Skip to main content
Top
Published in: BMC Neurology 1/2020

01-12-2020 | Magnetic Resonance Imaging | Case report

Neuroimaging pattern and pathophysiology of cerebellar stroke-like lesions in MELAS with m.3243A>G mutation: a case report

Authors: Munenori Oyama, Takahiro Iizuka, Jin Nakahara, Yoshikane Izawa

Published in: BMC Neurology | Issue 1/2020

Login to get access

Abstract

Background

Stroke-like episodes (SLEs) in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with m.3243A > G mutation usually develop in the cerebral cortex. Few reports have documented SLEs in the cerebellum. The clinical neuroimaging features of cerebellar SLEs have not been fully investigated. We report distinctive features of cerebellar stroke-like lesions (SLLs) in a case of MELAS with m.3243A > G mutation.

Case presentation

A 47-year-old Japanese man with type-2 diabetes presented to our hospital with acute onset of aphasia. A brain MRI obtained on admission (day 1) showed increased diffusion-weighted imaging (DWI)/fluid-attenuated inversion recovery (FLAIR) signal in the left anterolateral temporal lobe, which subsequently spread along the cortex posteriorly accompanied by a new lesion in the right anterior temporal lobe. The patient was initially treated with acyclovir and subsequently with immunotherapy. However, on day 45, cerebellar ataxia developed. The brain MRI showed extensive increased DWI/FLAIR signals in the cerebellum along the folia without involvement of deep cerebellar nucleus or cerebellar peduncle; SLLs were incongruent with a vascular territory, similarly to classic cerebral SLLs. Apparent diffusion coefficient (ADC) map did not show reduction in ADC values in the affected folia. Genomic analysis revealed m.3243A > G mutation (heteroplasmy in leukocytes, 17%), confirming the diagnosis of MELAS. After the treatment with taurine (12,000 mg/day), L-arginine (12,000 mg/day), vitamin B1 (100 mg/day), and carnitine (3000 mg/day), the patient became able to follow simple commands, and he was transferred to a rehabilitation center on day 146. The follow-up MRI showed diffuse brain atrophy, including the cerebellum.

Conclusions

SLLs develop in the cerebellum in MELAS with m.3243A > G mutation. The neuroimaging similarities to cerebral SLLs suggest the presence of the common pathophysiological mechanisms underlying both SLEs, which include microangiopathy and increased susceptibility of the cortex to metabolic derangements.
Literature
1.
go back to reference Pavlakis SG, Phillips PC, Dimauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16(4):481–8.CrossRef Pavlakis SG, Phillips PC, Dimauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes: a distinctive clinical syndrome. Ann Neurol. 1984;16(4):481–8.CrossRef
2.
go back to reference Ng YS, Bindoff LA, Gorman GS, Horvath R, et al. Consensus-based statements for the management of mitochondrial stroke-like episodes. Wellcome Open Res. 2019;4:201.CrossRef Ng YS, Bindoff LA, Gorman GS, Horvath R, et al. Consensus-based statements for the management of mitochondrial stroke-like episodes. Wellcome Open Res. 2019;4:201.CrossRef
3.
go back to reference Iizuka T, Sakai F. Pathogenesis of stroke-like episodes in MELAS: analysis of neurovascular cellular mechanisms. Curr Neurovasc Res. 2005;2(1):29–45.CrossRef Iizuka T, Sakai F. Pathogenesis of stroke-like episodes in MELAS: analysis of neurovascular cellular mechanisms. Curr Neurovasc Res. 2005;2(1):29–45.CrossRef
4.
go back to reference Finsterer J. Aliyev Rahim. Metabolic stroke or stroke-like lesion: peculiarities of a phenomenon. J Neurol. Science (2020). J Neurol Sci. 2020;412:116726.CrossRef Finsterer J. Aliyev Rahim. Metabolic stroke or stroke-like lesion: peculiarities of a phenomenon. J Neurol. Science (2020). J Neurol Sci. 2020;412:116726.CrossRef
5.
go back to reference Iizuka T, Sakai F, Suzuki N, et al. Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome. Neurology. 2002;59(6):816–24.CrossRef Iizuka T, Sakai F, Suzuki N, et al. Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome. Neurology. 2002;59(6):816–24.CrossRef
6.
go back to reference Iizuka T, Sakai F, Kan S, Suzuki N. Slowly progressive spread of the stroke-like lesions in MELAS. Neurology. 2003;61(9):1238–44.CrossRef Iizuka T, Sakai F, Kan S, Suzuki N. Slowly progressive spread of the stroke-like lesions in MELAS. Neurology. 2003;61(9):1238–44.CrossRef
7.
go back to reference Hongo Y, Kaneko J, Suga H, Ishima D, Kitamura E, Akutsu T, et al. A cluster of disseminated small cortical lesions in MELAS: its distinctive clinical and neuroimaging features. J Neurol. 2019;266(6):1459–72.CrossRef Hongo Y, Kaneko J, Suga H, Ishima D, Kitamura E, Akutsu T, et al. A cluster of disseminated small cortical lesions in MELAS: its distinctive clinical and neuroimaging features. J Neurol. 2019;266(6):1459–72.CrossRef
8.
go back to reference Lax NZ, Hepplewhite PD, Reeve AK, Nesbitt V, McFarland R, Jaros E, et al. Cerebellar ataxia in patients with mitochondrial DNA disease: a molecular clinicopathological study. J Neuropathol Exp Neurol. 2012;71(2):148–61.CrossRef Lax NZ, Hepplewhite PD, Reeve AK, Nesbitt V, McFarland R, Jaros E, et al. Cerebellar ataxia in patients with mitochondrial DNA disease: a molecular clinicopathological study. J Neuropathol Exp Neurol. 2012;71(2):148–61.CrossRef
9.
go back to reference Lax NZ, Pienaar IS, Reeve AK, Hepplewhite PD, Jaros E, Taylor RW, et al. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain. 2012;135(Pt 6):1736–50.CrossRef Lax NZ, Pienaar IS, Reeve AK, Hepplewhite PD, Jaros E, Taylor RW, et al. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain. 2012;135(Pt 6):1736–50.CrossRef
10.
go back to reference Muramatsu D, Yamaguchi H, Iwasa K, Yamada M. Cerebellar hyperintensity lesions on diffusion-weighted MRI in MELAS. Intern Med. 2019;58(12):1797–8.CrossRef Muramatsu D, Yamaguchi H, Iwasa K, Yamada M. Cerebellar hyperintensity lesions on diffusion-weighted MRI in MELAS. Intern Med. 2019;58(12):1797–8.CrossRef
11.
go back to reference Spatola M, Petit-Pedrol M, Simabukuro MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology. 2017;88(11):1012–20.CrossRef Spatola M, Petit-Pedrol M, Simabukuro MM, et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology. 2017;88(11):1012–20.CrossRef
12.
go back to reference Ueno H, Iizuka T, Tagane Y, et al. Focal hyperperfusion and elevated lactate in the cerebral lesions with anti-GABAaR encephalitis: a serial MRI study. J Neuroradiol. 2019;19:30461–4. Ueno H, Iizuka T, Tagane Y, et al. Focal hyperperfusion and elevated lactate in the cerebral lesions with anti-GABAaR encephalitis: a serial MRI study. J Neuroradiol. 2019;19:30461–4.
13.
go back to reference Graus F, Titulaer JM, Balu R, et al. Clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404.CrossRef Graus F, Titulaer JM, Balu R, et al. Clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404.CrossRef
14.
go back to reference Samuel P. Hicks, Marie coy Cavanaugh, and Elaine D. O'Brien. Effects of anoxia on the developing cerebral cortex in the rat. Am J Pathol. 1962;40(6):615–35. Samuel P. Hicks, Marie coy Cavanaugh, and Elaine D. O'Brien. Effects of anoxia on the developing cerebral cortex in the rat. Am J Pathol. 1962;40(6):615–35.
15.
go back to reference Ohama E, Ohara S, Ikuta F, Tanaka K, Nishizawa M, Miyatake T. Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol. 1987;74(3):226–33.CrossRef Ohama E, Ohara S, Ikuta F, Tanaka K, Nishizawa M, Miyatake T. Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol. 1987;74(3):226–33.CrossRef
16.
go back to reference Mancuso M, Orsucci D, Angelini C, et al. The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol. 2014;261(3):504–10.CrossRef Mancuso M, Orsucci D, Angelini C, et al. The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? J Neurol. 2014;261(3):504–10.CrossRef
17.
go back to reference Pickett SJ, Grady JP, Ng YS, et al. Phenotypic heterogeneity in m.3243A>G mitochondrial disease: the role of nuclear factors. Ann Clin Transl Neurol. 2018;5(3):333–45.CrossRef Pickett SJ, Grady JP, Ng YS, et al. Phenotypic heterogeneity in m.3243A>G mitochondrial disease: the role of nuclear factors. Ann Clin Transl Neurol. 2018;5(3):333–45.CrossRef
18.
go back to reference Yoneda M, Maeda M, Kimura H, Fujii A, Katayama K, Kuriyama M. Vasogenic edema on MELAS: a serial study with diffusion-weighted MR imaging. Neurology. 1999;53(9):2182–4.CrossRef Yoneda M, Maeda M, Kimura H, Fujii A, Katayama K, Kuriyama M. Vasogenic edema on MELAS: a serial study with diffusion-weighted MR imaging. Neurology. 1999;53(9):2182–4.CrossRef
Metadata
Title
Neuroimaging pattern and pathophysiology of cerebellar stroke-like lesions in MELAS with m.3243A>G mutation: a case report
Authors
Munenori Oyama
Takahiro Iizuka
Jin Nakahara
Yoshikane Izawa
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2020
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-020-01748-7

Other articles of this Issue 1/2020

BMC Neurology 1/2020 Go to the issue