Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Positron Emission Tomography | Original research

Brown adipose tissue uptake of triglyceride-rich lipoprotein-derived fatty acids in diabetic or obese mice under different temperature conditions

Authors: Andreas Paulus, Natascha Drude, Wouter van Marken Lichtenbelt, Felix M. Mottaghy, Matthias Bauwens

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

In vivo imaging of glucose analogue 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) via positron emission tomography (PET) is the current gold standard to visualize and assess brown adipose tissue (BAT) activity. However, glucose metabolism is only a part of the metabolic activity of BAT. [18F]FDG-PET has been shown in clinical trials to often fail to visualize BAT under insulin-resistant conditions associated with aging and weight gain. We employed a novel developed triglyceride-based tracer to visualize BATs metabolic activity under different temperature conditions as well as under diabetic and obese conditions in preclinical models.

Results

[18F]BDP-TG-chylomicron-like particles visualized BAT in control, streptozocin-induced diabetes and obese mice. Increased BAT tracer uptake was found in control mice acutely exposed to cold but not in cold-acclimated animals. Diabetes did not remove BAT tracer uptake, but did limit BAT tracer uptake to levels of control mice housed at 21 °C. In obese animals, BAT tracer uptake was significantly reduced, although the stimulating effect of cold exposure could still be noted.

Conclusion

BAT was visualized in control, diabetic and obese conditions. Streptozocin-induced diabetes, but not obesity, inhibited the stimulatory effect of cold exposure.
Appendix
Available only for authorised users
Literature
1.
go back to reference van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(2):R285–96. PubMedCrossRef van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(2):R285–96. PubMedCrossRef
2.
go back to reference Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. PubMedCrossRef Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. PubMedCrossRef
3.
4.
go back to reference Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–4. PubMedCrossRef Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–4. PubMedCrossRef
5.
go back to reference Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60. PubMedCrossRef Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60. PubMedCrossRef
6.
go back to reference Bachman ES, Dhillon H, Zhang C-Y, Cinti S, Bianco AC, Kobilka BK, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297(5582):843–5. PubMedCrossRef Bachman ES, Dhillon H, Zhang C-Y, Cinti S, Bianco AC, Kobilka BK, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002;297(5582):843–5. PubMedCrossRef
7.
go back to reference Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33–8. PubMedPubMedCentralCrossRef Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA, et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015;21(1):33–8. PubMedPubMedCentralCrossRef
8.
go back to reference van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8. PubMedCrossRef van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8. PubMedCrossRef
9.
go back to reference Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25. PubMedCrossRef Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25. PubMedCrossRef
10.
go back to reference Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31. PubMedPubMedCentralCrossRef Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31. PubMedPubMedCentralCrossRef
11.
go back to reference Paulus A, van Marken LW, Mottaghy FM, Bauwens M. Brown adipose tissue and lipid metabolism imaging. Methods. 2017;130:105–13. PubMedCrossRef Paulus A, van Marken LW, Mottaghy FM, Bauwens M. Brown adipose tissue and lipid metabolism imaging. Methods. 2017;130:105–13. PubMedCrossRef
12.
go back to reference Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F, et al. Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging. 2014;41(4):776–91. PubMedCrossRef Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F, et al. Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging. 2014;41(4):776–91. PubMedCrossRef
13.
go back to reference Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299(4):E601–6. PubMedCrossRef Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299(4):E601–6. PubMedCrossRef
14.
go back to reference Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med. 2003;44(8):1267–70. PubMed Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med. 2003;44(8):1267–70. PubMed
15.
go back to reference Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging. 2002;29(10):1393–8. PubMedCrossRef Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging. 2002;29(10):1393–8. PubMedCrossRef
16.
go back to reference Pace L, Nicolai E, D’Amico D, Ibello F, Della Morte AM, Salvatore B, et al. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol MIB. 2011;13(5):1029–35. PubMedCrossRef Pace L, Nicolai E, D’Amico D, Ibello F, Della Morte AM, Salvatore B, et al. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol MIB. 2011;13(5):1029–35. PubMedCrossRef
17.
go back to reference Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65:1179–89. PubMedCrossRef Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65:1179–89. PubMedCrossRef
18.
go back to reference Yu XX, Lewin DA, Forrest W, Adams SH. Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J. 2002;16(2):155–68. PubMedCrossRef Yu XX, Lewin DA, Forrest W, Adams SH. Cold elicits the simultaneous induction of fatty acid synthesis and beta-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J. 2002;16(2):155–68. PubMedCrossRef
20.
go back to reference Blondin DP, Labbe SM, Noll C, Kunach M, Phoenix S, Guerin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64(7):2388–97. PubMedCrossRef Blondin DP, Labbe SM, Noll C, Kunach M, Phoenix S, Guerin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64(7):2388–97. PubMedCrossRef
21.
go back to reference Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndrome Obes Targets Ther. 2014;7:587–91. CrossRef Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndrome Obes Targets Ther. 2014;7:587–91. CrossRef
22.
go back to reference Wu C, Cheng W, Sun Y, Dang Y, Gong F, Zhu H, et al. Activating brown adipose tissue for weight loss and lowering of blood glucose levels: a microPET study using obese and diabetic model mice. PLoS ONE. 2014;9(12):e113742. PubMedPubMedCentralCrossRef Wu C, Cheng W, Sun Y, Dang Y, Gong F, Zhu H, et al. Activating brown adipose tissue for weight loss and lowering of blood glucose levels: a microPET study using obese and diabetic model mice. PLoS ONE. 2014;9(12):e113742. PubMedPubMedCentralCrossRef
24.
go back to reference DeGrado TRCH, Stocklin G. 14(R, S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991;32(10):1888–96. PubMed DeGrado TRCH, Stocklin G. 14(R, S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J Nucl Med. 1991;32(10):1888–96. PubMed
25.
go back to reference Goodmen MMKFF, Elmaleh DR, Strauss HW. New myocardial imaging agents: synthesis of 15-(p-[123I]iodophenyl)-3(R, S)-methylpentadecanoic acid by decomposition of a 3,3-(1,5-pentanedyl)triazene precursor. J Org Chem. 1984;49:2322–5. CrossRef Goodmen MMKFF, Elmaleh DR, Strauss HW. New myocardial imaging agents: synthesis of 15-(p-[123I]iodophenyl)-3(R, S)-methylpentadecanoic acid by decomposition of a 3,3-(1,5-pentanedyl)triazene precursor. J Org Chem. 1984;49:2322–5. CrossRef
26.
go back to reference Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5. PubMedCrossRef Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5. PubMedCrossRef
27.
go back to reference Khedoe PPSJ, Hoeke G, Kooijman S, Dijk W, Buijs JT, Kersten S, et al. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res. 2015;56(1):51–9. PubMedPubMedCentralCrossRef Khedoe PPSJ, Hoeke G, Kooijman S, Dijk W, Buijs JT, Kersten S, et al. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res. 2015;56(1):51–9. PubMedPubMedCentralCrossRef
28.
go back to reference Festuccia WT, Blanchard P-G, Deshaies Y. Control of brown adipose tissue glucose and lipid metabolism by PPARγ. Front Endocrinol (Lausanne). 2011;2:84. CrossRef Festuccia WT, Blanchard P-G, Deshaies Y. Control of brown adipose tissue glucose and lipid metabolism by PPARγ. Front Endocrinol (Lausanne). 2011;2:84. CrossRef
29.
go back to reference Hoeke G, Kooijman S, Boon MR, Rensen PC, Berbee JF. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118(1):173–82. PubMedCrossRef Hoeke G, Kooijman S, Boon MR, Rensen PC, Berbee JF. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118(1):173–82. PubMedCrossRef
30.
go back to reference Paulus A, Maenen M, Drude N, Nascimento EBM, van Marken Lichtenbelt WD, Mottaghy FM, et al. Synthesis, radiosynthesis and in vitro evaluation of 18F-Bodipy-C16/triglyceride as a dual modal imaging agent for brown adipose tissue. PLoS ONE. 2017;12(8):e0182297. PubMedPubMedCentralCrossRef Paulus A, Maenen M, Drude N, Nascimento EBM, van Marken Lichtenbelt WD, Mottaghy FM, et al. Synthesis, radiosynthesis and in vitro evaluation of 18F-Bodipy-C16/triglyceride as a dual modal imaging agent for brown adipose tissue. PLoS ONE. 2017;12(8):e0182297. PubMedPubMedCentralCrossRef
31.
go back to reference Paulus A, Drude N, Nascimento EBM, Buhl EM, Berbee JFP, Rensen PCN, et al. [(18)F]BODIPY-triglyceride-containing chylomicron-like particles as an imaging agent for brown adipose tissue in vivo. Sci Rep. 2019;9(1):2706. PubMedPubMedCentralCrossRef Paulus A, Drude N, Nascimento EBM, Buhl EM, Berbee JFP, Rensen PCN, et al. [(18)F]BODIPY-triglyceride-containing chylomicron-like particles as an imaging agent for brown adipose tissue in vivo. Sci Rep. 2019;9(1):2706. PubMedPubMedCentralCrossRef
32.
go back to reference McAnoy AM, Wu CC, Murphy RC. Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom. 2005;16(9):1498–509. PubMedCrossRef McAnoy AM, Wu CC, Murphy RC. Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom. 2005;16(9):1498–509. PubMedCrossRef
33.
go back to reference Rensen PCN, Vandijk MCM, Havenaar EC, Bijsterbosch MK, Kruijt JK, Vanberkel TJC. Selective liver targeting of antivirals by recombinant chylomicrons - a new therapeutic approach to hepatitis-B. Nat Med. 1995;1(3):221–5. PubMedCrossRef Rensen PCN, Vandijk MCM, Havenaar EC, Bijsterbosch MK, Kruijt JK, Vanberkel TJC. Selective liver targeting of antivirals by recombinant chylomicrons - a new therapeutic approach to hepatitis-B. Nat Med. 1995;1(3):221–5. PubMedCrossRef
34.
go back to reference Redgrave TG, Maranhao RC. Metabolism of protein-free lipid emulsion models of chylomicrons in rats. Biochem Biophys Acta. 1985;835(1):104–12. PubMedCrossRef Redgrave TG, Maranhao RC. Metabolism of protein-free lipid emulsion models of chylomicrons in rats. Biochem Biophys Acta. 1985;835(1):104–12. PubMedCrossRef
35.
go back to reference Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12(1):60. PubMedPubMedCentralCrossRef Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12(1):60. PubMedPubMedCentralCrossRef
36.
go back to reference Paulus A, Desai P, Carney B, Carlucci G, Reiner T, Brand C, et al. Development of a clickable bimodal fluorescent/PET probe for in vivo imaging. Ejnmmi Res. 2015;5(1):120. PubMedCrossRef Paulus A, Desai P, Carney B, Carlucci G, Reiner T, Brand C, et al. Development of a clickable bimodal fluorescent/PET probe for in vivo imaging. Ejnmmi Res. 2015;5(1):120. PubMedCrossRef
37.
go back to reference Blondin DP, Tingelstad HC, Noll C, Frisch F, Phoenix S, Guerin B, et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat Commun. 2017;8:14146. PubMedPubMedCentralCrossRef Blondin DP, Tingelstad HC, Noll C, Frisch F, Phoenix S, Guerin B, et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat Commun. 2017;8:14146. PubMedPubMedCentralCrossRef
38.
go back to reference van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–403. PubMedPubMedCentralCrossRef van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–403. PubMedPubMedCentralCrossRef
39.
go back to reference Heine M, Fischer AW, Schlein C, Jung C, Straub LG, Gottschling K, et al. Lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice. Cell Metab. 2018;28(4):644-55.e4. PubMedCrossRef Heine M, Fischer AW, Schlein C, Jung C, Straub LG, Gottschling K, et al. Lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice. Cell Metab. 2018;28(4):644-55.e4. PubMedCrossRef
40.
go back to reference Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015;21(8):863–5. PubMedCrossRef Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015;21(8):863–5. PubMedCrossRef
41.
go back to reference Fischer AW, Cannon B, Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metabol. 2017;7:161–70. CrossRef Fischer AW, Cannon B, Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metabol. 2017;7:161–70. CrossRef
42.
go back to reference Ingvorsen C, Karp NA, Lelliott CJ. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice. Nutr Diabetes. 2017;7(4):e261. PubMedPubMedCentralCrossRef Ingvorsen C, Karp NA, Lelliott CJ. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice. Nutr Diabetes. 2017;7(4):e261. PubMedPubMedCentralCrossRef
43.
go back to reference Koyama T, Takahashi J, Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet AU - IKEUCHI, Mayumi. Biosci Biotechnol Biochem. 2007;71(4):893–9. PubMedCrossRef Koyama T, Takahashi J, Yazawa K. Effects of astaxanthin in obese mice fed a high-fat diet AU - IKEUCHI, Mayumi. Biosci Biotechnol Biochem. 2007;71(4):893–9. PubMedCrossRef
44.
go back to reference Ohlson KB, Lindahl SG, Cannon B, Nedergaard J. Thermogenesis inhibition in brown adipocytes is a specific property of volatile anesthetics. Anesthesiology. 2003;98(2):437–48. PubMedCrossRef Ohlson KB, Lindahl SG, Cannon B, Nedergaard J. Thermogenesis inhibition in brown adipocytes is a specific property of volatile anesthetics. Anesthesiology. 2003;98(2):437–48. PubMedCrossRef
45.
go back to reference Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356. PubMedPubMedCentralCrossRef Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356. PubMedPubMedCentralCrossRef
Metadata
Title
Brown adipose tissue uptake of triglyceride-rich lipoprotein-derived fatty acids in diabetic or obese mice under different temperature conditions
Authors
Andreas Paulus
Natascha Drude
Wouter van Marken Lichtenbelt
Felix M. Mottaghy
Matthias Bauwens
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00701-6

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue