TD, Pollack H, Moats R (2005) Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation 112(4):535–543PubMedPubMedCentralCrossRef Wood JC, Otto-Duessel M, Aguilar M, Nick H, Nelson MD, Coates TD, Pollack H, Moats R (2005) Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation 112(4):535–543PubMedPubMedCentralCrossRef
216.
go back to reference Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely HJ, Schocke M (2012) Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 22(11):2478–2486PubMedCrossRef Henninger B, Kremser C, Rauch S, Eder R, Zoller H, Finkenstedt A, Michaely HJ, Schocke M (2012) Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 22(11):2478–2486PubMedCrossRef
217.
go back to reference Simchick G, Zhao R, Hamilton G, Reeder SB, Hernando D (2021) Spectroscopy-based multi-parametric quantification in subjects with liver iron overload at 1.5T and 3T. Magn Reson Med 87(2):597–613PubMedPubMedCentralCrossRef Simchick G, Zhao R, Hamilton G, Reeder SB, Hernando D (2021) Spectroscopy-based multi-parametric quantification in subjects with liver iron overload at 1.5T and 3T. Magn Reson Med 87(2):597–613PubMedPubMedCentralCrossRef
218.
go back to reference Thamizharasan G, Russell A, Beinkampen J, Holtrop J, Williams J, Tipirneni-Sajja A (2019) Magnetic resonance elastography phantoms to mimic liver tissue stiffness and validation with uniaxial compression test. In: Paper presented at the Biomedical Engineering Society Meeting Thamizharasan G, Russell A, Beinkampen J, Holtrop J, Williams J, Tipirneni-Sajja A (2019) Magnetic resonance elastography phantoms to mimic liver tissue stiffness and validation with uniaxial compression test. In: Paper presented at the Biomedical Engineering Society Meeting
219.
go back to reference Tsai YS, Chen JS, Wang CK, Lu CH, Cheng CN, Kuo CS, Liu YS, Tsai HM (2014) Quantitative assessment of iron in heart and liver phantoms using dual-energy computed tomography. Exp Ther Med 8(3):907–912PubMedPubMedCentralCrossRef Tsai YS, Chen JS, Wang CK, Lu CH, Cheng CN, Kuo CS, Liu YS, Tsai HM (2014) Quantitative assessment of iron in heart and liver phantoms using dual-energy computed tomography. Exp Ther Med 8(3):907–912PubMedPubMedCentralCrossRef
220.
go back to reference Guimaraes AR, Siqueira L, Uppal R, Alford J, Fuchs BC, Yamada S, Tanabe K, Chung RT, Lauwers G, Chew ML, Boland GW, Sahani DV, Vangel M, Hahn PF, Caravan P (2016) T2 relaxation time is related to liver fibrosis severity. Quant Imaging Med Surg 6(2):103–114PubMedPubMedCentralCrossRef Guimaraes AR, Siqueira L, Uppal R, Alford J, Fuchs BC, Yamada S, Tanabe K, Chung RT, Lauwers G, Chew ML, Boland GW, Sahani DV, Vangel M, Hahn PF, Caravan P (2016) T2 relaxation time is related to liver fibrosis severity. Quant Imaging Med Surg 6(2):103–114PubMedPubMedCentralCrossRef
221.
go back to reference Headley AM, Grice JV, Pickens DR (2020) Reproducibility of liver iron concentration estimates in MRI through R2* measurement determined by least-squares curve fitting. J Appl Clin Med Phys 21(12):295–303PubMedPubMedCentralCrossRef Headley AM, Grice JV, Pickens DR (2020) Reproducibility of liver iron concentration estimates in MRI through R2* measurement determined by least-squares curve fitting. J Appl Clin Med Phys 21(12):295–303PubMedPubMedCentralCrossRef
222.
go back to reference Boll DT, Marin D, Redmon GM, Zink SI, Merkle EM (2010) Pilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point dixon MRI at 3 T: in vitro and in vivo results of a 2D decomposition technique. AJR Am J Roentgenol 194(4):964–971PubMedCrossRef Boll DT, Marin D, Redmon GM, Zink SI, Merkle EM (2010) Pilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point dixon MRI at 3 T: in vitro and in vivo results of a 2D decomposition technique. AJR Am J Roentgenol 194(4):964–971PubMedCrossRef
Metadata
Title
Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms
Authors
Aaryani Tipirneni-Sajja
Sarah Brasher
Utsav Shrestha
Hayden Johnson
Cara Morin
Sanjaya K. Satapathy
Publication date
14-12-2022
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 4/2023
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-022-01053-z

Other articles of this Issue 4/2023

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2023 Go to the issue