Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Liver Transplantation | Research

An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation

Authors: Yihan Zhang, Dong Yang, Zifeng Liu, Chaojin Chen, Mian Ge, Xiang Li, Tongsen Luo, Zhengdong Wu, Chenguang Shi, Bohan Wang, Xiaoshuai Huang, Xiaodong Zhang, Shaoli Zhou, Ziqing Hei

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Early prediction of acute kidney injury (AKI) after liver transplantation (LT) facilitates timely recognition and intervention. We aimed to build a risk predictor of post-LT AKI via supervised machine learning and visualize the mechanism driving within to assist clinical decision-making.

Methods

Data of 894 cases that underwent liver transplantation from January 2015 to September 2019 were collected, covering demographics, donor characteristics, etiology, peri-operative laboratory results, co-morbidities and medications. The primary outcome was new-onset AKI after LT according to Kidney Disease Improving Global Outcomes guidelines. Predicting performance of five classifiers including logistic regression, support vector machine, random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. Model with the best performance was validated in an independent dataset involving 195 adult LT cases from October 2019 to March 2021. SHapley Additive exPlanations (SHAP) method was applied to evaluate feature importance and explain the predictions made by ML algorithms.

Results

430 AKI cases (55.1%) were diagnosed out of 780 included cases. The GBM model achieved the highest AUC (0.76, CI 0.70 to 0.82), F1-score (0.73, CI 0.66 to 0.79) and sensitivity (0.74, CI 0.66 to 0.8) in the internal validation set, and a comparable AUC (0.75, CI 0.67 to 0.81) in the external validation set. High preoperative indirect bilirubin, low intraoperative urine output, long anesthesia time, low preoperative platelets, and graft steatosis graded NASH CRN 1 and above were revealed by SHAP method the top 5 important variables contributing to the diagnosis of post-LT AKI made by GBM model.

Conclusions

Our GBM-based predictor of post-LT AKI provides a highly interoperable tool across institutions to assist decision-making after LT.

Graphic abstract

Appendix
Available only for authorised users
Literature
3.
go back to reference Thongprayoon C, Kaewput W, Thamcharoen N, Bathini T, Watthanasuntorn K, Lertjitbanjong P, Sharma K, et al. Incidence and impact of acute kidney injury after liver transplantation: a meta-analysis. J Clin Med. 2019;8:372.CrossRef Thongprayoon C, Kaewput W, Thamcharoen N, Bathini T, Watthanasuntorn K, Lertjitbanjong P, Sharma K, et al. Incidence and impact of acute kidney injury after liver transplantation: a meta-analysis. J Clin Med. 2019;8:372.CrossRef
4.
go back to reference Xu Z, Luo Y, Adekkanattu P, Ancker JS, Jiang G, Kiefer RC, Pacheco JA, et al. Stratified mortality prediction of patients with acute kidney injury in critical care. Stud Health Technol Inform. 2019;264:462–6.PubMed Xu Z, Luo Y, Adekkanattu P, Ancker JS, Jiang G, Kiefer RC, Pacheco JA, et al. Stratified mortality prediction of patients with acute kidney injury in critical care. Stud Health Technol Inform. 2019;264:462–6.PubMed
5.
go back to reference Kalisvaart M, Schlegel A, Umbro I, de Haan JE, Polak WG, Jzermans JN, Mirza DF, et al. The AKI Prediction Score: a new prediction model for acute kidney injury after liver transplantation. HPB (Oxford). 2019;21:1707–17.CrossRef Kalisvaart M, Schlegel A, Umbro I, de Haan JE, Polak WG, Jzermans JN, Mirza DF, et al. The AKI Prediction Score: a new prediction model for acute kidney injury after liver transplantation. HPB (Oxford). 2019;21:1707–17.CrossRef
6.
go back to reference Zongyi Y, Baifeng L, Funian Z, Hao L, Xin W. Risk factors of acute kidney injury after orthotopic liver transplantation in China. Sci Rep. 2017;7:41555.CrossRef Zongyi Y, Baifeng L, Funian Z, Hao L, Xin W. Risk factors of acute kidney injury after orthotopic liver transplantation in China. Sci Rep. 2017;7:41555.CrossRef
7.
go back to reference Ren A, Li Z, Zhang X, Deng R, Ma Y. Optimal timing of initiating CRRT in patients with acute kidney injury after liver transplantation. Ann Transl Med. 2020;8:1361.CrossRef Ren A, Li Z, Zhang X, Deng R, Ma Y. Optimal timing of initiating CRRT in patients with acute kidney injury after liver transplantation. Ann Transl Med. 2020;8:1361.CrossRef
8.
go back to reference Gameiro J, Branco T, Lopes JA. Artificial intelligence in acute kidney injury risk prediction. J Clin Med. 2020;9:678.CrossRef Gameiro J, Branco T, Lopes JA. Artificial intelligence in acute kidney injury risk prediction. J Clin Med. 2020;9:678.CrossRef
9.
go back to reference Lee HC, Yoon SB, Yang SM, Kim WH, Ryu HG, Jung CW, Suh KS, et al. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs logistic regression model. J Clin Med. 2018;7:428.CrossRef Lee HC, Yoon SB, Yang SM, Kim WH, Ryu HG, Jung CW, Suh KS, et al. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs logistic regression model. J Clin Med. 2018;7:428.CrossRef
11.
go back to reference Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, Lipori G, et al. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery. Ann Surg. 2019;269:652–62.CrossRef Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, Lipori G, et al. MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery. Ann Surg. 2019;269:652–62.CrossRef
12.
go back to reference Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, Liston DE, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2:749–60.CrossRef Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, Liston DE, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2:749–60.CrossRef
13.
go back to reference Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine. Science. 2019;363:810–2.CrossRef Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine. Science. 2019;363:810–2.CrossRef
14.
go back to reference Cabitza F, Zeitoun JD. The proof of the pudding: in praise of a culture of real-world validation for medical artificial intelligence. Ann Transl Med. 2019;7:161.CrossRef Cabitza F, Zeitoun JD. The proof of the pudding: in praise of a culture of real-world validation for medical artificial intelligence. Ann Transl Med. 2019;7:161.CrossRef
15.
go back to reference Connor CW. Artificial intelligence and machine learning in anesthesiology. Anesthesiology. 2019;131:1346–59.CrossRef Connor CW. Artificial intelligence and machine learning in anesthesiology. Anesthesiology. 2019;131:1346–59.CrossRef
16.
go back to reference Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, et al. From local explanations to global understanding with explainable ai for trees. Nat Mach Intell. 2020;2:56–67.CrossRef Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, et al. From local explanations to global understanding with explainable ai for trees. Nat Mach Intell. 2020;2:56–67.CrossRef
17.
go back to reference Deshmukh F, Merchant SS. Explainable machine learning model for predicting GI bleed mortality in the Intensive Care Unit. Am J Gastroenterol. 2020;115:1657.CrossRef Deshmukh F, Merchant SS. Explainable machine learning model for predicting GI bleed mortality in the Intensive Care Unit. Am J Gastroenterol. 2020;115:1657.CrossRef
18.
go back to reference Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, Cai W, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25:433–8.CrossRef Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, Cai W, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25:433–8.CrossRef
19.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.CrossRef Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.CrossRef
20.
go back to reference Sharma P, Goodrich NP, Zhang M, Guidinger MK, Schaubel DE, Merion RM. Short-term pretransplant renal replacement therapy and renal nonrecovery after liver transplantation alone. Clin J Am Soc Nephrol. 2013;8:1135–42.CrossRef Sharma P, Goodrich NP, Zhang M, Guidinger MK, Schaubel DE, Merion RM. Short-term pretransplant renal replacement therapy and renal nonrecovery after liver transplantation alone. Clin J Am Soc Nephrol. 2013;8:1135–42.CrossRef
21.
go back to reference Wang H, Jiang W, Zhou Z, Long J, Li W, Fan ST. Liver transplantation in mainland China: the overview of CLTR 2011 annual scientific report. Hepatobiliary Surg Nutr. 2011;2013(2):188–97. Wang H, Jiang W, Zhou Z, Long J, Li W, Fan ST. Liver transplantation in mainland China: the overview of CLTR 2011 annual scientific report. Hepatobiliary Surg Nutr. 2011;2013(2):188–97.
22.
go back to reference Li DH, Wald R, Blum D, McArthur E, James MT, Burns KEA, Friedrich JO, et al. Predicting mortality among critically ill patients with acute kidney injury treated with renal replacement therapy: development and validation of new prediction models. J Crit Care. 2020;56:113–9.CrossRef Li DH, Wald R, Blum D, McArthur E, James MT, Burns KEA, Friedrich JO, et al. Predicting mortality among critically ill patients with acute kidney injury treated with renal replacement therapy: development and validation of new prediction models. J Crit Care. 2020;56:113–9.CrossRef
23.
go back to reference Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, Tolwani AJ, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2012;2013(61):649–72. Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, Tolwani AJ, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2012;2013(61):649–72.
25.
go back to reference Sanchez-Pinto LN, Khemani RG. Development of a prediction model of early acute kidney injury in critically ill children using electronic health record data. Pediatr Crit Care Med. 2016;17:508–15.CrossRef Sanchez-Pinto LN, Khemani RG. Development of a prediction model of early acute kidney injury in critically ill children using electronic health record data. Pediatr Crit Care Med. 2016;17:508–15.CrossRef
26.
go back to reference Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology. 2018;129:675–88.CrossRef Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology. 2018;129:675–88.CrossRef
27.
go back to reference Lei VJ, Luong T, Shan E, Chen X, Neuman MD, Eneanya ND, Polsky DE, et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA Netw Open. 2019;2:1916921.CrossRef Lei VJ, Luong T, Shan E, Chen X, Neuman MD, Eneanya ND, Polsky DE, et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA Netw Open. 2019;2:1916921.CrossRef
28.
go back to reference Tseng PY, Chen YT, Wang CH, Chiu KM, Peng YS, Hsu SP, Chen KL, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit Care. 2020;24:478.CrossRef Tseng PY, Chen YT, Wang CH, Chiu KM, Peng YS, Hsu SP, Chen KL, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit Care. 2020;24:478.CrossRef
29.
go back to reference Deshmukh F, Merchant SS. Explainable machine learning model for predicting gi bleed mortality in the Intensive Care Unit. Am J Gastroenterol. 2020;115:1657–68.CrossRef Deshmukh F, Merchant SS. Explainable machine learning model for predicting gi bleed mortality in the Intensive Care Unit. Am J Gastroenterol. 2020;115:1657–68.CrossRef
Metadata
Title
An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation
Authors
Yihan Zhang
Dong Yang
Zifeng Liu
Chaojin Chen
Mian Ge
Xiang Li
Tongsen Luo
Zhengdong Wu
Chenguang Shi
Bohan Wang
Xiaoshuai Huang
Xiaodong Zhang
Shaoli Zhou
Ziqing Hei
Publication date
01-12-2021

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine