Skip to main content
Top
Published in: Insights into Imaging 1/2020

01-12-2020 | Magnetic Resonance Imaging | Critical Review

Dynamic MRI for articulating joint evaluation on 1.5 T and 3.0 T scanners: setup, protocols, and real-time sequences

Authors: Marc Garetier, Bhushan Borotikar, Karim Makki, Sylvain Brochard, François Rousseau, Douraïed Ben Salem

Published in: Insights into Imaging | Issue 1/2020

Login to get access

Abstract

Dynamic magnetic resonance imaging (MRI) is a non-invasive method that can be used to increase the understanding of the pathomechanics of joints. Various types of real-time gradient echo sequences used for dynamic MRI acquisition of joints include balanced steady-state free precession sequence, radiofrequency-spoiled sequence, and ultra-fast gradient echo sequence. Due to their short repetition time and echo time, these sequences provide high temporal resolution, a good signal-to-noise ratio and spatial resolution, and soft tissue contrast. The prerequisites of the evaluation of joints with dynamic MRI include suitable patient installation and optimal positioning of the joint in the coil to allow joint movement, sometimes with dedicated coil support. There are currently few recommendations in the literature regarding appropriate protocol, sequence standardizations, and diagnostic criteria for the use of real-time dynamic MRI to evaluate joints. This article summarizes the technical parameters of these sequences from various manufacturers on 1.5 T and 3.0 T MRI scanners. We have reviewed pertinent details of the patient and coil positioning for dynamic MRI of various joints. The indications and limitations of dynamic MRI of joints are discussed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983CrossRefPubMed Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983CrossRefPubMed
2.
go back to reference Draper CE, Besier TF, Fredericson M et al (2011) Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res 29:312–317CrossRefPubMed Draper CE, Besier TF, Fredericson M et al (2011) Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing conditions in patients with patellofemoral pain. J Orthop Res 29:312–317CrossRefPubMed
3.
go back to reference Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG (2003) Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 33:677–685CrossRefPubMed Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG (2003) Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther 33:677–685CrossRefPubMed
4.
go back to reference McWalter EJ, O’Kane CM, FitzPatrick DP, Wilson DR (2014) Validation of an MRI-based method to assess patellofemoral joint contact areas in loaded knee flexion in vivo: patellofemoral contact area validation. J Magn Reson Imaging 39:978–987CrossRefPubMed McWalter EJ, O’Kane CM, FitzPatrick DP, Wilson DR (2014) Validation of an MRI-based method to assess patellofemoral joint contact areas in loaded knee flexion in vivo: patellofemoral contact area validation. J Magn Reson Imaging 39:978–987CrossRefPubMed
5.
go back to reference d’Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP (2013) Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med 69:1634–1644CrossRefPubMed d’Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP (2013) Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med 69:1634–1644CrossRefPubMed
6.
go back to reference Carr R, MacLean S, Slavotinek J, Bain GI (2019) Four-dimensional computed tomography scanning for dynamic wrist disorders: prospective analysis and recommendations for clinical utility. J Wrist Surg 08:161–167CrossRef Carr R, MacLean S, Slavotinek J, Bain GI (2019) Four-dimensional computed tomography scanning for dynamic wrist disorders: prospective analysis and recommendations for clinical utility. J Wrist Surg 08:161–167CrossRef
8.
go back to reference Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41:1616–1622CrossRefPubMed Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41:1616–1622CrossRefPubMed
9.
go back to reference Teixeira P, Gervaise A, Louis M et al (2015) Musculoskeletal wide-detector CT kinematic evaluation: from motion to image. Semin Musculoskelet Radiol 19:456–462CrossRefPubMed Teixeira P, Gervaise A, Louis M et al (2015) Musculoskeletal wide-detector CT kinematic evaluation: from motion to image. Semin Musculoskelet Radiol 19:456–462CrossRefPubMed
10.
11.
go back to reference Sechtem U, Pflugfelder PW, White RD et al (1987) Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol 148:239–246CrossRefPubMed Sechtem U, Pflugfelder PW, White RD et al (1987) Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol 148:239–246CrossRefPubMed
12.
go back to reference van Dijk P (1984) ECG-triggered NMR imaging of the heart. Diagn Imaging Clin Med 53:29–37PubMed van Dijk P (1984) ECG-triggered NMR imaging of the heart. Diagn Imaging Clin Med 53:29–37PubMed
13.
go back to reference Melchert UH, Schröder C, Brossmann J, Muhle C (1992) Motion-triggered cine MR imaging of active joint movement. Magn Reson Imaging 10:457–460CrossRefPubMed Melchert UH, Schröder C, Brossmann J, Muhle C (1992) Motion-triggered cine MR imaging of active joint movement. Magn Reson Imaging 10:457–460CrossRefPubMed
14.
go back to reference Burnett KR, Davis CL, Read J (1987) Dynamic display of the temporomandibular joint meniscus by using “fast-scan” MR imaging. AJR Am J Roentgenol 149:959–962CrossRefPubMed Burnett KR, Davis CL, Read J (1987) Dynamic display of the temporomandibular joint meniscus by using “fast-scan” MR imaging. AJR Am J Roentgenol 149:959–962CrossRefPubMed
15.
go back to reference Zhu Y, Pelc NJ (1999) Three-dimensional motion tracking with volumetric phase contrast MR velocity imaging. J Magn Reson Imaging 9:111–118CrossRefPubMed Zhu Y, Pelc NJ (1999) Three-dimensional motion tracking with volumetric phase contrast MR velocity imaging. J Magn Reson Imaging 9:111–118CrossRefPubMed
16.
go back to reference Muhle C, Brossmann J, Melchert UH et al (1995) Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI. Eur Radiol 5:371–378CrossRef Muhle C, Brossmann J, Melchert UH et al (1995) Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI. Eur Radiol 5:371–378CrossRef
17.
go back to reference Borotikar B, Lempereur M, Lelievre M, Burdin V, Ben Salem D, Brochard S (2017) Dynamic MRI to quantify musculoskeletal motion: a systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders. PLoS One 12:e0189587PubMedCentralCrossRefPubMed Borotikar B, Lempereur M, Lelievre M, Burdin V, Ben Salem D, Brochard S (2017) Dynamic MRI to quantify musculoskeletal motion: a systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders. PLoS One 12:e0189587PubMedCentralCrossRefPubMed
18.
go back to reference Shellock FG (2003) Functional assessment of the joints using kinematic magnetic resonance imaging. Semin Musculoskelet Radiol 7:249–276CrossRefPubMed Shellock FG (2003) Functional assessment of the joints using kinematic magnetic resonance imaging. Semin Musculoskelet Radiol 7:249–276CrossRefPubMed
19.
go back to reference Shellock FG, Mink JH, Deutsch AL, Fox JM (1989) Patellar tracking abnormalities: clinical experience with kinematic MR imaging in 130 patients. Radiology 172:799–804CrossRefPubMed Shellock FG, Mink JH, Deutsch AL, Fox JM (1989) Patellar tracking abnormalities: clinical experience with kinematic MR imaging in 130 patients. Radiology 172:799–804CrossRefPubMed
20.
go back to reference Schmid MR, Hodler J, Cathrein P, Duewell S, Jacob HAC, Romero J (2002) Is impingement the cause of jumper’s knee? Dynamic and static magnetic resonance imaging of patellar tendinitis in an open-configuration system. Am J Sports Med 30:388–395CrossRefPubMed Schmid MR, Hodler J, Cathrein P, Duewell S, Jacob HAC, Romero J (2002) Is impingement the cause of jumper’s knee? Dynamic and static magnetic resonance imaging of patellar tendinitis in an open-configuration system. Am J Sports Med 30:388–395CrossRefPubMed
21.
go back to reference Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2005) Association between abnormal kinematics and degenerative change in knees of people with chronic anterior cruciate ligament deficiency: a magnetic resonance imaging study. Aust J Physiother 51:233–240CrossRefPubMed Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2005) Association between abnormal kinematics and degenerative change in knees of people with chronic anterior cruciate ligament deficiency: a magnetic resonance imaging study. Aust J Physiother 51:233–240CrossRefPubMed
22.
go back to reference Tokuda O, Awaya H, Taguchi K, Matsunga N (2006) Kinematic MRI of the normal ankle ligaments using a specially designed passive device. Foot Ankle Int 27:935–942CrossRefPubMed Tokuda O, Awaya H, Taguchi K, Matsunga N (2006) Kinematic MRI of the normal ankle ligaments using a specially designed passive device. Foot Ankle Int 27:935–942CrossRefPubMed
23.
go back to reference Brossmann J, Muhle C, Büll CC et al (1994) Evaluation of patellar tracking in patients with suspected patellar malalignment: cine MR imaging vs arthroscopy. AJR Am J Roentgenol 162:361–367CrossRefPubMed Brossmann J, Muhle C, Büll CC et al (1994) Evaluation of patellar tracking in patients with suspected patellar malalignment: cine MR imaging vs arthroscopy. AJR Am J Roentgenol 162:361–367CrossRefPubMed
24.
go back to reference Sheehan FT, Seisler AR, Siegel KL (2007) In vivo talocrural and subtalar kinematics: a non-invasive 3D dynamic MRI study. Foot Ankle Int 28:323–335CrossRefPubMed Sheehan FT, Seisler AR, Siegel KL (2007) In vivo talocrural and subtalar kinematics: a non-invasive 3D dynamic MRI study. Foot Ankle Int 28:323–335CrossRefPubMed
25.
go back to reference Shellock FG, Foo TK, Deutsch AL, Mink JH (1991) Patellofemoral joint: evaluation during active flexion with ultrafast spoiled GRASS MR imaging. Radiology 180:581–585CrossRefPubMed Shellock FG, Foo TK, Deutsch AL, Mink JH (1991) Patellofemoral joint: evaluation during active flexion with ultrafast spoiled GRASS MR imaging. Radiology 180:581–585CrossRefPubMed
26.
go back to reference Quick HH, Ladd ME, Hoevel M et al (2002) Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging 15:710–715CrossRefPubMed Quick HH, Ladd ME, Hoevel M et al (2002) Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging 15:710–715CrossRefPubMed
27.
go back to reference Draper CE, Santos JM, Kourtis LC et al (2008) Feasibility of using real-time MRI to measure joint kinematics in 1.5 T and open-bore 0.5 T systems. J Magn Reson Imaging 28:158–166PubMedCentralCrossRefPubMed Draper CE, Santos JM, Kourtis LC et al (2008) Feasibility of using real-time MRI to measure joint kinematics in 1.5 T and open-bore 0.5 T systems. J Magn Reson Imaging 28:158–166PubMedCentralCrossRefPubMed
28.
go back to reference Pierrart J, Lefèvre-Colau MM, Skalli W et al (2014) New dynamic three-dimensional MRI technique for shoulder kinematic analysis. J Magn Reson Imaging 39:729–734CrossRefPubMed Pierrart J, Lefèvre-Colau MM, Skalli W et al (2014) New dynamic three-dimensional MRI technique for shoulder kinematic analysis. J Magn Reson Imaging 39:729–734CrossRefPubMed
29.
30.
go back to reference Yen P, Katzberg RW, Buonocore MH, Sonico J (2013) Dynamic MR imaging of the temporomandibular joint using a balanced steady-state free precession sequence at 3 T. AJNR Am J Neuroradiol 34:E24–E26CrossRefPubMed Yen P, Katzberg RW, Buonocore MH, Sonico J (2013) Dynamic MR imaging of the temporomandibular joint using a balanced steady-state free precession sequence at 3 T. AJNR Am J Neuroradiol 34:E24–E26CrossRefPubMed
31.
go back to reference Gilles B, Perrin R, Magnenat-Thalmann N, Vallee JP (2005) Bone motion analysis from dynamic MRI: acquisition and tracking. Acad Radiol 12:1285–1292CrossRefPubMed Gilles B, Perrin R, Magnenat-Thalmann N, Vallee JP (2005) Bone motion analysis from dynamic MRI: acquisition and tracking. Acad Radiol 12:1285–1292CrossRefPubMed
32.
go back to reference Kaiser P, Kellermann F, Arora R, Henninger B, Rudisch A (2018) Diagnosing extensor carpi ulnaris tendon dislocation with dynamic rotation MRI of the wrist. Clin Imaging 51:323–326CrossRefPubMed Kaiser P, Kellermann F, Arora R, Henninger B, Rudisch A (2018) Diagnosing extensor carpi ulnaris tendon dislocation with dynamic rotation MRI of the wrist. Clin Imaging 51:323–326CrossRefPubMed
33.
go back to reference Boutin RD, Buonocore MH, Immerman I et al (2013) Real-time magnetic resonance imaging (MRI) during active wrist motion—initial observations. PLoS One 8:e84004PubMedCentralCrossRefPubMed Boutin RD, Buonocore MH, Immerman I et al (2013) Real-time magnetic resonance imaging (MRI) during active wrist motion—initial observations. PLoS One 8:e84004PubMedCentralCrossRefPubMed
34.
go back to reference Makki K, Borotikar B, Garetier M, Brochard S, Ben Salem D, Rousseau F (2019) In vivo ankle joint kinematics from dynamic magnetic resonance imaging using a registration-based framework. J Biomech 86:193–203CrossRefPubMed Makki K, Borotikar B, Garetier M, Brochard S, Ben Salem D, Rousseau F (2019) In vivo ankle joint kinematics from dynamic magnetic resonance imaging using a registration-based framework. J Biomech 86:193–203CrossRefPubMed
35.
go back to reference Henrichon SS, Foster BH, Shaw C et al (2020) Dynamic MRI of the wrist in less than 20 seconds: normal midcarpal motion and reader reliability. Skeletal Radiol 49:241–248CrossRefPubMed Henrichon SS, Foster BH, Shaw C et al (2020) Dynamic MRI of the wrist in less than 20 seconds: normal midcarpal motion and reader reliability. Skeletal Radiol 49:241–248CrossRefPubMed
36.
go back to reference Studler U, White LM, Deslandes M, Geddes C, Sussman MS, Theodoropoulos J (2011) Feasibility study of simultaneous physical examination and dynamic MR imaging of medial collateral ligament knee injuries in a 1.5-T large-bore magnet. Skeletal Radiol 40:335–343CrossRefPubMed Studler U, White LM, Deslandes M, Geddes C, Sussman MS, Theodoropoulos J (2011) Feasibility study of simultaneous physical examination and dynamic MR imaging of medial collateral ligament knee injuries in a 1.5-T large-bore magnet. Skeletal Radiol 40:335–343CrossRefPubMed
37.
go back to reference Clarke EC, Martin JH, d’Entremont AG, Pandy MG, Wilson DR, Herbert RD (2015) A non-invasive, 3D, dynamic MRI method for measuring muscle moment arms in vivo: demonstration in the human ankle joint and Achilles tendon. Med Eng Phys 37:93–99CrossRefPubMed Clarke EC, Martin JH, d’Entremont AG, Pandy MG, Wilson DR, Herbert RD (2015) A non-invasive, 3D, dynamic MRI method for measuring muscle moment arms in vivo: demonstration in the human ankle joint and Achilles tendon. Med Eng Phys 37:93–99CrossRefPubMed
38.
go back to reference Chavhan GB, Babyn PS, Jankharia BG, Cheng H-LM, Shroff MM (2008) Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 28:1147–1160CrossRefPubMed Chavhan GB, Babyn PS, Jankharia BG, Cheng H-LM, Shroff MM (2008) Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 28:1147–1160CrossRefPubMed
39.
go back to reference Bieri O, Scheffler K (2013) Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 38:2–11CrossRefPubMed Bieri O, Scheffler K (2013) Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 38:2–11CrossRefPubMed
41.
go back to reference Fuchs F, Laub G, Othomo K (2003) TrueFISP—technical considerations and cardiovascular applications. Eur J Radiol 46:28–32CrossRefPubMed Fuchs F, Laub G, Othomo K (2003) TrueFISP—technical considerations and cardiovascular applications. Eur J Radiol 46:28–32CrossRefPubMed
42.
43.
go back to reference Burke CJ, Kaplan D, Block T et al (2018) Clinical utility of continuous radial magnetic resonance imaging acquisition at 3 T in real-time patellofemoral kinematic assessment: a feasibility study. Arthroscopy 34:726–733CrossRefPubMed Burke CJ, Kaplan D, Block T et al (2018) Clinical utility of continuous radial magnetic resonance imaging acquisition at 3 T in real-time patellofemoral kinematic assessment: a feasibility study. Arthroscopy 34:726–733CrossRefPubMed
44.
go back to reference Fiorentino NM, Lin JS, Ridder KB, Guttman MA, McVeigh ER, Blemker SS (2013) Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging. J Biomech Eng 135:044501CrossRefPubMed Fiorentino NM, Lin JS, Ridder KB, Guttman MA, McVeigh ER, Blemker SS (2013) Rectus femoris knee muscle moment arms measured in vivo during dynamic motion with real-time magnetic resonance imaging. J Biomech Eng 135:044501CrossRefPubMed
45.
go back to reference Lingala SG, Sutton BP, Miquel ME, Nayak KS (2016) Recommendations for real-time speech MRI. J Magn Reson Imaging JMRI 43:28–44CrossRefPubMed Lingala SG, Sutton BP, Miquel ME, Nayak KS (2016) Recommendations for real-time speech MRI. J Magn Reson Imaging JMRI 43:28–44CrossRefPubMed
46.
go back to reference Frahm J, Voit D, Uecker M (2019) Real-time magnetic resonance imaging: radial gradient-echo sequences with nonlinear inverse reconstruction. Invest Radiol 54:757–766CrossRefPubMed Frahm J, Voit D, Uecker M (2019) Real-time magnetic resonance imaging: radial gradient-echo sequences with nonlinear inverse reconstruction. Invest Radiol 54:757–766CrossRefPubMed
47.
go back to reference VanPelt MD, Landrum MR, Igbinigie M, Wadhwa V, Chhabra A (2017) Kinematic magnetic resonance imaging of peroneal tendon subluxation with intraoperative correlation. J Foot Ankle Surg 56:395–397CrossRefPubMed VanPelt MD, Landrum MR, Igbinigie M, Wadhwa V, Chhabra A (2017) Kinematic magnetic resonance imaging of peroneal tendon subluxation with intraoperative correlation. J Foot Ankle Surg 56:395–397CrossRefPubMed
48.
go back to reference Sheehan FT (2012) The 3D in vivo Achilles’ tendon moment arm, quantified during active muscle control and compared across sexes. J Biomech 45:225–230CrossRefPubMed Sheehan FT (2012) The 3D in vivo Achilles’ tendon moment arm, quantified during active muscle control and compared across sexes. J Biomech 45:225–230CrossRefPubMed
49.
go back to reference Tempelaere C, Pierrart J, Lefèvre-Colau MM et al (2016) Dynamic three-dimensional shoulder MRI during active motion for investigation of rotator cuff diseases. PLoS One 11:e0158563PubMedCentralCrossRefPubMed Tempelaere C, Pierrart J, Lefèvre-Colau MM et al (2016) Dynamic three-dimensional shoulder MRI during active motion for investigation of rotator cuff diseases. PLoS One 11:e0158563PubMedCentralCrossRefPubMed
50.
go back to reference Tasaki A, Nimura A, Nozaki T et al (2015) Quantitative and qualitative analyses of subacromial impingement by kinematic open MRI. Knee Surg Sports Traumatol Arthrosc 23:1489–1497CrossRefPubMed Tasaki A, Nimura A, Nozaki T et al (2015) Quantitative and qualitative analyses of subacromial impingement by kinematic open MRI. Knee Surg Sports Traumatol Arthrosc 23:1489–1497CrossRefPubMed
51.
go back to reference Langner I, Fischer S, Eisenschenk A, Langner S (2015) Cine MRI: a new approach to the diagnosis of scapholunate dissociation. Skeletal Radiol 44:1103–1110CrossRefPubMed Langner I, Fischer S, Eisenschenk A, Langner S (2015) Cine MRI: a new approach to the diagnosis of scapholunate dissociation. Skeletal Radiol 44:1103–1110CrossRefPubMed
52.
go back to reference Schellhammer F, Vantorre A (2019) Semi-dynamic MRI of climbing-associated injuries of the finger. Skeletal Radiol 48:1435–1437CrossRefPubMed Schellhammer F, Vantorre A (2019) Semi-dynamic MRI of climbing-associated injuries of the finger. Skeletal Radiol 48:1435–1437CrossRefPubMed
53.
go back to reference Burke CJ, Walter WR, Gyftopoulos S et al (2019) Real-time assessment of femoroacetabular motion using radial gradient echo magnetic resonance arthrography at 3 Tesla in routine clinical practice: a pilot study. Arthroscopy 35:2366–2374CrossRefPubMed Burke CJ, Walter WR, Gyftopoulos S et al (2019) Real-time assessment of femoroacetabular motion using radial gradient echo magnetic resonance arthrography at 3 Tesla in routine clinical practice: a pilot study. Arthroscopy 35:2366–2374CrossRefPubMed
54.
go back to reference Muhle C, Brossmann J, Heller M (1999) Kinematic CT and MR imaging of the patellofemoral joint. Eur Radiol 9:508–518CrossRefPubMed Muhle C, Brossmann J, Heller M (1999) Kinematic CT and MR imaging of the patellofemoral joint. Eur Radiol 9:508–518CrossRefPubMed
55.
go back to reference Guenoun D, Vaccaro J, Le Corroller T et al (2017) A dynamic study of the anterior cruciate ligament of the knee using an open MRI. Surg Radiol Anat 39:307–314CrossRefPubMed Guenoun D, Vaccaro J, Le Corroller T et al (2017) A dynamic study of the anterior cruciate ligament of the knee using an open MRI. Surg Radiol Anat 39:307–314CrossRefPubMed
56.
go back to reference Haughom BD, Souza R, Schairer WW, Li X, Benjamin Ma C (2012) Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:663–670CrossRefPubMed Haughom BD, Souza R, Schairer WW, Li X, Benjamin Ma C (2012) Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:663–670CrossRefPubMed
57.
go back to reference Barrance PJ, Williams GN, Snyder-Mackler L, Buchanan TS (2006) Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI. J Orthop Res 24:132–140CrossRefPubMed Barrance PJ, Williams GN, Snyder-Mackler L, Buchanan TS (2006) Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI. J Orthop Res 24:132–140CrossRefPubMed
58.
go back to reference Matsui K, Tachibana T, Nobuhara K, Uchiyama Y (2018) Translational movement within the glenohumeral joint at different rotation velocities as seen by cine MRI. J Exp Orthop 5:7PubMedCentralCrossRefPubMed Matsui K, Tachibana T, Nobuhara K, Uchiyama Y (2018) Translational movement within the glenohumeral joint at different rotation velocities as seen by cine MRI. J Exp Orthop 5:7PubMedCentralCrossRefPubMed
59.
go back to reference Borotikar BS, Sipprell WH 3rd, Wible EE, Sheehan FT (2012) A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data. J Biomech 45:1117–1122PubMedCentralCrossRefPubMed Borotikar BS, Sipprell WH 3rd, Wible EE, Sheehan FT (2012) A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data. J Biomech 45:1117–1122PubMedCentralCrossRefPubMed
60.
61.
go back to reference Lin CC, Zhang S, Frahm J, Lu TW, Hsu CY, Shih TF (2013) A slice-to-volume registration method based on real-time magnetic resonance imaging for measuring three-dimensional kinematics of the knee. Med Phys 40:102302CrossRefPubMed Lin CC, Zhang S, Frahm J, Lu TW, Hsu CY, Shih TF (2013) A slice-to-volume registration method based on real-time magnetic resonance imaging for measuring three-dimensional kinematics of the knee. Med Phys 40:102302CrossRefPubMed
62.
go back to reference Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8:724–732CrossRefPubMed Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8:724–732CrossRefPubMed
63.
go back to reference Bayer T, Adler W, Janka R, Uder M, Roemer F (2017) Magnetic resonance cinematography of the fingers: a 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols. Skeletal Radiol 46:1721–1728CrossRefPubMed Bayer T, Adler W, Janka R, Uder M, Roemer F (2017) Magnetic resonance cinematography of the fingers: a 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols. Skeletal Radiol 46:1721–1728CrossRefPubMed
64.
go back to reference Huang SY, Seethamraju RT, Patel P, Hahn PF, Kirsch JE, Guimaraes AR (2015) Body MR imaging: artifacts, k-space, and solutions. Radiographics 35:1439–1460PubMedCentralCrossRefPubMed Huang SY, Seethamraju RT, Patel P, Hahn PF, Kirsch JE, Guimaraes AR (2015) Body MR imaging: artifacts, k-space, and solutions. Radiographics 35:1439–1460PubMedCentralCrossRefPubMed
65.
67.
68.
go back to reference Uecker M, Zhang S, Voit D, Merboldt KD, Frahm J (2012) Real-time MRI: recent advances using radial FLASH. Imaging Med 4:461–476CrossRef Uecker M, Zhang S, Voit D, Merboldt KD, Frahm J (2012) Real-time MRI: recent advances using radial FLASH. Imaging Med 4:461–476CrossRef
69.
go back to reference Nayak KS, Lee HL, Hargreaves BA, Hu BS (2007) Wideband SSFP: alternating repetition time balanced steady state free precession with increased band spacing. Magn Reson Med 58:931–938CrossRefPubMed Nayak KS, Lee HL, Hargreaves BA, Hu BS (2007) Wideband SSFP: alternating repetition time balanced steady state free precession with increased band spacing. Magn Reson Med 58:931–938CrossRefPubMed
70.
go back to reference Foxall DL (2002) Frequency-modulated steady-state free precession imaging. Magn Reson Med 48:502–508CrossRefPubMed Foxall DL (2002) Frequency-modulated steady-state free precession imaging. Magn Reson Med 48:502–508CrossRefPubMed
71.
go back to reference Björk M, Ingle RR, Gudmundson E, Stoica P, Nishimura DG, Barral JK (2014) Parameter estimation approach to banding artifact reduction in balanced steady-state free precession. Magn Reson Med 72:880–892CrossRefPubMed Björk M, Ingle RR, Gudmundson E, Stoica P, Nishimura DG, Barral JK (2014) Parameter estimation approach to banding artifact reduction in balanced steady-state free precession. Magn Reson Med 72:880–892CrossRefPubMed
Metadata
Title
Dynamic MRI for articulating joint evaluation on 1.5 T and 3.0 T scanners: setup, protocols, and real-time sequences
Authors
Marc Garetier
Bhushan Borotikar
Karim Makki
Sylvain Brochard
François Rousseau
Douraïed Ben Salem
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 1/2020
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-020-00868-5

Other articles of this Issue 1/2020

Insights into Imaging 1/2020 Go to the issue