Skip to main content
Top
Published in: European Radiology 12/2019

01-12-2019 | Magnetic Resonance Imaging | Imaging Informatics and Artificial Intelligence

Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC)

Authors: Isaac Shiri, Pardis Ghafarian, Parham Geramifar, Kevin Ho-Yin Leung, Mostafa Ghelichoghli, Mehrdad Oveisi, Arman Rahmim, Mohammad Reza Ay

Published in: European Radiology | Issue 12/2019

Login to get access

Abstract

Objective

To obtain attenuation-corrected PET images directly from non-attenuation-corrected images using a convolutional encoder-decoder network.

Methods

Brain PET images from 129 patients were evaluated. The network was designed to map non-attenuation-corrected (NAC) images to pixel-wise continuously valued measured attenuation-corrected (MAC) PET images via an encoder-decoder architecture. Image quality was evaluated using various evaluation metrics. Image quantification was assessed for 19 radiomic features in 83 brain regions as delineated using the Hammersmith atlas (n30r83). Reliability of measurements was determined using pixel-wise relative errors (RE; %) for radiomic feature values in reference MAC PET images.

Results

Peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM) values were 39.2 ± 3.65 and 0.989 ± 0.006 for the external validation set, respectively. RE (%) of SUVmean was − 0.10 ± 2.14 for all regions, and only 3 of 83 regions depicted significant differences. However, the mean RE (%) of this region was 0.02 (range, − 0.83 to 1.18). SUVmax had mean RE (%) of − 3.87 ± 2.84 for all brain regions, and 17 regions in the brain depicted significant differences with respect to MAC images with a mean RE of − 3.99 ± 2.11 (range, − 8.46 to 0.76). Homogeneity amongst Haralick-based radiomic features had the highest number (20) of regions with significant differences with a mean RE (%) of 7.22 ± 2.99.

Conclusions

Direct AC of PET images using deep convolutional encoder-decoder networks is a promising technique for brain PET images. The proposed deep learning method shows significant potential for emission-based AC in PET images with applications in PET/MRI and dedicated brain PET scanners.

Key Points

• We demonstrate direct emission-based attenuation correction of PET images without using anatomical information.
• We performed radiomics analysis of 83 brain regions to show robustness of direct attenuation correction of PET images.
• Deep learning methods have significant promise for emission-based attenuation correction in PET images with potential applications in PET/MRI and dedicated brain PET scanners.
Appendix
Available only for authorised users
Literature
1.
go back to reference Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710CrossRef Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710CrossRef
2.
go back to reference Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998CrossRef Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998CrossRef
3.
go back to reference Schöll M, Lockhart SN, Schonhaut DR et al (2016) PET imaging of tau deposition in the aging human brain. Neuron 89:971–982CrossRef Schöll M, Lockhart SN, Schonhaut DR et al (2016) PET imaging of tau deposition in the aging human brain. Neuron 89:971–982CrossRef
4.
go back to reference Sedvall G, Farde L, Persson A, Wiesel FA (1986) Imaging of neurotransmitter receptors in the living human brain. Arch Gen Psychiatry 43:995–1005CrossRef Sedvall G, Farde L, Persson A, Wiesel FA (1986) Imaging of neurotransmitter receptors in the living human brain. Arch Gen Psychiatry 43:995–1005CrossRef
5.
go back to reference Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539CrossRef Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539CrossRef
6.
go back to reference Okamura N, Yanai K (2017) Brain imaging: applications of tau PET imaging. Nat Rev Neurol 13:197CrossRef Okamura N, Yanai K (2017) Brain imaging: applications of tau PET imaging. Nat Rev Neurol 13:197CrossRef
7.
go back to reference Nordberg A, Rinne JO, Kadir A, Långström B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6:78CrossRef Nordberg A, Rinne JO, Kadir A, Långström B (2010) The use of PET in Alzheimer disease. Nat Rev Neurol 6:78CrossRef
9.
go back to reference Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019–1024CrossRef Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019–1024CrossRef
10.
go back to reference Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 43:1130–1155CrossRef Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 43:1130–1155CrossRef
11.
go back to reference Delso G, Nuyts J (2018) PET/MRI: attenuation correction. In: Iagaru A, Hope T, Veit-Haibach P (eds) PET/MRI in Oncology. Springer, Cham, pp 53–75CrossRef Delso G, Nuyts J (2018) PET/MRI: attenuation correction. In: Iagaru A, Hope T, Veit-Haibach P (eds) PET/MRI in Oncology. Springer, Cham, pp 53–75CrossRef
12.
go back to reference Yang J, Wiesinger F, Kaushik S et al (2017) Evaluation of sinus/edge-corrected zero-echo-time–based attenuation correction in brain PET/MRI. J Nucl Med 58:1873–1879CrossRef Yang J, Wiesinger F, Kaushik S et al (2017) Evaluation of sinus/edge-corrected zero-echo-time–based attenuation correction in brain PET/MRI. J Nucl Med 58:1873–1879CrossRef
13.
go back to reference Khateri P, Saligheh Rad H, Jafari AH et al (2015) Generation of a four-class attenuation map for MRI-based attenuation correction of PET data in the head area using a novel combination of STE/Dixon-MRI and FCM clustering. Mol Imaging Biol 17:884–892CrossRef Khateri P, Saligheh Rad H, Jafari AH et al (2015) Generation of a four-class attenuation map for MRI-based attenuation correction of PET data in the head area using a novel combination of STE/Dixon-MRI and FCM clustering. Mol Imaging Biol 17:884–892CrossRef
14.
go back to reference Mehranian A, Zaidi H (2015) Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models. IEEE Trans Med Imaging 34:1808–1821CrossRef Mehranian A, Zaidi H (2015) Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models. IEEE Trans Med Imaging 34:1808–1821CrossRef
15.
go back to reference Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162CrossRef Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162CrossRef
16.
go back to reference Shandiz MS, Rad HS, Ghafarian P, Karam MB, Akbarzadeh A, Ay MR (2017) MR-guided attenuation map for prostate PET-MRI: an intensity and morphologic-based segmentation approach for generating a five-class attenuation map in pelvic region. Ann Nucl Med 31:29–39CrossRef Shandiz MS, Rad HS, Ghafarian P, Karam MB, Akbarzadeh A, Ay MR (2017) MR-guided attenuation map for prostate PET-MRI: an intensity and morphologic-based segmentation approach for generating a five-class attenuation map in pelvic region. Ann Nucl Med 31:29–39CrossRef
17.
go back to reference Khateri P, Saligheh Rad H, Fathi A, Ay MR (2013) Generation of attenuation map for MR-based attenuation correction of PET data in the head area employing 3D short echo time MR imaging. Nucl Instrum Meth A 702:133–136CrossRef Khateri P, Saligheh Rad H, Fathi A, Ay MR (2013) Generation of attenuation map for MR-based attenuation correction of PET data in the head area employing 3D short echo time MR imaging. Nucl Instrum Meth A 702:133–136CrossRef
18.
go back to reference Kazerooni AF, A’arabi MH, Ay M, Saligheh Rad H (2015) Generation of MR-based attenuation correction map of PET images in the brain employing joint segmentation of skull and soft-tissue from single short-TE MR imaging modality. In: Gao F, Shi K, Li S (eds) Computational Methods for Molecular Imaging. Lecture Notes in Computational Vision and Biomechanics, vol 22. Springer, Cham, pp 139–147CrossRef Kazerooni AF, A’arabi MH, Ay M, Saligheh Rad H (2015) Generation of MR-based attenuation correction map of PET images in the brain employing joint segmentation of skull and soft-tissue from single short-TE MR imaging modality. In: Gao F, Shi K, Li S (eds) Computational Methods for Molecular Imaging. Lecture Notes in Computational Vision and Biomechanics, vol 22. Springer, Cham, pp 139–147CrossRef
19.
go back to reference Hope T, Tosun D, Khalighi MM et al (2017) Improvement in quantitative amyloid imaging using ZTE-based attenuation correction in PET/MRI. J Nucl Med 58:645 Hope T, Tosun D, Khalighi MM et al (2017) Improvement in quantitative amyloid imaging using ZTE-based attenuation correction in PET/MRI. J Nucl Med 58:645
20.
go back to reference Shandiz MS, Saligheh Rad H, Ghafarian P, Yaghoubi K, Ay MR (2018) Capturing bone signal in MRI of pelvis, as a large FOV region, using TWIST sequence and generating a 5-class attenuation map for prostate PET/MRI imaging. Mol Imaging 17:1536012118789314CrossRef Shandiz MS, Saligheh Rad H, Ghafarian P, Yaghoubi K, Ay MR (2018) Capturing bone signal in MRI of pelvis, as a large FOV region, using TWIST sequence and generating a 5-class attenuation map for prostate PET/MRI imaging. Mol Imaging 17:1536012118789314CrossRef
21.
go back to reference Defrise M, Rezaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885CrossRef Defrise M, Rezaei A, Nuyts J (2012) Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol 57:885CrossRef
22.
go back to reference Sevigny J, Suhy J, Chiao P et al (2016) Amyloid PET screening for enrichment of early-stage Alzheimer disease clinical trials. Alzheimer Dis Assoc Disord 30:1–7CrossRef Sevigny J, Suhy J, Chiao P et al (2016) Amyloid PET screening for enrichment of early-stage Alzheimer disease clinical trials. Alzheimer Dis Assoc Disord 30:1–7CrossRef
23.
go back to reference Censor Y, Gustafson DE, Lent A, Tuy H (1979) A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans Nucl Sci 26:2775–2779CrossRef Censor Y, Gustafson DE, Lent A, Tuy H (1979) A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients. IEEE Trans Nucl Sci 26:2775–2779CrossRef
24.
go back to reference Rezaei A, Defrise M, Nuyts J (2014) ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE Trans Med Imaging 33:1563–1572CrossRef Rezaei A, Defrise M, Nuyts J (2014) ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors. IEEE Trans Med Imaging 33:1563–1572CrossRef
25.
go back to reference Mehranian A, Zaidi H (2015) Clinical assessment of emission-and segmentation-based MR-guided attenuation correction in whole-body time-of-flight PET/MR imaging. J Nucl Med 56:877–883CrossRef Mehranian A, Zaidi H (2015) Clinical assessment of emission-and segmentation-based MR-guided attenuation correction in whole-body time-of-flight PET/MR imaging. J Nucl Med 56:877–883CrossRef
26.
go back to reference Hemmati H, Kamali-Asl A, Ghafarian P, Ay MR (2018) Reconstruction/segmentation of attenuation map in TOF-PET based on mixture models. Ann Nucl Med 1–11, 32(7):474–484CrossRef Hemmati H, Kamali-Asl A, Ghafarian P, Ay MR (2018) Reconstruction/segmentation of attenuation map in TOF-PET based on mixture models. Ann Nucl Med 1–11, 32(7):474–484CrossRef
27.
28.
go back to reference Yang Q, Li N, Zhao Z, Fan X, Chang EI, Xu Y (2018) MRI image-to-image translation for cross-modality image registration and segmentation. arXiv:180106940 Yang Q, Li N, Zhao Z, Fan X, Chang EI, Xu Y (2018) MRI image-to-image translation for cross-modality image registration and segmentation. arXiv:180106940
29.
go back to reference Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44:1408–1419CrossRef Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44:1408–1419CrossRef
30.
go back to reference Ben-Cohen A, Klang E, Raskin SP et al (2018) Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. arXiv:180207846 Ben-Cohen A, Klang E, Raskin SP et al (2018) Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. arXiv:180207846
31.
go back to reference Jin C-B, Jung W, Joo S et al (2018) Deep CT to MR synthesis using paired and unpaired data. arXiv:180510790 Jin C-B, Jung W, Joo S et al (2018) Deep CT to MR synthesis using paired and unpaired data. arXiv:180510790
32.
go back to reference Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB (2017) Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology 286:676–684CrossRef Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB (2017) Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology 286:676–684CrossRef
33.
go back to reference Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q (2018) Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol 63(12):125011CrossRef Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q (2018) Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images. Phys Med Biol 63(12):125011CrossRef
34.
go back to reference Spuhler KD, Gardus J, Gao Y, DeLorenzo C, Parsey R, Huang C (2018) Synthesis of patient-specific transmission image for PET attenuation correction for PET/MR imaging of the brain using a convolutional neural network. J Nucl Med 60(4):555–560CrossRef Spuhler KD, Gardus J, Gao Y, DeLorenzo C, Parsey R, Huang C (2018) Synthesis of patient-specific transmission image for PET attenuation correction for PET/MR imaging of the brain using a convolutional neural network. J Nucl Med 60(4):555–560CrossRef
35.
go back to reference Lu Y, Fontaine K, Germino M et al (2018) Investigation of sub-centimeter lung nodule quantification for low-dose PET. IEEE TRPMS 2:41–50 Lu Y, Fontaine K, Germino M et al (2018) Investigation of sub-centimeter lung nodule quantification for low-dose PET. IEEE TRPMS 2:41–50
36.
go back to reference Abadi M, Barham P, Chen J et al (2016) TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, pp 265–283 Abadi M, Barham P, Chen J et al (2016) TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, pp 265–283
37.
go back to reference Hammers A, Allom R, Koepp MJ et al (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19:224–247CrossRef Hammers A, Allom R, Koepp MJ et al (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19:224–247CrossRef
38.
go back to reference Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509CrossRef Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509CrossRef
39.
go back to reference van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107CrossRef van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107CrossRef
40.
go back to reference Hemmati H, Kamali-Asl A, Ghafarian P, Ay M (2018) Mixture model based joint-MAP reconstruction of attenuation and activity maps in TOF-PET. J Instrum 13:P06005CrossRef Hemmati H, Kamali-Asl A, Ghafarian P, Ay M (2018) Mixture model based joint-MAP reconstruction of attenuation and activity maps in TOF-PET. J Instrum 13:P06005CrossRef
41.
go back to reference Rezaei A, Defrise M, Bal G et al (2012) Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 31:2224–2233CrossRef Rezaei A, Defrise M, Bal G et al (2012) Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 31:2224–2233CrossRef
42.
go back to reference Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30:804–813CrossRef Salomon A, Goedicke A, Schweizer B, Aach T, Schulz V (2011) Simultaneous reconstruction of activity and attenuation for PET/MR. IEEE Trans Med Imaging 30:804–813CrossRef
43.
go back to reference Ladefoged CN, Law I, Anazodo U et al (2017) A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage 147:346–359CrossRef Ladefoged CN, Law I, Anazodo U et al (2017) A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. Neuroimage 147:346–359CrossRef
Metadata
Title
Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC)
Authors
Isaac Shiri
Pardis Ghafarian
Parham Geramifar
Kevin Ho-Yin Leung
Mostafa Ghelichoghli
Mehrdad Oveisi
Arman Rahmim
Mohammad Reza Ay
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-06229-1

Other articles of this Issue 12/2019

European Radiology 12/2019 Go to the issue