Skip to main content
Top
Published in: Clinical & Experimental Metastasis 4/2020

01-08-2020 | Magnetic Resonance Imaging | Technical Note

Comparing the fate of brain metastatic breast cancer cells in different immune compromised mice with cellular magnetic resonance imaging

Authors: Natasha N. Knier, Amanda M. Hamilton, Paula J. Foster

Published in: Clinical & Experimental Metastasis | Issue 4/2020

Login to get access

Abstract

Metastasis is the leading cause of mortality in breast cancer patients, with brain metastases becoming increasingly prevalent. Studying this disease is challenging due to the limited experimental models and methods available. Here, we used iron-based cellular MRI to track the fate of a mammary carcinoma cell line (MDA-MB-231-BR) in vivo to characterize the growth of brain metastases in the nude and severely immune-compromised NOD/SCID/ILIIrg−/− (NSG) mouse. Nude and NSG mice received injections of iron-labeled MDA-MB-231-BR cells. Images were acquired with a 3T MR system and assessed for signal voids and metastases. The percentage of signal voids and the number and volume of metastases were quantified. Ex vivo imaging of the liver, histology, and immunofluorescence labeling was performed. Brain metastases grew more rapidly in NSG mice. At day 21 post cell injection, the average number of brain tumors in NSG mice was approximately four times greater than in nude mice. The persistence of iron-labeled cells, visualized as signal voids by MRI, was also examined. The percentage of voids decreased significantly over time for both nude and NSG mice. Body images revealed that the NSG mice also had metastases in the liver, lungs, and lymph nodes while tumors were only detected in the brains of nude mice. This work demonstrates the advantages of using the highly immune-compromised NSG mouse to study breast cancer metastasis, treatments aimed at inhibiting metastasis and outgrowth of breast cancer metastases in multiple organs, and the role that imaging can play toward credentialing these models that cannot be done with other in vitro or histopathologic methods alone.
Literature
1.
go back to reference Patanaphan V, Salazar OM, Risco R (1988) Breast cancer: metastatic patterns and their prognosis. South Med J 81(9):1109–1112PubMedCrossRef Patanaphan V, Salazar OM, Risco R (1988) Breast cancer: metastatic patterns and their prognosis. South Med J 81(9):1109–1112PubMedCrossRef
2.
go back to reference Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75(1):5–14PubMedCrossRef Gavrilovic IT, Posner JB (2005) Brain metastases: epidemiology and pathophysiology. J Neurooncol 75(1):5–14PubMedCrossRef
3.
4.
go back to reference Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Goncalves A (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32(11):4655–4662PubMed Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Goncalves A (2012) Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32(11):4655–4662PubMed
5.
go back to reference Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncology 22(11):1233PubMed Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncology 22(11):1233PubMed
6.
go back to reference Heitz F, Harter P, Lueck H-J, Fissler-Eckhoff A, Lorenz-Salehi F, Scheil-Bertram S et al (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45(16):2792–2798PubMedCrossRef Heitz F, Harter P, Lueck H-J, Fissler-Eckhoff A, Lorenz-Salehi F, Scheil-Bertram S et al (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45(16):2792–2798PubMedCrossRef
7.
go back to reference Loibl S, Gianni L (2017) HER2-positive breast cancer. The Lancet 389(10087):2415–2429CrossRef Loibl S, Gianni L (2017) HER2-positive breast cancer. The Lancet 389(10087):2415–2429CrossRef
8.
go back to reference Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572PubMedCrossRef Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572PubMedCrossRef
9.
go back to reference Goss PE, Chambers AF (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10(12):871–877PubMedCrossRef Goss PE, Chambers AF (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10(12):871–877PubMedCrossRef
10.
go back to reference Fehm T, Mueller V, Marches R, Klein G, Gueckel B, Neubauer H et al (2008) Tumor cell dormancy: implications for the biology and treatment of breast cancer. Apmis 116(7–8):742–753PubMedCrossRef Fehm T, Mueller V, Marches R, Klein G, Gueckel B, Neubauer H et al (2008) Tumor cell dormancy: implications for the biology and treatment of breast cancer. Apmis 116(7–8):742–753PubMedCrossRef
12.
go back to reference Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA et al (2010) Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678PubMedPubMedCentralCrossRef Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA et al (2010) Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16(23):5664–5678PubMedPubMedCentralCrossRef
14.
go back to reference Pelleitier M, Montplaisir S (1975) The nude mouse: a model of deficient T-cell function. Methods Achiev Exp Pathol 7:149–166PubMed Pelleitier M, Montplaisir S (1975) The nude mouse: a model of deficient T-cell function. Methods Achiev Exp Pathol 7:149–166PubMed
15.
go back to reference Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRef Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16(8):1486–1495PubMedCrossRef
18.
19.
go back to reference Sulaiman A, Wang L (2017) Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget 8(68):113269PubMedPubMedCentralCrossRef Sulaiman A, Wang L (2017) Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget 8(68):113269PubMedPubMedCentralCrossRef
20.
go back to reference Weeber F, Ooft SN, Dijkstra KK, Voest EE (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 24(9):1092–1100PubMedCrossRef Weeber F, Ooft SN, Dijkstra KK, Voest EE (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 24(9):1092–1100PubMedCrossRef
21.
go back to reference Ruggeri BA, Camp F, Miknyoczki S (2014) Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 87(1):150–161PubMedCrossRef Ruggeri BA, Camp F, Miknyoczki S (2014) Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 87(1):150–161PubMedCrossRef
22.
go back to reference Sharpless NE, DePinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5(9):741–754PubMedCrossRef Sharpless NE, DePinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5(9):741–754PubMedCrossRef
23.
go back to reference Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M et al (2016) Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 35(4):547–573PubMedPubMedCentralCrossRef Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M et al (2016) Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 35(4):547–573PubMedPubMedCentralCrossRef
24.
go back to reference Whittle JR, Lewis MT, Lindeman GJ, Visvader JE (2015) Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 17(1):17PubMedPubMedCentralCrossRef Whittle JR, Lewis MT, Lindeman GJ, Visvader JE (2015) Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 17(1):17PubMedPubMedCentralCrossRef
25.
go back to reference Jung J, Seol HS, Chang S (2018) The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat 50(1):1PubMedCrossRef Jung J, Seol HS, Chang S (2018) The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat 50(1):1PubMedCrossRef
26.
go back to reference Yu J, Qin B, Moyer AM, Sinnwell JP, Thompson KJ, Copland JA et al (2017) Establishing and characterizing patient-derived xenografts using pre-chemotherapy percutaneous biopsy and post-chemotherapy surgical samples from a prospective neoadjuvant breast cancer study. Breast Cancer Res 19(1):130PubMedPubMedCentralCrossRef Yu J, Qin B, Moyer AM, Sinnwell JP, Thompson KJ, Copland JA et al (2017) Establishing and characterizing patient-derived xenografts using pre-chemotherapy percutaneous biopsy and post-chemotherapy surgical samples from a prospective neoadjuvant breast cancer study. Breast Cancer Res 19(1):130PubMedPubMedCentralCrossRef
27.
go back to reference Contreras-Zárate MJ, Ormond DR, Gillen AE, Hanna C, Day NL, Serkova NJ et al (2017) Development of novel patient-derived xenografts from breast cancer brain metastases. Front Oncol 7:252PubMedPubMedCentralCrossRef Contreras-Zárate MJ, Ormond DR, Gillen AE, Hanna C, Day NL, Serkova NJ et al (2017) Development of novel patient-derived xenografts from breast cancer brain metastases. Front Oncol 7:252PubMedPubMedCentralCrossRef
28.
go back to reference Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A et al (2009) Sagopilone crosses the blood–brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro-oncology 11(2):158–166PubMedPubMedCentralCrossRef Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A et al (2009) Sagopilone crosses the blood–brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro-oncology 11(2):158–166PubMedPubMedCentralCrossRef
29.
go back to reference Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM et al (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2168PubMed Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM et al (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2168PubMed
30.
go back to reference Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67(1):51–56PubMed Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67(1):51–56PubMed
31.
go back to reference Murrell DH, Foster PJ, Chambers AF (2014) Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications. J Mol Med 92(1):5–12PubMedCrossRef Murrell DH, Foster PJ, Chambers AF (2014) Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications. J Mol Med 92(1):5–12PubMedCrossRef
32.
go back to reference Foster-Gareau P, Heyn C, Alejski A, Rutt BK (2003) Imaging single mammalian cells with a 15 T clinical MRI scanner. Magn Reson Med 49(5):968–971PubMedCrossRef Foster-Gareau P, Heyn C, Alejski A, Rutt BK (2003) Imaging single mammalian cells with a 15 T clinical MRI scanner. Magn Reson Med 49(5):968–971PubMedCrossRef
33.
go back to reference McFadden C, Mallett CL, Foster PJ (2011) Labeling of multiple cell lines using a new iron oxide agent for cell tracking by MRI. Contrast Media Mol Imaging 6(6):514–522PubMedCrossRef McFadden C, Mallett CL, Foster PJ (2011) Labeling of multiple cell lines using a new iron oxide agent for cell tracking by MRI. Contrast Media Mol Imaging 6(6):514–522PubMedCrossRef
34.
go back to reference Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ (2016) Cellular imaging with MRI. Top Magn Reson Imaging 25(5):177–186PubMedCrossRef Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ (2016) Cellular imaging with MRI. Top Magn Reson Imaging 25(5):177–186PubMedCrossRef
35.
go back to reference Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010PubMedCrossRef Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56(5):1001–1010PubMedCrossRef
36.
go back to reference Murrell DH, Zarghami N, Jensen MD, Dickson F, Chambers AF, Wong E et al (2017) MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy. Magn Reson Med 78(4):1506–1512PubMedCrossRef Murrell DH, Zarghami N, Jensen MD, Dickson F, Chambers AF, Wong E et al (2017) MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy. Magn Reson Med 78(4):1506–1512PubMedCrossRef
37.
go back to reference Economopoulos V, Chen Y, McFadden C, Foster PJ (2013) MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer. Transl Oncol 6(3):347PubMedPubMedCentralCrossRef Economopoulos V, Chen Y, McFadden C, Foster PJ (2013) MRI detection of nonproliferative tumor cells in lymph node metastases using iron oxide particles in a mouse model of breast cancer. Transl Oncol 6(3):347PubMedPubMedCentralCrossRef
38.
go back to reference Basse P, Hokland P, Heron I, Hokland M (1988) Fate of tumor cells injected into left ventricle of heart in BALB/c mice: role of natural killer cells. JNCI 80(9):657–665PubMedCrossRef Basse P, Hokland P, Heron I, Hokland M (1988) Fate of tumor cells injected into left ventricle of heart in BALB/c mice: role of natural killer cells. JNCI 80(9):657–665PubMedCrossRef
39.
go back to reference Parkins KM, Hamilton AM, Makela AV, Chen Y, Foster PJ, Ronald JA (2016) A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain. Sci Rep 6(1):1–9CrossRef Parkins KM, Hamilton AM, Makela AV, Chen Y, Foster PJ, Ronald JA (2016) A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain. Sci Rep 6(1):1–9CrossRef
40.
go back to reference Murrell DH, Hamilton AM, Mallett CL, van Gorkum R, Chambers AF, Foster PJ (2015) Understanding heterogeneity and permeability of brain metastases in murine models of HER2-positive breast cancer through magnetic resonance imaging: implications for detection and therapy. Transl Oncol 8(3):176–184PubMedPubMedCentralCrossRef Murrell DH, Hamilton AM, Mallett CL, van Gorkum R, Chambers AF, Foster PJ (2015) Understanding heterogeneity and permeability of brain metastases in murine models of HER2-positive breast cancer through magnetic resonance imaging: implications for detection and therapy. Transl Oncol 8(3):176–184PubMedPubMedCentralCrossRef
41.
go back to reference Hamilton AM, Parkins KM, Murrell DH, Ronald JA, Foster PJ (2016) Investigating the impact of a primary tumor on metastasis and dormancy using MRI: new insights into the mechanism of concomitant tumor resistance. Tomography 2(2):79PubMedPubMedCentralCrossRef Hamilton AM, Parkins KM, Murrell DH, Ronald JA, Foster PJ (2016) Investigating the impact of a primary tumor on metastasis and dormancy using MRI: new insights into the mechanism of concomitant tumor resistance. Tomography 2(2):79PubMedPubMedCentralCrossRef
42.
go back to reference Simpson-Abelson MR, Sonnenberg GF, Takita H, Yokota SJ, Conway TF, Kelleher RJ et al (2008) Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rγnull mice. J Immunol 180(10):7009–7018PubMedCrossRef Simpson-Abelson MR, Sonnenberg GF, Takita H, Yokota SJ, Conway TF, Kelleher RJ et al (2008) Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rγnull mice. J Immunol 180(10):7009–7018PubMedCrossRef
43.
go back to reference Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al (2008) Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rγ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 123(9):2222–2227PubMedCrossRef Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al (2008) Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rγ null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 123(9):2222–2227PubMedCrossRef
44.
go back to reference Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598PubMedPubMedCentralCrossRef Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598PubMedPubMedCentralCrossRef
45.
go back to reference Puchalapalli M, Zeng X, Mu L, Anderson A, Glickman LH, Zhang M et al (2016) NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (nude) mice. PLoS ONE 11(9):e0163521PubMedPubMedCentralCrossRef Puchalapalli M, Zeng X, Mu L, Anderson A, Glickman LH, Zhang M et al (2016) NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (nude) mice. PLoS ONE 11(9):e0163521PubMedPubMedCentralCrossRef
46.
go back to reference Henry MN, Chen Y, McFadden CD, Simedrea FC, Foster PJ (2015) In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model. Melanoma Res 25(2):127–137PubMedCrossRef Henry MN, Chen Y, McFadden CD, Simedrea FC, Foster PJ (2015) In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model. Melanoma Res 25(2):127–137PubMedCrossRef
Metadata
Title
Comparing the fate of brain metastatic breast cancer cells in different immune compromised mice with cellular magnetic resonance imaging
Authors
Natasha N. Knier
Amanda M. Hamilton
Paula J. Foster
Publication date
01-08-2020
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 4/2020
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-020-10044-0

Other articles of this Issue 4/2020

Clinical & Experimental Metastasis 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine