Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Lung Cancer | Research

Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway

Authors: Sunisa Thongsom, Satapat Racha, Korrakod Petsri, Zin Zin Ei, Kittichate Visuttijai, Sohsuke Moriue, Masashi Yokoya, Pithi Chanvorachote

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Compound with cancer stem cell (CSC)-suppressing activity is promising for the improvement of lung cancer clinical outcomes. Toward this goal, we discovered the CSC-targeting activity of resveratrol (RES) analog moscatilin (MOS). With slight structural modification from RES, MOS shows dominant cytotoxicity and CSC-suppressive effect.

Methods

Three human lung cancer cell lines, namely H23, H292, and A549, were used to compare the effects of RES and MOS. Cell viability and apoptosis were determined by the MTT assay and Hoechst33342/PI double staining. Anti-proliferative activity was determined by colony formation assay and cell cycle analysis. Intracellular reactive oxygen species (ROS) were measured by fluorescence microscopy using DCFH2-DA staining. CSC-rich populations of A549 cells were generated, and CSC markers, and Akt signaling were determined by Western blot analysis and immunofluorescence. Molecular docking and molecular dynamics (MD) simulations were used to predict the possible binding of the compound to Akt protein.

Results

In this study, we evaluated the effects of RES and MOS on lung cancer and its anti-CSC potential. Compared with RES, its analog MOS more effectively inhibited cell viability, colony formation, and induced apoptosis in all lung cancer cell lines (H23, H292, and A549). We further investigated the anti-CSC effects on A549 CSC-rich populations and cancer adherent cells (A549 and H23). MOS possesses the ability to suppress CSC-like phenotype of lung cancer cells more potent than RES. Both MOS and RES repressed lung CSCs by inhibiting the viability, proliferation, and lung CSC-related marker CD133. However, only MOS inhibits the CSC marker CD133 in both CSC-rich population and adherent cells. Mechanistically, MOS exerted its anti-CSC effects by inhibiting Akt and consequently restored the activation of glycogen synthase kinase 3β (GSK-3β) and decreased the pluripotent transcription factors (Sox2 and c-Myc). Thus, MOS inhibits CSC-like properties through the repression of the Akt/GSK-3β/c-Myc pathway. Moreover, the superior inhibitory effects of MOS compared to RES were associated with the improved activation of various mechanism, such as cell cycle arrest at G2/M phase, production of ROS-mediated apoptosis, and inhibition of Akt activation. Notably, the computational analysis confirmed the strong interaction between MOS and Akt protein. MD simulations revealed that the binding between MOS and Akt1 was more stable than RES, with MM/GBSA binding free energy of − 32.8245 kcal/mol at its allosteric site. In addition, MOS interacts with Trp80 and Tyr272, which was a key residue in allosteric inhibitor binding and can potentially alter Akt activity.

Conclusions

Knowledge about the effect of MOS as a CSC-targeting compound and its interaction with Akt is important for the development of drugs for the treatment of CSC-driven cancer including lung cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A, Cancer Statistics. 2021. CA Cancer J Clin. 2021;71(1):7–33. Siegel RL, Miller KD, Fuchs HE, Jemal A, Cancer Statistics. 2021. CA Cancer J Clin. 2021;71(1):7–33.
3.
go back to reference Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells Int. 2016;2016:1740936.PubMedPubMedCentralCrossRef Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells Int. 2016;2016:1740936.PubMedPubMedCentralCrossRef
4.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRef Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRef
5.
go back to reference Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.PubMedCrossRef Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.PubMedCrossRef
6.
go back to reference Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells. 2015;7(9):1185–201.PubMedPubMedCentralCrossRef Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells. 2015;7(9):1185–201.PubMedPubMedCentralCrossRef
7.
go back to reference Ajani JA, Song S, Hochster HS, Steinberg IB. Cancer stem cells: the promise and the potential. Semin Oncol. 2015;42(Suppl 1):3–17.CrossRef Ajani JA, Song S, Hochster HS, Steinberg IB. Cancer stem cells: the promise and the potential. Semin Oncol. 2015;42(Suppl 1):3–17.CrossRef
8.
go back to reference Dandawate P, Padhye S, Ahmad A, Sarkar FH. Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res. 2013;3(2):165–82.PubMedPubMedCentralCrossRef Dandawate P, Padhye S, Ahmad A, Sarkar FH. Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res. 2013;3(2):165–82.PubMedPubMedCentralCrossRef
9.
go back to reference Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. Semin Cancer Biol. 2016;40–41:192–208.PubMedPubMedCentralCrossRef Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. Semin Cancer Biol. 2016;40–41:192–208.PubMedPubMedCentralCrossRef
10.
go back to reference Wattanathamsan O, Hayakawa Y, Pongrakhananon V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother Res. 2019;33(10):2531–47.PubMedCrossRef Wattanathamsan O, Hayakawa Y, Pongrakhananon V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother Res. 2019;33(10):2531–47.PubMedCrossRef
11.
go back to reference Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: a review on past to future. Curr Res Food Sci. 2020;3:284–95.PubMedPubMedCentralCrossRef Bhaskara VK, Mittal B, Mysorekar VV, Amaresh N, Simal-Gandara J. Resveratrol, cancer and cancer stem cells: a review on past to future. Curr Res Food Sci. 2020;3:284–95.PubMedPubMedCentralCrossRef
12.
go back to reference Almatroodi SA, M AA, Alhumaydhi ASMA, Babiker FA, Khan AY. AA, Potential therapeutic targets of Resveratrol, a Plant Polyphenol, and its role in the therapy of various types of Cancer. Molecules. 2022;27(9). Almatroodi SA, M AA, Alhumaydhi ASMA, Babiker FA, Khan AY. AA, Potential therapeutic targets of Resveratrol, a Plant Polyphenol, and its role in the therapy of various types of Cancer. Molecules. 2022;27(9).
13.
go back to reference Sintuyanon N, Phoolcharoen W, Pavasant P, Sooampon S. Resveratrol demonstrated higher antiproliferative and antiangiogenic efficacy compared with Oxyresveratrol on Head and Neck squamous cell Carcinoma Cell Lines. Nat Prod Commun. 2017;12(11):1781–4. Sintuyanon N, Phoolcharoen W, Pavasant P, Sooampon S. Resveratrol demonstrated higher antiproliferative and antiangiogenic efficacy compared with Oxyresveratrol on Head and Neck squamous cell Carcinoma Cell Lines. Nat Prod Commun. 2017;12(11):1781–4.
14.
go back to reference Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005;49(5):472–81.PubMedCrossRef Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005;49(5):472–81.PubMedCrossRef
15.
go back to reference Majumder PL, Sen RC. Moscatilin, a bibenzyl derivative from the orchid Dendrobium moscatum. Phytochem. 1987;26(7):2121–4.CrossRef Majumder PL, Sen RC. Moscatilin, a bibenzyl derivative from the orchid Dendrobium moscatum. Phytochem. 1987;26(7):2121–4.CrossRef
16.
go back to reference Roberti M, Pizzirani D, Simoni D, Rondanin R, Baruchello R, Bonora C, et al. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J Med Chem. 2003;46(16):3546–54.PubMedCrossRef Roberti M, Pizzirani D, Simoni D, Rondanin R, Baruchello R, Bonora C, et al. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J Med Chem. 2003;46(16):3546–54.PubMedCrossRef
17.
go back to reference Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules. 2020;10(8). Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules. 2020;10(8).
18.
go back to reference Pujari I, Thomas A, Thomas J, Jhawar N, Guruprasad KP, Rai PS, et al. Cytotoxicity and radiosensitizing potency of Moscatilin in cancer cells at low radiation doses of X-ray and UV-C. 3 Biotech. 2021;11(6):281.PubMedPubMedCentralCrossRef Pujari I, Thomas A, Thomas J, Jhawar N, Guruprasad KP, Rai PS, et al. Cytotoxicity and radiosensitizing potency of Moscatilin in cancer cells at low radiation doses of X-ray and UV-C. 3 Biotech. 2021;11(6):281.PubMedPubMedCentralCrossRef
19.
go back to reference Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.PubMedPubMedCentralCrossRef Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.PubMedPubMedCentralCrossRef
20.
go back to reference Rivas S, Gómez-Oro C, Antón IM, Wandosell F. Role of akt Isoforms Controlling Cancer Stem Cell Survival, phenotype and Self-Renewal. Biomedicines. 2018;6(1):29.PubMedPubMedCentralCrossRef Rivas S, Gómez-Oro C, Antón IM, Wandosell F. Role of akt Isoforms Controlling Cancer Stem Cell Survival, phenotype and Self-Renewal. Biomedicines. 2018;6(1):29.PubMedPubMedCentralCrossRef
21.
go back to reference Wang Z, Kang L, Zhang H, Huang Y, Fang L, Li M, et al. AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene. 2019;38(26):5250–64.PubMedCrossRef Wang Z, Kang L, Zhang H, Huang Y, Fang L, Li M, et al. AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene. 2019;38(26):5250–64.PubMedCrossRef
22.
go back to reference Chanvorachote P, Sriratanasak N, Nonpanya N. C-myc contributes to malignancy of Lung Cancer: a potential Anticancer Drug Target. Anticancer Res. 2020;40(2):609–18.PubMedCrossRef Chanvorachote P, Sriratanasak N, Nonpanya N. C-myc contributes to malignancy of Lung Cancer: a potential Anticancer Drug Target. Anticancer Res. 2020;40(2):609–18.PubMedCrossRef
23.
go back to reference Iksen PS, Pongrakhananon V. Targeting the PI3K/AKT/mTOR signaling pathway in Lung Cancer: an update regarding potential drugs and Natural Products. Molecules. 2021;26(13). Iksen PS, Pongrakhananon V. Targeting the PI3K/AKT/mTOR signaling pathway in Lung Cancer: an update regarding potential drugs and Natural Products. Molecules. 2021;26(13).
24.
go back to reference Thongsom S, Racha S, Ei ZZ, Petsri K, Aksorn N, Chamni S et al. N,N’-Diarylurea derivatives (CTPPU) inhibited NSCLC Cell Growth and Induced Cell Cycle arrest through Akt/GSK-3β/c-Myc signaling pathway. Int J Mol Sci. 2023;24(2). Thongsom S, Racha S, Ei ZZ, Petsri K, Aksorn N, Chamni S et al. N,N’-Diarylurea derivatives (CTPPU) inhibited NSCLC Cell Growth and Induced Cell Cycle arrest through Akt/GSK-3β/c-Myc signaling pathway. Int J Mol Sci. 2023;24(2).
25.
go back to reference Lapierre JM, Eathiraj S, Vensel D, Liu Y, Bull CO, Cornell-Kennon S, et al. Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): an orally bioavailable, selective, and potent allosteric AKT inhibitor. J Med Chem. 2016;59(13):6455–69.PubMedCrossRef Lapierre JM, Eathiraj S, Vensel D, Liu Y, Bull CO, Cornell-Kennon S, et al. Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): an orally bioavailable, selective, and potent allosteric AKT inhibitor. J Med Chem. 2016;59(13):6455–69.PubMedCrossRef
26.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.PubMedCrossRef
27.
go back to reference Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D95.PubMedCrossRef Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D95.PubMedCrossRef
28.
go back to reference Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, et al. Extended tight-binding quantum chemistry methods. Wiley Interdiscip Rev Comput Mol Sci. 2021;11(2):e1493.CrossRef Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, et al. Extended tight-binding quantum chemistry methods. Wiley Interdiscip Rev Comput Mol Sci. 2021;11(2):e1493.CrossRef
29.
go back to reference Bannwarth C, Ehlert S, Grimme S. GFN2-xTB-An Accurate and broadly parametrized self-consistent tight-binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J Chem Theory Comput. 2019;15(3):1652–71.PubMedCrossRef Bannwarth C, Ehlert S, Grimme S. GFN2-xTB-An Accurate and broadly parametrized self-consistent tight-binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J Chem Theory Comput. 2019;15(3):1652–71.PubMedCrossRef
30.
go back to reference Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–8.PubMedCrossRef Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–8.PubMedCrossRef
31.
go back to reference Suksamai D, Racha S, Sriratanasak N, Chaotham C, Aphicho K, Lin ACK, et al. 5-O-(N-Boc-l-Alanine)-Renieramycin T induces Cancer Stem Cell apoptosis via targeting akt signaling. Mar Drugs. 2022;20(4):235.PubMedPubMedCentralCrossRef Suksamai D, Racha S, Sriratanasak N, Chaotham C, Aphicho K, Lin ACK, et al. 5-O-(N-Boc-l-Alanine)-Renieramycin T induces Cancer Stem Cell apoptosis via targeting akt signaling. Mar Drugs. 2022;20(4):235.PubMedPubMedCentralCrossRef
32.
go back to reference Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the Accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696–713.PubMedPubMedCentralCrossRef Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the Accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696–713.PubMedPubMedCentralCrossRef
33.
go back to reference Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–74.PubMedCrossRef Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–74.PubMedCrossRef
34.
go back to reference Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23(16):1623–41.PubMedCrossRef Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem. 2002;23(16):1623–41.PubMedCrossRef
36.
go back to reference Miller BR 3rd, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state Free Energy Calculations. J Chem Theory Comput. 2012;8(9):3314–21. Miller BR 3rd, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state Free Energy Calculations. J Chem Theory Comput. 2012;8(9):3314–21.
37.
go back to reference Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.PubMedCrossRef Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.PubMedCrossRef
38.
go back to reference Arbusow BA. Michaelis-Arbusow- und Perkow-Reaktionen. Pure Appl Chem. 1964;9(2):307–36.CrossRef Arbusow BA. Michaelis-Arbusow- und Perkow-Reaktionen. Pure Appl Chem. 1964;9(2):307–36.CrossRef
39.
go back to reference Wadsworth WS, Emmons WD. The utility of Phosphonate Carbanions in Olefin Synthesis. J Am Chem Soc. 1961;83(7):1733–8.CrossRef Wadsworth WS, Emmons WD. The utility of Phosphonate Carbanions in Olefin Synthesis. J Am Chem Soc. 1961;83(7):1733–8.CrossRef
42.
go back to reference Boonyong C, Pattamadilok C, Suttisri R, Jianmongkol S. Benzophenones and xanthone derivatives from Garcinia schomburgkiana-induced P-glycoprotein overexpression in human colorectal Caco-2 cells via oxidative stress-mediated mechanisms. Phytomedicine. 2017;27:8–14.PubMedCrossRef Boonyong C, Pattamadilok C, Suttisri R, Jianmongkol S. Benzophenones and xanthone derivatives from Garcinia schomburgkiana-induced P-glycoprotein overexpression in human colorectal Caco-2 cells via oxidative stress-mediated mechanisms. Phytomedicine. 2017;27:8–14.PubMedCrossRef
43.
go back to reference Boonyong C, Vardhanabhuti N, Jianmongkol S. Natural polyphenols prevent indomethacin-induced and diclofenac-induced Caco-2 cell death by reducing endoplasmic reticulum stress regardless of their direct reactive oxygen species scavenging capacity. J Pharm Pharmacol. 2020;72(4):583–91.PubMedCrossRef Boonyong C, Vardhanabhuti N, Jianmongkol S. Natural polyphenols prevent indomethacin-induced and diclofenac-induced Caco-2 cell death by reducing endoplasmic reticulum stress regardless of their direct reactive oxygen species scavenging capacity. J Pharm Pharmacol. 2020;72(4):583–91.PubMedCrossRef
44.
go back to reference Gu S, Chen C, Jiang X, Zhang Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem Biol Interact. 2016;245:100–9.PubMedCrossRef Gu S, Chen C, Jiang X, Zhang Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem Biol Interact. 2016;245:100–9.PubMedCrossRef
45.
go back to reference Feng Y, Clayton J, Yake W, Li J, Wang W, Winne L, et al. Resveratrol Derivative, Trans-3, 5, 4’-Trimethoxystilbene sensitizes Osteosarcoma cells to apoptosis via ROS-Induced Caspases activation. Oxid Med Cell Longev. 2021;2021:8840692.PubMedPubMedCentralCrossRef Feng Y, Clayton J, Yake W, Li J, Wang W, Winne L, et al. Resveratrol Derivative, Trans-3, 5, 4’-Trimethoxystilbene sensitizes Osteosarcoma cells to apoptosis via ROS-Induced Caspases activation. Oxid Med Cell Longev. 2021;2021:8840692.PubMedPubMedCentralCrossRef
46.
go back to reference Tan Y, Chen B, Xu W, Zhao W, Wu J. Clinicopathological significance of CD133 in lung cancer: a meta-analysis. Mol Clin Oncol. 2014;2(1):111–5.PubMedCrossRef Tan Y, Chen B, Xu W, Zhao W, Wu J. Clinicopathological significance of CD133 in lung cancer: a meta-analysis. Mol Clin Oncol. 2014;2(1):111–5.PubMedCrossRef
47.
go back to reference Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504–14.PubMedCrossRef Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504–14.PubMedCrossRef
48.
go back to reference Zheng Y, Wang L, Yin L, Yao Z, Tong R, Xue J, et al. Lung Cancer Stem cell markers as therapeutic targets: an update on Signaling Pathways and Therapies. Front Oncol. 2022;12:873994.PubMedPubMedCentralCrossRef Zheng Y, Wang L, Yin L, Yao Z, Tong R, Xue J, et al. Lung Cancer Stem cell markers as therapeutic targets: an update on Signaling Pathways and Therapies. Front Oncol. 2022;12:873994.PubMedPubMedCentralCrossRef
49.
go back to reference Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61(10):3986–97.PubMed Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61(10):3986–97.PubMed
50.
go back to reference Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ. Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2002;1(12):989–97.PubMed Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ. Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2002;1(12):989–97.PubMed
51.
go back to reference Rehan M, Beg MA, Parveen S, Damanhouri GA, Zaher GF. Computational insights into the inhibitory mechanism of human AKT1 by an orally active inhibitor, MK-2206. PLoS ONE. 2014;9(10):e109705.PubMedPubMedCentralCrossRef Rehan M, Beg MA, Parveen S, Damanhouri GA, Zaher GF. Computational insights into the inhibitory mechanism of human AKT1 by an orally active inhibitor, MK-2206. PLoS ONE. 2014;9(10):e109705.PubMedPubMedCentralCrossRef
52.
go back to reference Herreros-Pomares A, de-Maya-Girones JD, Calabuig-Fariñas S, Lucas R, Martínez A, Pardo-Sánchez JM, et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 2019;10(9):660.PubMedPubMedCentralCrossRef Herreros-Pomares A, de-Maya-Girones JD, Calabuig-Fariñas S, Lucas R, Martínez A, Pardo-Sánchez JM, et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 2019;10(9):660.PubMedPubMedCentralCrossRef
54.
go back to reference Munshi A, Hobbs M, Meyn RE. Clonogenic cell survival assay. Methods Mol Med. 2005;110:21–8.PubMed Munshi A, Hobbs M, Meyn RE. Clonogenic cell survival assay. Methods Mol Med. 2005;110:21–8.PubMed
55.
go back to reference Chen CA, Chen CC, Shen CC, Chang HH, Chen YJ. Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J Med Food. 2013;16(10):869–77.PubMedPubMedCentralCrossRef Chen CA, Chen CC, Shen CC, Chang HH, Chen YJ. Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J Med Food. 2013;16(10):869–77.PubMedPubMedCentralCrossRef
56.
go back to reference Chen WK, Chen CA, Chi CW, Li LH, Lin CP, Shieh HR et al. Moscatilin inhibits growth of human esophageal Cancer xenograft and sensitizes Cancer cells to Radiotherapy. J Clin Med. 2019;8(2). Chen WK, Chen CA, Chi CW, Li LH, Lin CP, Shieh HR et al. Moscatilin inhibits growth of human esophageal Cancer xenograft and sensitizes Cancer cells to Radiotherapy. J Clin Med. 2019;8(2).
57.
go back to reference Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203.PubMedPubMedCentralCrossRef Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203.PubMedPubMedCentralCrossRef
58.
go back to reference Zhang L, Fang Y, Xu XF, Jin DY. Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway. Mol Med Rep. 2017;15(3):1195–203.PubMedPubMedCentralCrossRef Zhang L, Fang Y, Xu XF, Jin DY. Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway. Mol Med Rep. 2017;15(3):1195–203.PubMedPubMedCentralCrossRef
60.
go back to reference Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34.PubMedCrossRef Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34.PubMedCrossRef
61.
go back to reference Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013;110(17):6829–34.PubMedPubMedCentralCrossRef Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013;110(17):6829–34.PubMedPubMedCentralCrossRef
62.
go back to reference Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73.PubMedPubMedCentralCrossRef Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73.PubMedPubMedCentralCrossRef
63.
go back to reference McCubrey JA, Fitzgerald TL, Yang LV, Lertpiriyapong K, Steelman LS, Abrams SL, et al. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget. 2017;8(8):14221–50.PubMedCrossRef McCubrey JA, Fitzgerald TL, Yang LV, Lertpiriyapong K, Steelman LS, Abrams SL, et al. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget. 2017;8(8):14221–50.PubMedCrossRef
64.
go back to reference Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J. 1994;303(Pt 3):701–4. (Pt 3)(.PubMedPubMedCentralCrossRef Stambolic V, Woodgett JR. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J. 1994;303(Pt 3):701–4. (Pt 3)(.PubMedPubMedCentralCrossRef
65.
go back to reference Laurenti E, Wilson A, Trumpp A. Myc’s other life: stem cells and beyond. Curr Opin Cell Biol. 2009;21(6):844–54.PubMedCrossRef Laurenti E, Wilson A, Trumpp A. Myc’s other life: stem cells and beyond. Curr Opin Cell Biol. 2009;21(6):844–54.PubMedCrossRef
66.
go back to reference Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278(51):51606–12.PubMedCrossRef Gregory MA, Qi Y, Hann SR. Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem. 2003;278(51):51606–12.PubMedCrossRef
67.
go back to reference Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol. 2008;8(4):393–412.PubMedCrossRef Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol. 2008;8(4):393–412.PubMedCrossRef
Metadata
Title
Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway
Authors
Sunisa Thongsom
Satapat Racha
Korrakod Petsri
Zin Zin Ei
Kittichate Visuttijai
Sohsuke Moriue
Masashi Yokoya
Pithi Chanvorachote
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04016-6

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue