Skip to main content
Top
Published in: Malaria Journal 1/2020

01-12-2020 | Lymphoma | Research

Endemic Burkitt lymphoma: a complication of asymptomatic malaria in sub-Saharan Africa based on published literature and primary data from Uganda, Tanzania, and Kenya

Authors: Lawrence S. Redmond, Martin D. Ogwang, Patrick Kerchan, Steven J. Reynolds, Constance N. Tenge, Pamela A. Were, Robert T. Kuremu, Nestory Masalu, Esther Kawira, Isaac Otim, Ismail D. Legason, Herry Dhudha, Leona W. Ayers, Kishor Bhatia, James J. Goedert, Sam M. Mbulaiteye

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Endemic Burkitt lymphoma (eBL) is an aggressive B cell non-Hodgkin lymphoma associated with antigenic stimulation from Plasmodium falciparum malaria. Whether eBL risk is related to malaria parasite density is unknown. To address this issue, children with eBL, asymptomatic and clinical malaria, as a surrogate of malaria parasite density, were assessed.

Methods

Malaria-related laboratory results (parasite density, haemoglobin, platelet count, and white cell count [WBC]) count) were compiled for 4019 eBL cases and 80,532 subjects evaluated for asymptomatic malaria or clinical malaria (severe malaria anaemia, hyperparasitaemia, cerebral malaria, malaria prostration, moderate malaria, and mild malaria) in 21 representative studies published in Africa (mostly East Africa) and 850 eBL cases and 2878 controls with primary data from the Epidemiology of Burkitt Lymphoma in East African Children and Minors (EMBLEM) case–control study in Uganda, Tanzania, and Kenya. The average values of malaria-related laboratory results were computed by condition and trends across single-year age groups were assessed using regression and spline models.

Results

Overall, malaria infection or malaria was diagnosed in 37,089 of children compiled from the literature. Children with eBL and asymptomatic parasitaemia/antigenaemia, but not those with clinical malaria, were closest in their mean age (age 7.1–7.2 vs. 7.4–9.8 years), haemoglobin level (10.0–10.4 vs. 11.7–12.3 g/dL), malaria parasite density (2800 vs. 1827–7780 parasites/µL), platelet count (347,000–353,000 vs. 244,000–306,000 platelets/µL), and WBC count (8180–8890 vs. 7100–7410 cells/µL). Parasite density in these two groups peaked between four to five years, then decreased steadily thereafter; conversely, haemoglobin showed a corresponding increase with age. Children with clinical malaria were markedly different: all had an average age below 5 years, had dramatically elevated parasite density (13,905–869,000 parasites/µL) and dramatically decreased platelet count (< 159,000 platelets/µL) and haemoglobin (< 7 g/dL).

Conclusions

eBL and asymptomatic parasitaemia/antigenaemia, but not clinical malaria, were the most similar conditions with respect to mean age and malaria-related laboratory results. These results suggest that children with asymptomatic parasitaemia/antigenaemia may be the population at risk of eBL.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burkitt DP. Etiology of Burkitt’s lymphoma—an alternative hypothesis to a vectored virus. J Natl Cancer Inst. 1969;42:19–28.PubMed Burkitt DP. Etiology of Burkitt’s lymphoma—an alternative hypothesis to a vectored virus. J Natl Cancer Inst. 1969;42:19–28.PubMed
2.
go back to reference Rainey JJ, Omenah D, Sumba PO, Moormann AM, Rochford R, Wilson ML. Spatial clustering of endemic Burkitt’s lymphoma in high-risk regions of Kenya. Int J Cancer. 2007;120:121–7.CrossRef Rainey JJ, Omenah D, Sumba PO, Moormann AM, Rochford R, Wilson ML. Spatial clustering of endemic Burkitt’s lymphoma in high-risk regions of Kenya. Int J Cancer. 2007;120:121–7.CrossRef
3.
go back to reference Kafuko GW, Burkitt DP. Burkitt’s lymphoma and malaria. Int J Cancer. 1970;6:1–9.CrossRef Kafuko GW, Burkitt DP. Burkitt’s lymphoma and malaria. Int J Cancer. 1970;6:1–9.CrossRef
4.
go back to reference Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R, Wabinga H. Part I: cancer in indigenous Africans—burden, distribution, and trends. Lancet Oncol. 2008;9:683–92.CrossRef Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R, Wabinga H. Part I: cancer in indigenous Africans—burden, distribution, and trends. Lancet Oncol. 2008;9:683–92.CrossRef
5.
go back to reference Hammerl L, Colombet M, Rochford R, Ogwang DM, Parkin DM. The burden of Burkitt lymphoma in Africa. Infect Agent Cancer. 2019;14:17.CrossRef Hammerl L, Colombet M, Rochford R, Ogwang DM, Parkin DM. The burden of Burkitt lymphoma in Africa. Infect Agent Cancer. 2019;14:17.CrossRef
6.
go back to reference Aka P, Vila MC, Jariwala A, Nkrumah F, Emmanuel B, Yagi M, et al. Endemic Burkitt lymphoma is associated with strength and diversity of Plasmodium falciparum malaria stage-specific antigen antibody response. Blood. 2013;122:629–35.CrossRef Aka P, Vila MC, Jariwala A, Nkrumah F, Emmanuel B, Yagi M, et al. Endemic Burkitt lymphoma is associated with strength and diversity of Plasmodium falciparum malaria stage-specific antigen antibody response. Blood. 2013;122:629–35.CrossRef
7.
go back to reference Mutalima N, Molyneux E, Jaffe H, Kamiza S, Borgstein E, Mkandawire N, et al. Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study. PLoS ONE. 2008;3:e2505.CrossRef Mutalima N, Molyneux E, Jaffe H, Kamiza S, Borgstein E, Mkandawire N, et al. Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: results from a case-control study. PLoS ONE. 2008;3:e2505.CrossRef
8.
go back to reference Carpenter LM, Newton R, Casabonne D, Ziegler J, Mbulaiteye S, Mbidde E, et al. Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. Int J Cancer. 2008;122:1319–23.CrossRef Carpenter LM, Newton R, Casabonne D, Ziegler J, Mbulaiteye S, Mbidde E, et al. Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: a case-control study in Uganda. Int J Cancer. 2008;122:1319–23.CrossRef
9.
go back to reference Guech-Ongey M, Yagi M, Palacpac NM, Emmanuel B, Talisuna AO, Bhatia K, et al. Antibodies reactive to Plasmodium falciparum serine repeat antigen in children with Burkitt lymphoma from Ghana. Int J Cancer. 2012;130:1908–14.CrossRef Guech-Ongey M, Yagi M, Palacpac NM, Emmanuel B, Talisuna AO, Bhatia K, et al. Antibodies reactive to Plasmodium falciparum serine repeat antigen in children with Burkitt lymphoma from Ghana. Int J Cancer. 2012;130:1908–14.CrossRef
10.
go back to reference Williams AO. Haemoglobin genotypes, ABO blood groups, and Burkitt’s tumour. J Med Genet. 1966;3:177–9.CrossRef Williams AO. Haemoglobin genotypes, ABO blood groups, and Burkitt’s tumour. J Med Genet. 1966;3:177–9.CrossRef
11.
go back to reference Hesseling PB, Jam DT, Palmer DD, Wharin P, Tuh GS, Bardin R, et al. Burkitt’s lymphoma patients in Northwest Cameroon have a lower incidence of sickle cell trait (Hb AS) than healthy controls. S Afr Med J. 2016;106:10693.CrossRef Hesseling PB, Jam DT, Palmer DD, Wharin P, Tuh GS, Bardin R, et al. Burkitt’s lymphoma patients in Northwest Cameroon have a lower incidence of sickle cell trait (Hb AS) than healthy controls. S Afr Med J. 2016;106:10693.CrossRef
12.
go back to reference Legason ID, Pfeiffer RM, Udquim KI, Bergen AW, Gouveia MH, Kirimunda S, et al. Evaluating the causal link between malaria infection and endemic Burkitt Lymphoma in Northern Uganda: a Mendelian randomization study. EBioMedicine. 2017;25:58–65.CrossRef Legason ID, Pfeiffer RM, Udquim KI, Bergen AW, Gouveia MH, Kirimunda S, et al. Evaluating the causal link between malaria infection and endemic Burkitt Lymphoma in Northern Uganda: a Mendelian randomization study. EBioMedicine. 2017;25:58–65.CrossRef
13.
go back to reference Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P, Clark TG, et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet. 2009;41:657–65.CrossRef Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P, Clark TG, et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet. 2009;41:657–65.CrossRef
15.
go back to reference Nkrumah FK, Perkins IV. Sickle cell trait, hemoglobin C trait, and Burkitt’s lymphoma. Am J Trop Med Hyg. 1976;25:633–6.CrossRef Nkrumah FK, Perkins IV. Sickle cell trait, hemoglobin C trait, and Burkitt’s lymphoma. Am J Trop Med Hyg. 1976;25:633–6.CrossRef
16.
go back to reference Mulama DH, Bailey JA, Foley J, Chelimo K, Ouma C, Jura WG, et al. Sickle cell trait is not associated with endemic Burkitt lymphoma: an ethnicity and malaria endemicity-matched case-control study suggests factors controlling EBV may serve as a predictive biomarker for this pediatric cancer. Int J Cancer. 2014;134:645–53.CrossRef Mulama DH, Bailey JA, Foley J, Chelimo K, Ouma C, Jura WG, et al. Sickle cell trait is not associated with endemic Burkitt lymphoma: an ethnicity and malaria endemicity-matched case-control study suggests factors controlling EBV may serve as a predictive biomarker for this pediatric cancer. Int J Cancer. 2014;134:645–53.CrossRef
17.
go back to reference Marsh K, Snow RW. Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci. 1997;352:1385–94.CrossRef Marsh K, Snow RW. Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci. 1997;352:1385–94.CrossRef
18.
go back to reference WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010. WHO. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010.
19.
go back to reference Peprah S, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, et al. Risk factors for Burkitt lymphoma in East African children and minors: a case–control study in malaria-endemic regions in Uganda, Tanzania and Kenya. Int J Cancer. 2020;146:953–69.CrossRef Peprah S, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, et al. Risk factors for Burkitt lymphoma in East African children and minors: a case–control study in malaria-endemic regions in Uganda, Tanzania and Kenya. Int J Cancer. 2020;146:953–69.CrossRef
20.
go back to reference Maziarz M, Kinyera T, Otim I, Kagwa P, Nabalende H, Legason ID, et al. Age and geographic patterns of Plasmodium falciparum malaria infection in a representative sample of children living in Burkitt lymphoma-endemic areas of northern Uganda. Malar J. 2017;16:124.CrossRef Maziarz M, Kinyera T, Otim I, Kagwa P, Nabalende H, Legason ID, et al. Age and geographic patterns of Plasmodium falciparum malaria infection in a representative sample of children living in Burkitt lymphoma-endemic areas of northern Uganda. Malar J. 2017;16:124.CrossRef
21.
go back to reference Peprah S, Tenge C, Genga IO, Mumia M, Were PA, Kuremu RT, et al. A cross-sectional population study of geographic, age-specific, and household risk factors for asymptomatic Plasmodium falciparum malaria infection in Western Kenya. Am J Trop Med Hyg. 2019;100:54–65.CrossRef Peprah S, Tenge C, Genga IO, Mumia M, Were PA, Kuremu RT, et al. A cross-sectional population study of geographic, age-specific, and household risk factors for asymptomatic Plasmodium falciparum malaria infection in Western Kenya. Am J Trop Med Hyg. 2019;100:54–65.CrossRef
22.
go back to reference Grandesso F, Nabasumba C, Nyehangane D, Page AL, Bastard M, De Smet M, et al. Performance and time to become negative after treatment of three malaria rapid diagnostic tests in low and high malaria transmission settings. Malar J. 2016;15:496.CrossRef Grandesso F, Nabasumba C, Nyehangane D, Page AL, Bastard M, De Smet M, et al. Performance and time to become negative after treatment of three malaria rapid diagnostic tests in low and high malaria transmission settings. Malar J. 2016;15:496.CrossRef
23.
go back to reference Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRef Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.CrossRef
24.
go back to reference Quintana MDP, Smith-Togobo C, Moormann A, Hviid L. Endemic Burkitt lymphoma—an aggressive childhood cancer linked to Plasmodium falciparum exposure, but not to exposure to other malaria parasites. APMIS. 2020;128:129–35.CrossRef Quintana MDP, Smith-Togobo C, Moormann A, Hviid L. Endemic Burkitt lymphoma—an aggressive childhood cancer linked to Plasmodium falciparum exposure, but not to exposure to other malaria parasites. APMIS. 2020;128:129–35.CrossRef
25.
go back to reference Rodriguez-Barraquer I, Arinaitwe E, Jagannathan P, Boyle MJ, Tappero J, Muhindo M, et al. Quantifying heterogeneous malaria exposure and clinical protection in a cohort of Ugandan children. J Infect Dis. 2016;214:1072–80.CrossRef Rodriguez-Barraquer I, Arinaitwe E, Jagannathan P, Boyle MJ, Tappero J, Muhindo M, et al. Quantifying heterogeneous malaria exposure and clinical protection in a cohort of Ugandan children. J Infect Dis. 2016;214:1072–80.CrossRef
26.
go back to reference Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3:182–7.CrossRef Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol. 2005;3:182–7.CrossRef
27.
go back to reference Doolan DL, Dobano C, Baird JK. Acquired immunity to malaria. Clin Microbiol Rev. 2009;22:13–36.CrossRef Doolan DL, Dobano C, Baird JK. Acquired immunity to malaria. Clin Microbiol Rev. 2009;22:13–36.CrossRef
28.
go back to reference Emmanuel B, Kawira E, Ogwang MD, Wabinga H, Magatti J, Nkrumah F, et al. African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers. Am J Trop Med Hyg. 2011;84:397–401.CrossRef Emmanuel B, Kawira E, Ogwang MD, Wabinga H, Magatti J, Nkrumah F, et al. African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers. Am J Trop Med Hyg. 2011;84:397–401.CrossRef
29.
go back to reference Johnston WT, Mutalima N, Sun D, Emmanuel B, Bhatia K, Aka P, et al. Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi. Sci Rep. 2014;4:3741.CrossRef Johnston WT, Mutalima N, Sun D, Emmanuel B, Bhatia K, Aka P, et al. Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi. Sci Rep. 2014;4:3741.CrossRef
30.
go back to reference Eldh M, Hammar U, Arnot D, Beck HP, Garcia A, Liljander A, et al. Multiplicity of asymptomatic Plasmodium falciparum infections and risk of clinical malaria: a systematic review and pooled analysis of individual participant data. J Infect Dis. 2020;221:775–85.CrossRef Eldh M, Hammar U, Arnot D, Beck HP, Garcia A, Liljander A, et al. Multiplicity of asymptomatic Plasmodium falciparum infections and risk of clinical malaria: a systematic review and pooled analysis of individual participant data. J Infect Dis. 2020;221:775–85.CrossRef
Metadata
Title
Endemic Burkitt lymphoma: a complication of asymptomatic malaria in sub-Saharan Africa based on published literature and primary data from Uganda, Tanzania, and Kenya
Authors
Lawrence S. Redmond
Martin D. Ogwang
Patrick Kerchan
Steven J. Reynolds
Constance N. Tenge
Pamela A. Were
Robert T. Kuremu
Nestory Masalu
Esther Kawira
Isaac Otim
Ismail D. Legason
Herry Dhudha
Leona W. Ayers
Kishor Bhatia
James J. Goedert
Sam M. Mbulaiteye
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-03312-7

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.