Skip to main content
Top
Published in: EJNMMI Research 1/2020

01-12-2020 | Lymphoma | Original research

Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [68Ga]pentixafor in non-Hodgkin lymphoma: comparison to [18F]FDG

Authors: Qingqing Pan, Yaping Luo, Yan Zhang, Long Chang, Ji Li, Xinxin Cao, Jian Li, Fang Li

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

In order to study the CXCR4 expression with [68Ga]pentixafor PET in different types of non-Hodgkin lymphoma, we performed a retrospective study to describe the [68Ga]pentixafor PET/CT imaging in a spectrum of lymphomas and to compare it with [18F]FDG PET/CT.

Results

Twenty-seven patients with newly diagnosed non-Hodgkin lymphoma were recruited retrospectively. [68Ga]pentixafor PET showed increased radioactivity in lymphoplasmacytic lymphoma (n = 8), marginal zone lymphoma (n = 4), diffuse large B cell lymphoma (n = 3), follicular lymphoma (n = 2), mantle cell lymphoma (n = 1), unclassified indolent B cell lymphoma (n = 3), and enteropathy associated T cell lymphoma (n = 3). However, peripheral T cell lymphoma, not otherwise specified (n = 1), and NK/T cell lymphoma (n = 2) were not avid for [68Ga]pentixafor. In comparison to [18F]FDG PET, [68Ga]pentixafor PET demonstrated more extensive disease and higher radioactivity in lymphoplasmacytic lymphoma and marginal zone lymphoma.

Conclusion

CXCR4 expression varies in different types of non-Hodgkin lymphoma. Overexpression of CXCR4 was detected with [68Ga]pentixafor PET/CT in lymphoplasmacytic lymphoma, marginal zone lymphoma, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma, unclassified indolent B cell lymphoma, and enteropathy associated T cell lymphoma. The uptake of [68Ga]pentixafor was higher than [18F]FDG in lymphoplasmacytic lymphoma and marginal zone lymphoma.
Literature
1.
go back to reference Philipp-Abbrederis K, Herrmann K, Knop S, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7:477–87.CrossRef Philipp-Abbrederis K, Herrmann K, Knop S, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7:477–87.CrossRef
2.
go back to reference Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49:219–30.CrossRef Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer. 2013;49:219–30.CrossRef
3.
go back to reference Walenkamp AME, Lapa C, Herrmann K, et al. CXCR4 ligands: the next big hit? J Nucl Med. 2017;58:77 s–82 s.CrossRef Walenkamp AME, Lapa C, Herrmann K, et al. CXCR4 ligands: the next big hit? J Nucl Med. 2017;58:77 s–82 s.CrossRef
4.
go back to reference Wester HJ, Keller U, Schottelius M, et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 2015;5:618–30.CrossRef Wester HJ, Keller U, Schottelius M, et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 2015;5:618–30.CrossRef
5.
go back to reference Lapa C, Schreder M, Schirbel A, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - comparison to [18F]FDG and laboratory values. Theranostics. 2017;7:205–12.CrossRef Lapa C, Schreder M, Schirbel A, et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - comparison to [18F]FDG and laboratory values. Theranostics. 2017;7:205–12.CrossRef
6.
go back to reference Pan Q, Luo Y, Cao X, et al. Multiple myeloma presenting as a superscan on 68Ga-Pentixafor PET/CT. Clin Nucl Med. 2018;43:462–3.CrossRef Pan Q, Luo Y, Cao X, et al. Multiple myeloma presenting as a superscan on 68Ga-Pentixafor PET/CT. Clin Nucl Med. 2018;43:462–3.CrossRef
7.
go back to reference Pan Q, Cao X, Luo Y, et al. Chemokine receptor-4 targeted PET/CT with (68)Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2020;47:537–46.CrossRef Pan Q, Cao X, Luo Y, et al. Chemokine receptor-4 targeted PET/CT with (68)Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: comparison to (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2020;47:537–46.CrossRef
8.
go back to reference Luo Y, Cao X, Pan Q, et al. (68)Ga-Pentixafor PET/CT for imaging of chemokine receptor 4 expression in Waldenstrom macroglobulinemia/lymphoplasmacytic lymphoma: comparison to (18)F-FDG PET/CT. J Nucl Med. 2019;60:1724–9.CrossRef Luo Y, Cao X, Pan Q, et al. (68)Ga-Pentixafor PET/CT for imaging of chemokine receptor 4 expression in Waldenstrom macroglobulinemia/lymphoplasmacytic lymphoma: comparison to (18)F-FDG PET/CT. J Nucl Med. 2019;60:1724–9.CrossRef
9.
go back to reference Luo Y, Pan Q, Feng J, et al. Chemokine receptor CXCR4-targeted PET/CT with 68Ga-Pentixafor shows superiority to 18F-FDG in a patient with Waldenstrom macroglobulinemia. Clin Nucl Med. 2018;43:548–50.CrossRef Luo Y, Pan Q, Feng J, et al. Chemokine receptor CXCR4-targeted PET/CT with 68Ga-Pentixafor shows superiority to 18F-FDG in a patient with Waldenstrom macroglobulinemia. Clin Nucl Med. 2018;43:548–50.CrossRef
10.
go back to reference Haug AR, Leisser A, Wadsak W, et al. Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68Ga]Ga-Pentixafor-PET/MRI. Theranostics. 2019;9:3653–8.CrossRef Haug AR, Leisser A, Wadsak W, et al. Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68Ga]Ga-Pentixafor-PET/MRI. Theranostics. 2019;9:3653–8.CrossRef
11.
go back to reference Mayerhoefer ME, Jaeger U, Staber P, et al. [68Ga]Ga-Pentixafor PET/MRI for CXCR4 imaging of chronic lymphocytic leukemia: preliminary results. Investig Radiol. 2018;53:403–8.CrossRef Mayerhoefer ME, Jaeger U, Staber P, et al. [68Ga]Ga-Pentixafor PET/MRI for CXCR4 imaging of chronic lymphocytic leukemia: preliminary results. Investig Radiol. 2018;53:403–8.CrossRef
12.
go back to reference Herhaus P, Habringer S, Philipp-Abbrederis K, et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica. 2016;101:932–40.CrossRef Herhaus P, Habringer S, Philipp-Abbrederis K, et al. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia. Haematologica. 2016;101:932–40.CrossRef
13.
go back to reference Habringer S, Lapa C, Herhaus P, et al. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics. 2018;8:369–83.CrossRef Habringer S, Lapa C, Herhaus P, et al. Dual targeting of acute leukemia and supporting niche by CXCR4-directed theranostics. Theranostics. 2018;8:369–83.CrossRef
14.
go back to reference Herrmann K, Schottelius M, Lapa C, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled Pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57:248–51.CrossRef Herrmann K, Schottelius M, Lapa C, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled Pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57:248–51.CrossRef
15.
go back to reference Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7:1589–97.CrossRef Lapa C, Herrmann K, Schirbel A, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics. 2017;7:1589–97.CrossRef
16.
go back to reference Lapa C, Hanscheid H, Kircher M, et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60:60–4.CrossRef Lapa C, Hanscheid H, Kircher M, et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60:60–4.CrossRef
17.
go back to reference Banwait R, O'Regan K, Campigotto F, et al. The role of 18F-FDG PET/CT imaging in Waldenstrom macroglobulinemia. Am J Hematol. 2011;86:567–72.CrossRef Banwait R, O'Regan K, Campigotto F, et al. The role of 18F-FDG PET/CT imaging in Waldenstrom macroglobulinemia. Am J Hematol. 2011;86:567–72.CrossRef
18.
go back to reference Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.CrossRef Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.CrossRef
19.
go back to reference Ngo HT, Leleu X, Lee J, et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood. 2008;112:150–8.CrossRef Ngo HT, Leleu X, Lee J, et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood. 2008;112:150–8.CrossRef
20.
go back to reference Albano D, Bosio G, Giubbini R, et al. 18F-FDG PET/CT and extragastric MALT lymphoma: role of Ki-67 score and plasmacytic differentiation. Leukemia & lymphoma. 2017;58:2328–34.CrossRef Albano D, Bosio G, Giubbini R, et al. 18F-FDG PET/CT and extragastric MALT lymphoma: role of Ki-67 score and plasmacytic differentiation. Leukemia & lymphoma. 2017;58:2328–34.CrossRef
21.
go back to reference Albano D, Durmo R, Treglia G, et al. (18)F-FDG PET/CT or PET role in MALT lymphoma: an open issue not yet solved-a critical review. Clinical lymphoma, myeloma & leukemia. 2020;20:137–46.CrossRef Albano D, Durmo R, Treglia G, et al. (18)F-FDG PET/CT or PET role in MALT lymphoma: an open issue not yet solved-a critical review. Clinical lymphoma, myeloma & leukemia. 2020;20:137–46.CrossRef
22.
go back to reference Stollberg S, Kammerer D, Neubauer E, et al. Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin. J Cancer Res Clin Oncol. 2016;142:2239–47.CrossRef Stollberg S, Kammerer D, Neubauer E, et al. Differential somatostatin and CXCR4 chemokine receptor expression in MALT-type lymphoma of gastric and extragastric origin. J Cancer Res Clin Oncol. 2016;142:2239–47.CrossRef
23.
go back to reference Viering O, Kircher M, Lapa C, et al. [68Ga]Pentixafor PET/CT is superior to [18F]FDG PET/CT in newly diagnosed marginal zone lymphoma. J Nucl Med. 2019;60:614. Viering O, Kircher M, Lapa C, et al. [68Ga]Pentixafor PET/CT is superior to [18F]FDG PET/CT in newly diagnosed marginal zone lymphoma. J Nucl Med. 2019;60:614.
24.
go back to reference Durig J, Schmucker U, Duhrsen U. Differential expression of chemokine receptors in B cell malignancies. Leukemia. 2001;15:752–6.CrossRef Durig J, Schmucker U, Duhrsen U. Differential expression of chemokine receptors in B cell malignancies. Leukemia. 2001;15:752–6.CrossRef
25.
go back to reference Middle S, Coupland SE, Taktak A, et al. Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins. Exp Hematol Oncol. 2015;4:10.CrossRef Middle S, Coupland SE, Taktak A, et al. Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins. Exp Hematol Oncol. 2015;4:10.CrossRef
26.
go back to reference Pan Q, Luo Y, Cao X, et al. Posttreated POEMS syndrome with concurrent follicular lymphoma revealed by 18F-FDG and 68Ga-Pentixafor PET/CT. Clin Nucl Med. 2020;45:220–2.CrossRef Pan Q, Luo Y, Cao X, et al. Posttreated POEMS syndrome with concurrent follicular lymphoma revealed by 18F-FDG and 68Ga-Pentixafor PET/CT. Clin Nucl Med. 2020;45:220–2.CrossRef
27.
go back to reference Albano D, Laudicella R, Ferro P, et al. The role of 18F-FDG PET/CT in staging and prognostication of mantle cell lymphoma: an Italian multicentric study. Cancers (Basel). 2019;11:1831.CrossRef Albano D, Laudicella R, Ferro P, et al. The role of 18F-FDG PET/CT in staging and prognostication of mantle cell lymphoma: an Italian multicentric study. Cancers (Basel). 2019;11:1831.CrossRef
28.
go back to reference Albano D, Treglia G, Gazzilli M, et al. (18)F-FDG PET or PET/CT in mantle cell lymphoma. Clinical lymphoma, myeloma & leukemia. 2020;20:422–30.CrossRef Albano D, Treglia G, Gazzilli M, et al. (18)F-FDG PET or PET/CT in mantle cell lymphoma. Clinical lymphoma, myeloma & leukemia. 2020;20:422–30.CrossRef
29.
go back to reference Balsas P, Palomero J, Eguileor A, et al. SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma. Blood. 2017;130:501–13.CrossRef Balsas P, Palomero J, Eguileor A, et al. SOX11 promotes tumor protective microenvironment interactions through CXCR4 and FAK regulation in mantle cell lymphoma. Blood. 2017;130:501–13.CrossRef
30.
go back to reference Kurtova AV, Tamayo AT, Ford RJ, et al. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood. 2009;113:4604–13.CrossRef Kurtova AV, Tamayo AT, Ford RJ, et al. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood. 2009;113:4604–13.CrossRef
31.
go back to reference Kuyumcu S, Yilmaz E, Buyukkaya F, et al. Imaging of chemokine receptor CXCR4 in mycosis fungoides using 68Ga-Pentixafor PET/CT. Clin Nucl Med. 2018;43:606–8.CrossRef Kuyumcu S, Yilmaz E, Buyukkaya F, et al. Imaging of chemokine receptor CXCR4 in mycosis fungoides using 68Ga-Pentixafor PET/CT. Clin Nucl Med. 2018;43:606–8.CrossRef
32.
go back to reference Weng AP, Shahsafaei A, Dorfman DM. CXCR4/CD184 immunoreactivity in T-cell non-Hodgkin lymphomas with an overall Th1- Th2+ immunophenotype. Am J Clin Pathol. 2003;119:424–30.CrossRef Weng AP, Shahsafaei A, Dorfman DM. CXCR4/CD184 immunoreactivity in T-cell non-Hodgkin lymphomas with an overall Th1- Th2+ immunophenotype. Am J Clin Pathol. 2003;119:424–30.CrossRef
33.
go back to reference Wong S, Fulcher D. Chemokine receptor expression in B-cell lymphoproliferative disorders. Leuk Lymphoma. 2004;45:2491–6.CrossRef Wong S, Fulcher D. Chemokine receptor expression in B-cell lymphoproliferative disorders. Leuk Lymphoma. 2004;45:2491–6.CrossRef
34.
go back to reference Trentin L, Cabrelle A, Facco M, et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood. 2004;104:502–8.CrossRef Trentin L, Cabrelle A, Facco M, et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood. 2004;104:502–8.CrossRef
35.
go back to reference Maj J, Jankowska-Konsur AM, Halon A, et al. Expression of CXCR4 and CXCL12 and their correlations to the cell proliferation and angiogenesis in mycosis fungoides. Postepy Dermatol Alergol. 2015;32:437–42.CrossRef Maj J, Jankowska-Konsur AM, Halon A, et al. Expression of CXCR4 and CXCL12 and their correlations to the cell proliferation and angiogenesis in mycosis fungoides. Postepy Dermatol Alergol. 2015;32:437–42.CrossRef
36.
go back to reference Daggett RN, Kurata M, Abe S, et al. Expression dynamics of CXCL12 and CXCR4 during the progression of mycosis fungoides. Br J Dermatol. 2014;171:722–31.CrossRef Daggett RN, Kurata M, Abe S, et al. Expression dynamics of CXCL12 and CXCR4 during the progression of mycosis fungoides. Br J Dermatol. 2014;171:722–31.CrossRef
37.
go back to reference Narducci MG, Scala E, Bresin A, et al. Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood. 2006;107:1108–15.CrossRef Narducci MG, Scala E, Bresin A, et al. Skin homing of Sezary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV. Blood. 2006;107:1108–15.CrossRef
38.
go back to reference Yu ZZ, Xi YF, Li J, et al. Significance of CXCL12/CXCR4 expression in T-lymphoblastic lymphoma/leukemia. Zhonghua Bing Li Xue Za Zhi. 2016;45:838–43.PubMed Yu ZZ, Xi YF, Li J, et al. Significance of CXCL12/CXCR4 expression in T-lymphoblastic lymphoma/leukemia. Zhonghua Bing Li Xue Za Zhi. 2016;45:838–43.PubMed
39.
go back to reference Makishima H, Komiyama Y, Asano N, et al. Peripheral T-cell lymphoma following diffuse large B-cell lymphoma associated with celiac disease. Intern Med. 2008;47:295–8.CrossRef Makishima H, Komiyama Y, Asano N, et al. Peripheral T-cell lymphoma following diffuse large B-cell lymphoma associated with celiac disease. Intern Med. 2008;47:295–8.CrossRef
Metadata
Title
Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [68Ga]pentixafor in non-Hodgkin lymphoma: comparison to [18F]FDG
Authors
Qingqing Pan
Yaping Luo
Yan Zhang
Long Chang
Ji Li
Xinxin Cao
Jian Li
Fang Li
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00681-7

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue