Skip to main content
Top
Published in: Lasers in Medical Science 1/2019

01-02-2019 | Original Article

Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition

Authors: Liying Wang, Fan Wu, Chen Liu, Yang Song, Jiawen Guo, Yanwei Yang, Yinong Qiu

Published in: Lasers in Medical Science | Issue 1/2019

Login to get access

Abstract

The aim of this in vitro study was to evaluate the effects of low-level laser therapy (LLLT) at different energy intensities on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under healthy and inflammatory microenvironments. Human BMSCs and BMSCs from inflammatory conditions (i-BMSCs, BMSCs treated with tumor necrosis factor α; TNF-α) were subject to LLLT (Nd:YAG;1064 nm) at different intensities. We designed one control group (without irradiation) and four testing groups (irradiation at 2, 4, 8, and 16 J/cm2) for both BMSCs and i-BMSCs. Cell proliferation was measured using colony-forming unit fibroblast assay and 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay. Osteogenic capacity of cells was determined by alkaline phosphatase (ALP) staining, ALP activity assay, Alizarin Red S staining and the mRNA transcript levels of genes runt-related transcription factor 2 (Runx2), ALP, and osteocalcin. Moreover, the effects of LLLT on secretion of TNF-α in BMSCs and i-BMSCs were measured by enzyme-linked immunosorbent assay. Our results demonstrated LLLT could significantly promote BMSC proliferation and osteogenesis at densities of 2 and 4 J/cm2. LLLT at density of 8 J/cm2 could promote the proliferation and osteogenesis of i-BMSCs. However, LLLT at 16 J/cm2 significantly suppressed the proliferation and osteogenesis of BMSCs both in healthy and in inflammatory microenvironment. Moreover, we also found that the expression of TNF-α was obviously inhibited by LLLT at 4, 8, and 16 J/cm2, in an inflammatory microenvironment. Considering these findings, LLLT could improve current in vitro methods of differentiating BMSCs under healthy and inflammatory microenvironments prior to transplantation.
Literature
1.
go back to reference Farre-Guasch E, Wolff J, Helder MN, Schulten EA, Forouzanfar T, Klein-Nulend J (2015) Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg 73(12):2408–2418CrossRefPubMed Farre-Guasch E, Wolff J, Helder MN, Schulten EA, Forouzanfar T, Klein-Nulend J (2015) Application of additive manufacturing in oral and maxillofacial surgery. J Oral Maxillofac Surg 73(12):2408–2418CrossRefPubMed
2.
go back to reference Martin AD, McCulloch RG (1987) Bone dynamics: stress, strain and fracture. J Sports Sci 5(2):155–163CrossRefPubMed Martin AD, McCulloch RG (1987) Bone dynamics: stress, strain and fracture. J Sports Sci 5(2):155–163CrossRefPubMed
3.
go back to reference Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746CrossRefPubMedPubMedCentral Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A (2011) Bone regeneration and stem cells. J Cell Mol Med 15(4):718–746CrossRefPubMedPubMedCentral
4.
go back to reference Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMed Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMed
5.
go back to reference Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884CrossRefPubMed Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884CrossRefPubMed
6.
go back to reference Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264CrossRefPubMed Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264CrossRefPubMed
7.
go back to reference Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21(5):610–619CrossRefPubMed Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21(5):610–619CrossRefPubMed
8.
go back to reference Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res (355 Suppl):S247–56 Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res (355 Suppl):S247–56
9.
go back to reference Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134CrossRefPubMed Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134CrossRefPubMed
10.
go back to reference Chen W, Zhou H, Weir MD, Bao C, Xu HH (2012) Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater 8(6):2297–2306CrossRefPubMedPubMedCentral Chen W, Zhou H, Weir MD, Bao C, Xu HH (2012) Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater 8(6):2297–2306CrossRefPubMedPubMedCentral
11.
go back to reference Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan D (2005) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698CrossRefPubMed Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Vunjak-Novakovic G, Kaplan D (2005) Silk implants for the healing of critical size bone defects. Bone 37(5):688–698CrossRefPubMed
12.
go back to reference Liu W, Konermann A, Guo T, Jäger A, Zhang L, Jin Y (2014) Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochim Biophys Acta 1840(3):1125–1134CrossRefPubMed Liu W, Konermann A, Guo T, Jäger A, Zhang L, Jin Y (2014) Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochim Biophys Acta 1840(3):1125–1134CrossRefPubMed
13.
go back to reference Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y (2016) Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein A-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cell Physiol Biochem 39(4):1347–1359CrossRefPubMed Cui Y, Lu S, Tan H, Li J, Zhu M, Xu Y (2016) Silencing of long non-coding RNA NONHSAT009968 ameliorates the staphylococcal protein A-inhibited osteogenic differentiation in human bone mesenchymal stem cells. Cell Physiol Biochem 39(4):1347–1359CrossRefPubMed
14.
go back to reference Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908CrossRefPubMed Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374(9705):1897–1908CrossRefPubMed
15.
go back to reference Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, Parizotto NA, Rennó AC (2005) Effects of low-level laser therapy on the expression of osteogenic genes related in the initial stages of bone defects in rats : a microarray analysis. Lasers Med Sci 30(9):2325–2333CrossRef Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, Parizotto NA, Rennó AC (2005) Effects of low-level laser therapy on the expression of osteogenic genes related in the initial stages of bone defects in rats : a microarray analysis. Lasers Med Sci 30(9):2325–2333CrossRef
16.
go back to reference Tim CR, Pinto KN, Rossi BR, Fernandes K, Matsumoto MA, Parizotto NA, Rennó AC (2014) Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci 29(1):147–156CrossRefPubMed Tim CR, Pinto KN, Rossi BR, Fernandes K, Matsumoto MA, Parizotto NA, Rennó AC (2014) Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci 29(1):147–156CrossRefPubMed
17.
go back to reference Fávaro-Pípi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, de Araújo HS, Renno AC (2011) Low-level laser therapy induces differential expression of osteogenic genes during bone repair in rats. Photomed Laser Surg 29(5):311–317CrossRefPubMed Fávaro-Pípi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, de Araújo HS, Renno AC (2011) Low-level laser therapy induces differential expression of osteogenic genes during bone repair in rats. Photomed Laser Surg 29(5):311–317CrossRefPubMed
18.
go back to reference Pinto KN, Tim CR, Crovace MC, Matsumoto MA, Parizotto NA, Zanotto ED, Peitl O, Rennó AC (2013) Effects of biosilicate scaffolds and low-level laser therapy on the process of bone healing. Photomed Laser Surg 31(6):252–260CrossRefPubMed Pinto KN, Tim CR, Crovace MC, Matsumoto MA, Parizotto NA, Zanotto ED, Peitl O, Rennó AC (2013) Effects of biosilicate scaffolds and low-level laser therapy on the process of bone healing. Photomed Laser Surg 31(6):252–260CrossRefPubMed
19.
go back to reference Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27(2):509–519CrossRefPubMed Wu YH, Wang J, Gong DX, Gu HY, Hu SS, Zhang H (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27(2):509–519CrossRefPubMed
20.
go back to reference Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthet Plast Surg 39(5):778–782CrossRef Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthet Plast Surg 39(5):778–782CrossRef
21.
go back to reference Pereira LO, Longo JP, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085CrossRefPubMed Pereira LO, Longo JP, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085CrossRefPubMed
22.
go back to reference Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27(2):423–430CrossRefPubMed Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27(2):423–430CrossRefPubMed
23.
go back to reference Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, Liu L, Jin Y (2011) High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Miner Res 26(9):2082–2095CrossRefPubMed Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, Liu L, Jin Y (2011) High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Miner Res 26(9):2082–2095CrossRefPubMed
24.
go back to reference Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl) 9(5):621–626 Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother (Berl) 9(5):621–626
25.
go back to reference Carroll JD, Milward MR, Cooperb PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30(5):465–475CrossRef Carroll JD, Milward MR, Cooperb PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30(5):465–475CrossRef
26.
go back to reference Bouvet-Gerbettaz S, Merigo E, Carle J-PRGF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297CrossRefPubMed Bouvet-Gerbettaz S, Merigo E, Carle J-PRGF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297CrossRefPubMed
27.
go back to reference Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5(2):58–62PubMedPubMedCentral Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5(2):58–62PubMedPubMedCentral
28.
go back to reference Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754CrossRef Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754CrossRef
29.
go back to reference Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L, Zheng C, Li D, Hou J, Taichman RS, Sun H (2015) Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res 94(3):455–463CrossRefPubMedPubMedCentral Li C, Shi C, Kim J, Chen Y, Ni S, Jiang L, Zheng C, Li D, Hou J, Taichman RS, Sun H (2015) Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res 94(3):455–463CrossRefPubMedPubMedCentral
Metadata
Title
Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition
Authors
Liying Wang
Fan Wu
Chen Liu
Yang Song
Jiawen Guo
Yanwei Yang
Yinong Qiu
Publication date
01-02-2019
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 1/2019
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2673-8

Other articles of this Issue 1/2019

Lasers in Medical Science 1/2019 Go to the issue