Skip to main content
Log in

MR-guided attenuation map for prostate PET-MRI: an intensity and morphologic-based segmentation approach for generating a five-class attenuation map in pelvic region

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

Prostate imaging is one of the major application of hybrid PET/MRI systems. Inaccurate attenuation maps (µ-maps) derived by direct segmentation (SEG) in which the cortical bone is ignored and the volume of the air in cavities is underestimated is the main challenge of commercial PET/MRI systems for the quantitative analysis of the pelvic region. The present study considered the cortical bone and air cavity along with soft tissue, fat, and background air in the µ-map of the pelvic region using a method based on SEG. The proposed method uses a dedicated imaging technique that increases the contrast between regions and a hybrid segmentation method to classify MR images based on intensity and morphologic characteristics of tissues, such as symmetry and similarity of bony structures.

Procedures

Ten healthy volunteers underwent MRI and ultra-low dose CT imaging. The dedicated MR imaging technique uses the short echo time (STE) based on the conventional sequencing implemented on a clinical 1.5T MRI scanner. The generation of a µ-map comprises the following steps: (1) bias field correction; (2) hybrid segmentation (HSEG), including segmenting images into clusters of cortical bone-air, soft tissue, and fat using spatial fuzzy c-means (SFCM), and separation of cortical bone and internal air cavities using morphologic characteristics; (3) the active contour approach for the separation of background air; and (4) the generation of a five-class μ-map for cortical bone, internal air cavity, soft tissue, fat tissue, and background air. Validation was done by comparison with segmented CT images.

Results

The Dice and sensitivity metrics of cortical bone structures and internal air cavities were 72 ± 11 and 66 ± 13 and 73 ± 10 and 68 ± 20 %, respectively. High correlation was observed between CT and HSEG-based µ-maps (R 2 > 0.99) and the corresponding sinograms (R 2 > 0.98).

Conclusions

Currently, pelvis µ-maps provided by the current PET/MRI systems and the ultra-short echo time and atlas-based methods tend to be inaccurate. The proposed method acceptably generated a five-class μ-map using only one image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Disselhorst JA, Bezrukov I, Kolb A, Parl C, Pichler BJ. Principles of PET/MR imaging. J Nucl Med. 2014;55(Suppl 2):2S–10S.

    Article  PubMed  Google Scholar 

  2. Zaidi H, Del Guerra A. An outlook on future design of hybrid PET/MRI systems. Med Phys. 2011;38:5667–89.

    Article  PubMed  Google Scholar 

  3. Souvatzoglou M, Eiber M, Martinez-Moeller A, Fürst S, Holzapfel K, Maurer T, et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging. 2013;40:79–88.

    Article  Google Scholar 

  4. Bezrukov I, Mantlik F, Schmidt H, Schölkopf B, Pichler BJ. MR-based PET attenuation correction for PET/MR imaging. Semin Nucl Med. 2013;43:45–59.

    Article  PubMed  Google Scholar 

  5. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  6. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  CAS  PubMed  Google Scholar 

  7. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods. J Nucl Med. 2011;52:1392–9.

    Article  PubMed  Google Scholar 

  8. Ay MR, Akbarzadeh A, Ahmadian A, Zaidi H. Classification of bones from MR images in torso PET-MR imaging using a statistical shape model. Nucl Instrum Meth A. 2014;734:196–200.

    Article  Google Scholar 

  9. Martinez-Möller A, Nekolla SG. Attenuation correction for PET/MR: problems, novel approaches and practical solutions. Z Med Phys. 2012;22:299–310.

    Article  PubMed  Google Scholar 

  10. Keereman V, Van Holen R, Mollet P, Vandenberghe S. The effect of errors in segmented attenuation maps on PET quantification. Med Phys. 2011;38:6010–9.

    Article  PubMed  Google Scholar 

  11. Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med. 2013;27:152–62.

    Article  CAS  PubMed  Google Scholar 

  12. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions–implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.

    Article  PubMed  Google Scholar 

  13. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.

    Article  PubMed  Google Scholar 

  14. Boellaard R, Quick HH. Current image acquisition options in PET/MR. Semin Nucl Med. 2015;45:192–200.

    Article  PubMed  Google Scholar 

  15. Delso G, Carl M, Wiesinger F, Sacolick L, Porto M, Hüllner M, et al. Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction. J Nucl Med. 2014;55:780–5.

    Article  PubMed  Google Scholar 

  16. Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S. Challenges and current methods for attenuation correction in PET/MR. Magn Reson Mater Mhy. 2013;26:81–98.

    Article  Google Scholar 

  17. Khateri P, Rad HS, Fathi A, Ay MR. Generation of attenuation map for MR-based attenuation correction of PET data in the head area employing 3D short echo time MR imaging. Nucl Instrum Meth A. 2013;702:133–6.

    Article  CAS  Google Scholar 

  18. Manjón JV, Lull JJ, Carbonell-Caballero J, García-Martí G, Martí-Bonmatí L, Robles M. A nonparametric MRI inhomogeneity correction method. Med Image Anal. 2007;11(4):336–45.

    Article  PubMed  Google Scholar 

  19. Chuang K-S, Tzeng H-L, Chen S, Wu J, Chen T-J. Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph. 2006;30:9–15.

    Article  PubMed  Google Scholar 

  20. Russ JC. The image processing handbook. CRC press; 2015.

  21. Serra J. Morphological filtering: an overview. Sig Process. 1994;38(1):3–11.

    Article  Google Scholar 

  22. Khateri P, Rad HS, Jafari AH, Kazerooni AF, Akbarzadeh A, Moghadam MS, et al. Generation of a four-class attenuation map for MRI-based attenuation correction of PET data in the head area using a novel combination of STE/Dixon-MRI and FCM clustering. Mol Imaging and Biol. 2015; 1–9.

  23. Chan TF, Vese LA. Active contour and segmentation models using geometric PDE’s for medical imaging. Geometric methods in bio-medical image processing. USA: Springer; 2002. p. 63–75.

    Book  Google Scholar 

  24. ICRU. International commission on radiation units and measure-ments. Report no. 44; 1989.

  25. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A, editors. Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision. pp. 2272–2279.

  26. Klein S, Staring M, Murphy K, Viergever M, Pluim JP. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29:196–205.

    Article  PubMed  Google Scholar 

  27. Akbarzadeh A, Gutierrez D, Baskin A, Ay MR, Ahmadian A, Alam NR, et al. Evaluation of whole-body MR to CT deformable image registration. J Appl Clin Med Phys. 2013; 14.

  28. Crum WR, Camara O, Hill DL. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging. 2006;25:1451–61.

    Article  PubMed  Google Scholar 

  29. Fleiss JL, Levin B, Paik MC. Statistical methods for rates and proportions. Wiley; 2013.

  30. Cabello J, Lukas M, Förster S, Pyka T, Nekolla SG, Ziegler SI. MR-based attenuation correction using ultrashort-echo-time pulse sequences in dementia patients. J Nucl Med. 2015;56:423–9.

    Article  PubMed  Google Scholar 

  31. Aasheim LB, Karlberg A, Goa PE, Håberg A, Sørhaug S, Fagerli U-M, et al. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction. Eur J Nucl Med Mol Imaging. 2015; 1–8.

  32. Juttukonda MR, Mersereau BG, Chen Y, Su Y, Rubin BG, Benzinger TL, et al. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units. NeuroImage. 2015;112:160–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Arabi H, Zaidi H. Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal. 2016;31:1–15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported under Grant Number 25095, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandiz, M.S., Rad, H.S., Ghafarian, P. et al. MR-guided attenuation map for prostate PET-MRI: an intensity and morphologic-based segmentation approach for generating a five-class attenuation map in pelvic region. Ann Nucl Med 31, 29–39 (2017). https://doi.org/10.1007/s12149-016-1128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1128-1

Keywords

Navigation