Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2024

05-02-2024 | Lisinopril | Research

Fermented Rooibos tea (Aspalathus linearis) Ameliorates Sodium Fluoride-Induced Cardiorenal Toxicity, Oxidative Stress, and Inflammation via Modulation of NF-κB/IκB/IκKB Signaling Pathway in Wistar Rats

Authors: Olawale Razaq Ajuwon, Toyosi Abiodun Adeleke, Basiru Olaitan Ajiboye, Akeem Olalekan Lawal, Ibukun Folorunso, Bartholomew Brai, Fisayo Abraham Bamisaye, John Adeolu Falode, Ikenna Maximillian Odoh, Kabirat Iyabode Adegbite, Oluwasayo Bosede Adegoke

Published in: Cardiovascular Toxicology | Issue 3/2024

Login to get access

Abstract

High dose of fluoride intake is associated with toxic effects on kidney and cardiac tissues. This study evaluated the potential protective effect of fermented rooibos tea (RTE) on sodium fluoride (NaF)-induced cardiorenal toxicity in rats. Male Wistar rats (n = 56) were randomly allocated into one of seven equal groups: control, NaF (100 mg/kg orally), NaF + RTE (2%, w/v), NaF + RTE (4%, w/v), NaF + lisinopril (10 mg/kg orally), 2% RTE, and 4% RTE. The experiment lasted for 14 days and RTE was administered to the rats as their sole source of drinking fluid. NaF induced cardiorenal toxicity indicated by elevated level of urea, creatinine, LDH, creatinine kinase-MB, and cardiac troponin I in the serum, accompanied by altered histopathology of the kidney and heart. Furthermore, levels of H2O2, malondialdehyde, and NO were elevated, while GSH level was depleted in the kidney and heart due to NaF intoxication. Protein levels of c-reactive protein, TNFα, IL-1B, and NF-κB were increased by NaF in the serum, kidney, and heart. RTE at 2% and 4% (w/v) reversed cardiorenal toxicity, resolved histopathological impairment, attenuated oxidative stress and inhibited formation of pro-inflammatory markers. RTE at both concentrations down-regulates the mRNA expression of NF-κB, and upregulates the mRNA expression of both IκB and IκKB, thus blocking the activation of NF-κB signaling pathway. Taken together, these results clearly suggest that the protective potential of rooibos tea against NaF-induced cardiorenal toxicity, oxidative stress, and inflammation may be associated with the modulation of the NF-κB signaling pathway.
Literature
1.
go back to reference Balaha, M., Ahmed, N., Geddawy, A., & Kandeel, S. (2021). Fraxetin prevented sodium fluoride-induced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities. International Immunopharmacology, 93, 107372.PubMedCrossRef Balaha, M., Ahmed, N., Geddawy, A., & Kandeel, S. (2021). Fraxetin prevented sodium fluoride-induced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities. International Immunopharmacology, 93, 107372.PubMedCrossRef
2.
go back to reference Caballero, B., Trugo, L., & Finglas, P. (2003). Encyclopedia of food sciences and nutrition: Volumes 1–10. Encyclopedia of Food Sciences and Nutrition: Volumes 1–10., (Ed. 2) Caballero, B., Trugo, L., & Finglas, P. (2003). Encyclopedia of food sciences and nutrition: Volumes 1–10. Encyclopedia of Food Sciences and Nutrition: Volumes 1–10., (Ed. 2)
3.
go back to reference Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., Tri, D. Q., & Talaiekhozani, A. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182, 109362.PubMedCrossRef Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., Tri, D. Q., & Talaiekhozani, A. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182, 109362.PubMedCrossRef
4.
go back to reference Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50(11), 1116–1193.CrossRef Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50(11), 1116–1193.CrossRef
5.
go back to reference Oyagbemi, A. A., Omobowale, T. O., Ola-Davies, O. E., Asenuga, E. R., Ajibade, T. O., Adejumobi, O. A., Afolabi, J. M., Ogunpolu, B. S., Falayi, O. O., Saba, A. B., & Adedapo, A. A. (2018). Luteolin-mediated Kim-1/NF-kB/Nrf2 signalling pathways protects sodium fluoride- induced hypertension and cardiovascular complications. BioFactors, 44(6), 518–531.PubMedCrossRef Oyagbemi, A. A., Omobowale, T. O., Ola-Davies, O. E., Asenuga, E. R., Ajibade, T. O., Adejumobi, O. A., Afolabi, J. M., Ogunpolu, B. S., Falayi, O. O., Saba, A. B., & Adedapo, A. A. (2018). Luteolin-mediated Kim-1/NF-kB/Nrf2 signalling pathways protects sodium fluoride- induced hypertension and cardiovascular complications. BioFactors, 44(6), 518–531.PubMedCrossRef
6.
go back to reference Oyagbemi, A. A., Omobowale, T. O., Ola-Davies, O. E., Asenuga, E. R., Ajibade, T. O., Adejumobi, O. A., Afolabi, J. M., Ogunpolu, B. S., Falayi, O. O., Ayodeji, F., & Hassan, F. O. (2018). Ameliorative effect of rutin on sodium fluoride-induced hypertension through modulation of Kim-1/NF-κB/Nrf2 signalling pathway in rats. Environmental Toxicology. https://doi.org/10.1002/tox.22636CrossRefPubMed Oyagbemi, A. A., Omobowale, T. O., Ola-Davies, O. E., Asenuga, E. R., Ajibade, T. O., Adejumobi, O. A., Afolabi, J. M., Ogunpolu, B. S., Falayi, O. O., Ayodeji, F., & Hassan, F. O. (2018). Ameliorative effect of rutin on sodium fluoride-induced hypertension through modulation of Kim-1/NF-κB/Nrf2 signalling pathway in rats. Environmental Toxicology. https://​doi.​org/​10.​1002/​tox.​22636CrossRefPubMed
7.
go back to reference Sharma, P., Verma, P. K., Sood, S., Singh, M., & Verma, D. (2023). Impact of chronic sodium fluoride toxicity on antioxidant capacity, biochemical parameters, and histomorphology in cardiac, hepatic, and renal tissues of Wistar rats. Biological Trace Element Research, 201(1), 229–241.PubMedCrossRef Sharma, P., Verma, P. K., Sood, S., Singh, M., & Verma, D. (2023). Impact of chronic sodium fluoride toxicity on antioxidant capacity, biochemical parameters, and histomorphology in cardiac, hepatic, and renal tissues of Wistar rats. Biological Trace Element Research, 201(1), 229–241.PubMedCrossRef
8.
go back to reference Luo, Q., Cui, H., Deng, H., Kuang, P., Liu, H., Lu, Y., Fang, J., Zuo, Z., Deng, J., Li, Y., & Wang, X. (2017). Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget, 8(31), 50430–50446.PubMedPubMedCentralCrossRef Luo, Q., Cui, H., Deng, H., Kuang, P., Liu, H., Lu, Y., Fang, J., Zuo, Z., Deng, J., Li, Y., & Wang, X. (2017). Histopathological findings of renal tissue induced by oxidative stress due to different concentrations of fluoride. Oncotarget, 8(31), 50430–50446.PubMedPubMedCentralCrossRef
9.
go back to reference Kazory, A., & Ronco, C. (2019). Hepatorenal syndrome or hepatocardiorenal syndrome: Revisiting basic concepts in view of emerging data. Cardiorenal Medicine, 9(1), 1–7.PubMedCrossRef Kazory, A., & Ronco, C. (2019). Hepatorenal syndrome or hepatocardiorenal syndrome: Revisiting basic concepts in view of emerging data. Cardiorenal Medicine, 9(1), 1–7.PubMedCrossRef
10.
go back to reference Basha, M. P., & Sujitha, N. S. (2011). Chronic fluoride toxicity and myocardial damage: Antioxidant offered protection in second generation rats. Toxicology International, 18(2), 99–104.PubMedPubMedCentralCrossRef Basha, M. P., & Sujitha, N. S. (2011). Chronic fluoride toxicity and myocardial damage: Antioxidant offered protection in second generation rats. Toxicology International, 18(2), 99–104.PubMedPubMedCentralCrossRef
11.
go back to reference Ameeramja, J., Panneerselvam, L., Govindarajan, V., Jeyachandran, S., Baskaralingam, V., & Perumal, E. (2016). Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. Journal of Hazardous Materials, 301, 554–565.PubMedCrossRef Ameeramja, J., Panneerselvam, L., Govindarajan, V., Jeyachandran, S., Baskaralingam, V., & Perumal, E. (2016). Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. Journal of Hazardous Materials, 301, 554–565.PubMedCrossRef
12.
go back to reference Li, W., Jiang, B., Cao, X., Xie, Y., & Huang, T. (2017). Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated caspase pathways. Chemico-Biological Interactions, 261, 27–34.PubMedCrossRef Li, W., Jiang, B., Cao, X., Xie, Y., & Huang, T. (2017). Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated caspase pathways. Chemico-Biological Interactions, 261, 27–34.PubMedCrossRef
13.
go back to reference Angwa, L. M., Jiang, Y., Pei, J., & Sun, D. (2022). Antioxidant phytochemicals for the prevention of fluoride-induced oxidative stress and apoptosis: A review. Biological Trace Element Research, 200(3), 1418–1441.PubMedCrossRef Angwa, L. M., Jiang, Y., Pei, J., & Sun, D. (2022). Antioxidant phytochemicals for the prevention of fluoride-induced oxidative stress and apoptosis: A review. Biological Trace Element Research, 200(3), 1418–1441.PubMedCrossRef
14.
go back to reference Lu, Y., Luo, Q., Cui, H., Deng, H., Kuang, P., Liu, H., Fang, J., Zuo, Z., Deng, J., Li, Y., & Wang, X. (2017). Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY), 9(6), 1623–1639.PubMedCrossRef Lu, Y., Luo, Q., Cui, H., Deng, H., Kuang, P., Liu, H., Fang, J., Zuo, Z., Deng, J., Li, Y., & Wang, X. (2017). Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging (Albany NY), 9(6), 1623–1639.PubMedCrossRef
15.
go back to reference Ailani, V., Gupta, R. C., Gupta, S. K., & Gupta, K. (2009). Oxidative stress in cases of chronic fluoride intoxication. Indian Journal of Clinical Biochemistry, 24(4), 426–429.PubMedPubMedCentralCrossRef Ailani, V., Gupta, R. C., Gupta, S. K., & Gupta, K. (2009). Oxidative stress in cases of chronic fluoride intoxication. Indian Journal of Clinical Biochemistry, 24(4), 426–429.PubMedPubMedCentralCrossRef
16.
go back to reference Shivarajashankara, Y. M., Shivashankara, A. R., Hanumanth Rao, S., & Gopalakrishna, B. P. (2001). Oxidative stress in children with endemic skeletal fluorosis. Fluoride, 34(2), 103–107. Shivarajashankara, Y. M., Shivashankara, A. R., Hanumanth Rao, S., & Gopalakrishna, B. P. (2001). Oxidative stress in children with endemic skeletal fluorosis. Fluoride, 34(2), 103–107.
17.
go back to reference Song, C., Heping, H., Shen, Y., Jin, S., Li, D., Zhang, A., Ren, X., Wang, K., Zhang, L., Wang, J., & Shi, D. (2020). AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. Chemosphere, 244, 125495.PubMedCrossRef Song, C., Heping, H., Shen, Y., Jin, S., Li, D., Zhang, A., Ren, X., Wang, K., Zhang, L., Wang, J., & Shi, D. (2020). AMPK/p38/Nrf2 activation as a protective feedback to restrain oxidative stress and inflammation in microglia stimulated with sodium fluoride. Chemosphere, 244, 125495.PubMedCrossRef
18.
go back to reference Ajuwon, O. R., Marnewick, J. L., Oguntibeju, O. O., & Davids, L. M. (2022). Red palm oil ameliorates oxidative challenge and inflammatory responses associated with lipopolysaccharide-induced hepatic injury by modulating NF-κB and Nrf2/GCL/HO-1 signaling pathways in rats. Antioxidants, 11(8), 1629.PubMedPubMedCentralCrossRef Ajuwon, O. R., Marnewick, J. L., Oguntibeju, O. O., & Davids, L. M. (2022). Red palm oil ameliorates oxidative challenge and inflammatory responses associated with lipopolysaccharide-induced hepatic injury by modulating NF-κB and Nrf2/GCL/HO-1 signaling pathways in rats. Antioxidants, 11(8), 1629.PubMedPubMedCentralCrossRef
19.
go back to reference Oyagbemi, A. A., Adejumobi, O. A., Jarikre, T. A., Ajani, O. S., Asenuga, E. R., Gbadamosi, I. T., Adedapo, A. D. A., Aro, A. O., Ogunpolu, B. S., Hassan, F. O., & Falayi, O. O. (2022). Clofibrate, a peroxisome proliferator–activated receptor-alpha (PPARα) agonist, and its molecular mechanisms of action against sodium fluoride–induced toxicity. Biological Trace Element Research, 200(3), 1220–1236.PubMedCrossRef Oyagbemi, A. A., Adejumobi, O. A., Jarikre, T. A., Ajani, O. S., Asenuga, E. R., Gbadamosi, I. T., Adedapo, A. D. A., Aro, A. O., Ogunpolu, B. S., Hassan, F. O., & Falayi, O. O. (2022). Clofibrate, a peroxisome proliferator–activated receptor-alpha (PPARα) agonist, and its molecular mechanisms of action against sodium fluoride–induced toxicity. Biological Trace Element Research, 200(3), 1220–1236.PubMedCrossRef
20.
go back to reference Caglayan, C., Kandemir, F. M., Darendelioğlu, E., Küçükler, S., & Ayna, A. (2021). Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sciences, 281, 119730.PubMedCrossRef Caglayan, C., Kandemir, F. M., Darendelioğlu, E., Küçükler, S., & Ayna, A. (2021). Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sciences, 281, 119730.PubMedCrossRef
21.
go back to reference Ridley, W., & Matsuoka, M. (2009). Fluoride-induced cyclooxygenase-2 expression and prostaglandin E2 production in A549 human pulmonary epithelial cells. Toxicology Letters, 188(3), 180–185.PubMedCrossRef Ridley, W., & Matsuoka, M. (2009). Fluoride-induced cyclooxygenase-2 expression and prostaglandin E2 production in A549 human pulmonary epithelial cells. Toxicology Letters, 188(3), 180–185.PubMedCrossRef
22.
go back to reference Saber, T. M., Mansour, M. F., Abdelaziz, A. S., Mohamed, R. M. S., Fouad, R. A., & Arisha, A. H. (2020). Argan oil ameliorates sodium fluoride–induced renal damage via inhibiting oxidative damage, inflammation, and intermediate filament protein expression in male rats. Environmental Science and Pollution Research, 27, 30426–30436.PubMedCrossRef Saber, T. M., Mansour, M. F., Abdelaziz, A. S., Mohamed, R. M. S., Fouad, R. A., & Arisha, A. H. (2020). Argan oil ameliorates sodium fluoride–induced renal damage via inhibiting oxidative damage, inflammation, and intermediate filament protein expression in male rats. Environmental Science and Pollution Research, 27, 30426–30436.PubMedCrossRef
23.
go back to reference Wei, R., Luo, G., Sun, Z., Wang, S., & Wang, J. (2016). Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice. Chemosphere, 153, 419–425.PubMedCrossRefADS Wei, R., Luo, G., Sun, Z., Wang, S., & Wang, J. (2016). Chronic fluoride exposure-induced testicular toxicity is associated with inflammatory response in mice. Chemosphere, 153, 419–425.PubMedCrossRefADS
24.
go back to reference Joubert, E., & de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African Journal of Botany, 77(4), 869–886.CrossRef Joubert, E., & de Beer, D. (2011). Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African Journal of Botany, 77(4), 869–886.CrossRef
25.
go back to reference Stander, M. A., Joubert, E., & De Beer, D. (2019). Revisiting the caffeine-free status of rooibos and honeybush herbal teas using specific MRM and high-resolution LC-MS methods. Journal of Food Composition and Analysis, 76, 39–43.CrossRef Stander, M. A., Joubert, E., & De Beer, D. (2019). Revisiting the caffeine-free status of rooibos and honeybush herbal teas using specific MRM and high-resolution LC-MS methods. Journal of Food Composition and Analysis, 76, 39–43.CrossRef
26.
go back to reference Shimamura, N., Miyase, T., Umehara, K., Warashina, T., & Fujii, S. (2006). Phytoestrogens from Aspalathus linearis. Biological and Pharmaceutical Bulletin, 29, 1271–1274.PubMedCrossRef Shimamura, N., Miyase, T., Umehara, K., Warashina, T., & Fujii, S. (2006). Phytoestrogens from Aspalathus linearis. Biological and Pharmaceutical Bulletin, 29, 1271–1274.PubMedCrossRef
27.
go back to reference Ajuwon, O. R., Ayeleso, A. O., & Adefolaju, G. A. (2018). The potential of South African herbal tisanes, rooibos and honeybush in the management of type 2 diabetes mellitus. Molecules, 23(12), 3207.PubMedPubMedCentralCrossRef Ajuwon, O. R., Ayeleso, A. O., & Adefolaju, G. A. (2018). The potential of South African herbal tisanes, rooibos and honeybush in the management of type 2 diabetes mellitus. Molecules, 23(12), 3207.PubMedPubMedCentralCrossRef
28.
go back to reference Joubert, E., Gelderblom, W., & De Beer, D. (2009). Phenolic contribution of South African herbal teas to a healthy diet. Natural Product Communication, 4, 701–718.CrossRef Joubert, E., Gelderblom, W., & De Beer, D. (2009). Phenolic contribution of South African herbal teas to a healthy diet. Natural Product Communication, 4, 701–718.CrossRef
29.
go back to reference Marnewick, J. L. (2010). Rooibos and honeybush: Recent advances in chemistry, biological activity and pharmacognosy. In H. Juliani, J. E. Simon, & C. T. Ho (Eds.), African natural plants products New discoveries and challenges in chemistry and quality (ACS Symposium Series) (pp. 277–294). American Chemical Society.CrossRef Marnewick, J. L. (2010). Rooibos and honeybush: Recent advances in chemistry, biological activity and pharmacognosy. In H. Juliani, J. E. Simon, & C. T. Ho (Eds.), African natural plants products New discoveries and challenges in chemistry and quality (ACS Symposium Series) (pp. 277–294). American Chemical Society.CrossRef
30.
go back to reference Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O., & Marnewick, J. L. (2011). The effect of rooibos (Aspalathus linearis) supplementation on tert-butylhydroperoxide-induced oxidative damage in liver and kidney of rats. Free Radical Biology and Medicine, 51, S81–S82.CrossRef Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O., & Marnewick, J. L. (2011). The effect of rooibos (Aspalathus linearis) supplementation on tert-butylhydroperoxide-induced oxidative damage in liver and kidney of rats. Free Radical Biology and Medicine, 51, S81–S82.CrossRef
31.
go back to reference Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O. O., & Marnewick, J. (2013). Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats. Evidence-Based Complementary and Alternative Medicine, 2013, 984273.PubMedPubMedCentralCrossRef Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O. O., & Marnewick, J. (2013). Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats. Evidence-Based Complementary and Alternative Medicine, 2013, 984273.PubMedPubMedCentralCrossRef
32.
go back to reference Awoniyi, D. O., Aboua, Y. G., Marnewick, J., & Brooks, N. (2012). The effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phytotherapy Research, 26, 1231–1239.PubMedCrossRef Awoniyi, D. O., Aboua, Y. G., Marnewick, J., & Brooks, N. (2012). The effects of rooibos (Aspalathus linearis), green tea (Camellia sinensis) and commercial rooibos and green tea supplements on epididymal sperm in oxidative stress-induced rats. Phytotherapy Research, 26, 1231–1239.PubMedCrossRef
33.
go back to reference Lawal, A. O., Oluyede, D. M., Adebimpe, M. O., Olumegbon, L. T., Awolaja, O. O., Elekofehinti, O. O., & Crown, O. O. (2019). The cardiovascular protective effects of rooibos (Aspalathus linearis) extract on diesel exhaust particles induced inflammation and oxidative stress involve NF-κB-and Nrf2-dependent pathways modulation. Heliyon, 5(3), e01426.PubMedPubMedCentralCrossRef Lawal, A. O., Oluyede, D. M., Adebimpe, M. O., Olumegbon, L. T., Awolaja, O. O., Elekofehinti, O. O., & Crown, O. O. (2019). The cardiovascular protective effects of rooibos (Aspalathus linearis) extract on diesel exhaust particles induced inflammation and oxidative stress involve NF-κB-and Nrf2-dependent pathways modulation. Heliyon, 5(3), e01426.PubMedPubMedCentralCrossRef
34.
go back to reference Pantsi, W. G., Marnewick, J. L., Esterhuyse, A. J., Rautenbach, F., & Van Rooyen, J. (2011). Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine, 18(14), 1220–1228.PubMedCrossRef Pantsi, W. G., Marnewick, J. L., Esterhuyse, A. J., Rautenbach, F., & Van Rooyen, J. (2011). Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine, 18(14), 1220–1228.PubMedCrossRef
35.
go back to reference Marnewick, J. L., Rautenbach, F., Venter, I., Neethling, H., Blackhurst, D. M., Wolmarans, P., & Macharia, M. (2011). Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. Journal of Ethnopharmacology, 133, 46–52.PubMedCrossRef Marnewick, J. L., Rautenbach, F., Venter, I., Neethling, H., Blackhurst, D. M., Wolmarans, P., & Macharia, M. (2011). Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. Journal of Ethnopharmacology, 133, 46–52.PubMedCrossRef
36.
go back to reference Lawal, A. O., Davids, L. M., & Marnewick, J. L. (2019). Rooibos (Aspalathus linearis) and honeybush (Cyclopia species) modulate the oxidative stress associated injury of diesel exhaust particles in human umbilical vein endothelial cells. Phytomedicine, 59, 152898.PubMedCrossRef Lawal, A. O., Davids, L. M., & Marnewick, J. L. (2019). Rooibos (Aspalathus linearis) and honeybush (Cyclopia species) modulate the oxidative stress associated injury of diesel exhaust particles in human umbilical vein endothelial cells. Phytomedicine, 59, 152898.PubMedCrossRef
37.
go back to reference Mueller, M., Hobiger, S., & Jungbauer, A. (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food chemistry, 122(4), 987–996.CrossRef Mueller, M., Hobiger, S., & Jungbauer, A. (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food chemistry, 122(4), 987–996.CrossRef
38.
go back to reference Ajuwon, O. R., Oguntibeju, O. O., & Marnewick, J. L. (2014). Amelioration of lipopolysac- charide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via in- hibition of pro-inflammatory cytokines and oxidative stress. BMC Complementary and Alternative Medicine, 14, 392.PubMedPubMedCentralCrossRef Ajuwon, O. R., Oguntibeju, O. O., & Marnewick, J. L. (2014). Amelioration of lipopolysac- charide-induced liver injury by aqueous rooibos (Aspalathus linearis) extract via in- hibition of pro-inflammatory cytokines and oxidative stress. BMC Complementary and Alternative Medicine, 14, 392.PubMedPubMedCentralCrossRef
39.
go back to reference Lawal, A. O., & Elekofehinti, O. O. (2019). Real time-quantitative polymerase chain reaction analysis of the anti-inflammatory effect of aqueous rooibos (Aspalathus linearis) extract on diesel exhaust particles-induced hepatic inflammation. Ife Journal of Science, 21(1), 175–186.CrossRef Lawal, A. O., & Elekofehinti, O. O. (2019). Real time-quantitative polymerase chain reaction analysis of the anti-inflammatory effect of aqueous rooibos (Aspalathus linearis) extract on diesel exhaust particles-induced hepatic inflammation. Ife Journal of Science, 21(1), 175–186.CrossRef
40.
go back to reference Marnewick, J. L., Joubert, E., Swart, P., van der Westhuizen, F., & Gelderblom, W. C. (2003). Modulation of hepatic drug metabolizing enzymes and oxidative status by rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), green and black (Camellia sinensis) teas in rats. Journal of Agricultural and Food Chemistry, 51, 8113–8119.PubMedCrossRef Marnewick, J. L., Joubert, E., Swart, P., van der Westhuizen, F., & Gelderblom, W. C. (2003). Modulation of hepatic drug metabolizing enzymes and oxidative status by rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), green and black (Camellia sinensis) teas in rats. Journal of Agricultural and Food Chemistry, 51, 8113–8119.PubMedCrossRef
41.
go back to reference Chinoy, N. J. (1991). Effects of fluoride on physiology of animals and human beings. Indian Journal of Environmental Toxicology, 1(1), 17–32. Chinoy, N. J. (1991). Effects of fluoride on physiology of animals and human beings. Indian Journal of Environmental Toxicology, 1(1), 17–32.
42.
go back to reference Drury, R. A. B., Wallington, E. A., & Cameron, R. (1976). General staining procedure In Carlenton’s Histological technique. Oxford University Press. Drury, R. A. B., Wallington, E. A., & Cameron, R. (1976). General staining procedure In Carlenton’s Histological technique. Oxford University Press.
43.
go back to reference Jun, L., Bo, L., & Langlai, X. (2000). An improved method for the determination of hydrogen peroxide in leaves. Sheng wu hua xue yu Sheng wu wu li jin Zhan, 27(5), 548–551. Jun, L., Bo, L., & Langlai, X. (2000). An improved method for the determination of hydrogen peroxide in leaves. Sheng wu hua xue yu Sheng wu wu li jin Zhan, 27(5), 548–551.
44.
go back to reference Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.PubMedCrossRef Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.PubMedCrossRef
45.
go back to reference Boyne, A. F., & Ellman, G. L. (1972). A methodology for analysis of tissue sulfhydryl components. Analytical. Biochemistry, 46(2), 639–653.PubMedCrossRef Boyne, A. F., & Ellman, G. L. (1972). A methodology for analysis of tissue sulfhydryl components. Analytical. Biochemistry, 46(2), 639–653.PubMedCrossRef
46.
go back to reference Tsikas, D. (2005). Review Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radical Research, 39(8), 797–815.PubMedCrossRef Tsikas, D. (2005). Review Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radical Research, 39(8), 797–815.PubMedCrossRef
47.
go back to reference Malin, A. J., Lesseur, C., Busgang, S. A., Curtin, P., Wright, R. O., & Sanders, A. P. (2019). Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environment International, 132, 105012.PubMedPubMedCentralCrossRef Malin, A. J., Lesseur, C., Busgang, S. A., Curtin, P., Wright, R. O., & Sanders, A. P. (2019). Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environment International, 132, 105012.PubMedPubMedCentralCrossRef
48.
go back to reference Adelakun, S. A., Ogunlade, B., Fidelis, O. P., & Adedotun, O. A. (2022). Cyperus esculentus suppresses hepato-renal oxidative stress, inflammation, and caspase-3 activation following chronic exposure to sodium fluoride in rats’ model. Phytomedicine Plus, 2(1), 100163.CrossRef Adelakun, S. A., Ogunlade, B., Fidelis, O. P., & Adedotun, O. A. (2022). Cyperus esculentus suppresses hepato-renal oxidative stress, inflammation, and caspase-3 activation following chronic exposure to sodium fluoride in rats’ model. Phytomedicine Plus, 2(1), 100163.CrossRef
49.
go back to reference Oyagbemi, A. A., Omobowale, T. O., Asenuga, E. R., Adejumobi, A. O., Ajibade, T. O., Ige, T. M., Ogunpolu, B. S., Adedapo, A. A., & Yakubu, M. A. (2017). Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. Environmental Toxicology, 32(4), 1089–1101.PubMedCrossRefADS Oyagbemi, A. A., Omobowale, T. O., Asenuga, E. R., Adejumobi, A. O., Ajibade, T. O., Ige, T. M., Ogunpolu, B. S., Adedapo, A. A., & Yakubu, M. A. (2017). Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. Environmental Toxicology, 32(4), 1089–1101.PubMedCrossRefADS
50.
go back to reference Vani, M., & L, & Reddy K. P. (2000). Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice. Fluoride, 33, 17–27. Vani, M., & L, & Reddy K. P. (2000). Effects of fluoride accumulation on some enzymes of brain and gastrocnemius muscle of mice. Fluoride, 33, 17–27.
51.
go back to reference Khan, M. U., Basist, P., Zahiruddin, S., Penumallu, N. R., & Ahmad, S. (2024). Ameliorative effect of traditional polyherbal formulation on TNF-α, IL-1β and Caspase-3 expression in kidneys of wistar rats against sodium fluoride induced oxidative stress. Journal of Ethnopharmacology, 318, 116900.PubMedCrossRef Khan, M. U., Basist, P., Zahiruddin, S., Penumallu, N. R., & Ahmad, S. (2024). Ameliorative effect of traditional polyherbal formulation on TNF-α, IL-1β and Caspase-3 expression in kidneys of wistar rats against sodium fluoride induced oxidative stress. Journal of Ethnopharmacology, 318, 116900.PubMedCrossRef
52.
go back to reference Adali, M. K., Varol, E., Aksoy, F., Icli, A., Ersoy, I. H., Ozaydin, M., Erdogan, D., & Dogan, A. (2013). Impaired heart rate recovery in patients with endemic fluorosis. Biological Trace Element Research, 152, 310–315.PubMedCrossRef Adali, M. K., Varol, E., Aksoy, F., Icli, A., Ersoy, I. H., Ozaydin, M., Erdogan, D., & Dogan, A. (2013). Impaired heart rate recovery in patients with endemic fluorosis. Biological Trace Element Research, 152, 310–315.PubMedCrossRef
53.
go back to reference Parveen, A., Babbar, R., Agarwal, S., Kotwani, A., & Fahim, M. (2011). Mechanistic clues in the cardioprotective effect of Terminalia arjuna bark extract in isoproterenol-induced chronic heart failure in rats. Cardiovascular Toxicology, 11, 48–57.PubMedCrossRef Parveen, A., Babbar, R., Agarwal, S., Kotwani, A., & Fahim, M. (2011). Mechanistic clues in the cardioprotective effect of Terminalia arjuna bark extract in isoproterenol-induced chronic heart failure in rats. Cardiovascular Toxicology, 11, 48–57.PubMedCrossRef
54.
go back to reference Srivastava, S., & Flora, S. J. S. (2020). Fluoride in drinking water and skeletal fluorosis: A review of the global impact. Current Environmental Health Report, 7, 140–146.CrossRef Srivastava, S., & Flora, S. J. S. (2020). Fluoride in drinking water and skeletal fluorosis: A review of the global impact. Current Environmental Health Report, 7, 140–146.CrossRef
55.
go back to reference Egger, M., Dieplinger, B., & Mueller, T. (2017). One-year in vitro stability of cardiac troponins and galectin-3 in different sample types. Clinica Chimica Acta, 476, 117–122.CrossRef Egger, M., Dieplinger, B., & Mueller, T. (2017). One-year in vitro stability of cardiac troponins and galectin-3 in different sample types. Clinica Chimica Acta, 476, 117–122.CrossRef
56.
go back to reference Bartnicki, M., Łyp, P., Dębiak, P., Staniec, M., Winiarczyk, S., Buczek, K., & Adaszek, L. (2017). Cardiac disorders in dogs infected with Babesia canis. Polish Journal of Veterinary Science, 20, 573–581.CrossRef Bartnicki, M., Łyp, P., Dębiak, P., Staniec, M., Winiarczyk, S., Buczek, K., & Adaszek, L. (2017). Cardiac disorders in dogs infected with Babesia canis. Polish Journal of Veterinary Science, 20, 573–581.CrossRef
57.
go back to reference Dludla, P. V., Johnson, R., Mazibuko-Mbeje, S. E., Muller, C. J., Louw, J., Joubert, E., Orlando, P., Silvestri, S., Chellan, N., Nkambule, B. B., & Essop, M. F. (2020). Fermented rooibos extract attenuates hyperglycemia-induced myocardial oxidative damage by improving mitochondrial energetics and intracellular antioxidant capacity. South African Journal of Botany, 131, 143–150.CrossRef Dludla, P. V., Johnson, R., Mazibuko-Mbeje, S. E., Muller, C. J., Louw, J., Joubert, E., Orlando, P., Silvestri, S., Chellan, N., Nkambule, B. B., & Essop, M. F. (2020). Fermented rooibos extract attenuates hyperglycemia-induced myocardial oxidative damage by improving mitochondrial energetics and intracellular antioxidant capacity. South African Journal of Botany, 131, 143–150.CrossRef
58.
go back to reference Smith, J. F., & Hardie, A. G. (2022). Determination of foliar nutrient sufficiency ranges in cultivated rooibos tea using the boundary line approach. South African Journal of Plant and Soil, 39(3), 226–233.CrossRef Smith, J. F., & Hardie, A. G. (2022). Determination of foliar nutrient sufficiency ranges in cultivated rooibos tea using the boundary line approach. South African Journal of Plant and Soil, 39(3), 226–233.CrossRef
59.
go back to reference Akinrinde, A. S., Soetan, K. O., & Tijani, M. O. (2022). Exacerbation of diclofenac-induced gastroenterohepatic damage by concomitant exposure to sodium fluoride in rats: Protective role of luteolin. Drug and Chemical Toxicology, 45(3), 999–1011.PubMedCrossRef Akinrinde, A. S., Soetan, K. O., & Tijani, M. O. (2022). Exacerbation of diclofenac-induced gastroenterohepatic damage by concomitant exposure to sodium fluoride in rats: Protective role of luteolin. Drug and Chemical Toxicology, 45(3), 999–1011.PubMedCrossRef
60.
go back to reference Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057–1073.PubMedPubMedCentralCrossRef Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057–1073.PubMedPubMedCentralCrossRef
61.
go back to reference Varışlı, B., Darendelioğlu, E., Caglayan, C., Kandemir, F. M., Ayna, A., Genç, A., & Kandemir, Ö. (2022). Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-Induced cardiotoxicity in rats. Cardiovascular Toxicology, 22(8), 727–735.PubMedCrossRef Varışlı, B., Darendelioğlu, E., Caglayan, C., Kandemir, F. M., Ayna, A., Genç, A., & Kandemir, Ö. (2022). Hesperidin attenuates oxidative stress, inflammation, apoptosis, and cardiac dysfunction in sodium fluoride-Induced cardiotoxicity in rats. Cardiovascular Toxicology, 22(8), 727–735.PubMedCrossRef
62.
go back to reference McGarry, T., Biniecka, M., Veale, D. J., & Fearon, U. (2018). Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 125, 15–24.PubMedCrossRef McGarry, T., Biniecka, M., Veale, D. J., & Fearon, U. (2018). Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 125, 15–24.PubMedCrossRef
63.
go back to reference Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9(2), 119.PubMedPubMedCentralCrossRef Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9(2), 119.PubMedPubMedCentralCrossRef
64.
go back to reference Mosquera-Sulbaran, J. A., Pedreañez, A., Carrero, Y., & Callejas, D. (2021). C-reactive protein as an effector molecule in Covid-19 pathogenesis. Reviews in Medical Virology, 31(6), e2221.PubMedPubMedCentralCrossRef Mosquera-Sulbaran, J. A., Pedreañez, A., Carrero, Y., & Callejas, D. (2021). C-reactive protein as an effector molecule in Covid-19 pathogenesis. Reviews in Medical Virology, 31(6), e2221.PubMedPubMedCentralCrossRef
65.
go back to reference Sun, W., Wu, Y., Gao, M., Tian, Y., Qi, P., Shen, Y., Huang, L., Shi, L., Wang, Y., & Liu, X. (2019). C-reactive protein promotes inflammation through TLR4/NF-κB/TGF-β pathway in HL-1 cells. Bioscience Reports, 39(8), BSR20190888.PubMedPubMedCentralCrossRef Sun, W., Wu, Y., Gao, M., Tian, Y., Qi, P., Shen, Y., Huang, L., Shi, L., Wang, Y., & Liu, X. (2019). C-reactive protein promotes inflammation through TLR4/NF-κB/TGF-β pathway in HL-1 cells. Bioscience Reports, 39(8), BSR20190888.PubMedPubMedCentralCrossRef
66.
67.
go back to reference Thangapandiyan, S., & Miltonprabu, S. (2014). Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling. Toxicology Reports, 1, 12–30.PubMedPubMedCentralCrossRef Thangapandiyan, S., & Miltonprabu, S. (2014). Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling. Toxicology Reports, 1, 12–30.PubMedPubMedCentralCrossRef
68.
go back to reference Cenesiz, S., Yarim, G. F., Nisbet, C., & Ciftci, G. (2008). Effects of fluoride on C-reactive protein, adenosine deaminase, and ceruloplasmin in rabbit sera. Fluoride, 41(1), 52–56. Cenesiz, S., Yarim, G. F., Nisbet, C., & Ciftci, G. (2008). Effects of fluoride on C-reactive protein, adenosine deaminase, and ceruloplasmin in rabbit sera. Fluoride, 41(1), 52–56.
69.
go back to reference Susheela, A. K., & Jethanandani, P. (1994). Serum haptoglobin and C-reactive protein in human skeletal fluorosis. Clinical Biochemistry, 27(6), 463–468.PubMedCrossRef Susheela, A. K., & Jethanandani, P. (1994). Serum haptoglobin and C-reactive protein in human skeletal fluorosis. Clinical Biochemistry, 27(6), 463–468.PubMedCrossRef
70.
go back to reference Katengua-Thamahane, E., Marnewick, J. L., Ajuwon, O. R., Chegou, N. N., Szűcs, G., Ferdinandy, P., Csont, T., Csonka, C., & Van Rooyen, J. (2014). The combination of red palm oil and rooibos show anti-inflammatory effects in rats. Journal of Inflammation, 11, 41.PubMedPubMedCentralCrossRef Katengua-Thamahane, E., Marnewick, J. L., Ajuwon, O. R., Chegou, N. N., Szűcs, G., Ferdinandy, P., Csont, T., Csonka, C., & Van Rooyen, J. (2014). The combination of red palm oil and rooibos show anti-inflammatory effects in rats. Journal of Inflammation, 11, 41.PubMedPubMedCentralCrossRef
71.
go back to reference Smith, C., & Swart, A. C. (2016). Rooibos (Aspalathus linearis) facilitates an anti-inflammatory state, modulating IL-6 and IL-10 while not inhibiting the acute glucocorticoid response to a mild novel stressor in vivo. Journal of Functional Foods, 27, 42–54.CrossRef Smith, C., & Swart, A. C. (2016). Rooibos (Aspalathus linearis) facilitates an anti-inflammatory state, modulating IL-6 and IL-10 while not inhibiting the acute glucocorticoid response to a mild novel stressor in vivo. Journal of Functional Foods, 27, 42–54.CrossRef
72.
go back to reference Lee, W., & Bae, J. S. (2015). Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation, 38, 1502–1516.PubMedCrossRef Lee, W., & Bae, J. S. (2015). Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation, 38, 1502–1516.PubMedCrossRef
73.
go back to reference Thangaraj, K., & Vaiyapuri, M. (2017). Orientin, a C-glycosyl dietary flavone, suppresses colonic cell proliferation and mitigates NF-κB mediated inflammatory response in 1, 2-dimethylhydrazine induced colorectal carcinogenesis. Biomedicine and Pharmacotherapy, 96, 1253–1266.PubMedCrossRef Thangaraj, K., & Vaiyapuri, M. (2017). Orientin, a C-glycosyl dietary flavone, suppresses colonic cell proliferation and mitigates NF-κB mediated inflammatory response in 1, 2-dimethylhydrazine induced colorectal carcinogenesis. Biomedicine and Pharmacotherapy, 96, 1253–1266.PubMedCrossRef
74.
go back to reference Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 209.PubMedPubMedCentralCrossRef Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 209.PubMedPubMedCentralCrossRef
75.
go back to reference Chen, L., Kuang, P., Liu, H., Wei, Q., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2019). Sodium fluoride (NaF) induces inflammatory responses via activating MAPKs/NF-κB signalling pathway and reducing anti-inflammatory cytokine expression in the mouse liver. Biological Trace Element Research, 189, 157–171.PubMedCrossRef Chen, L., Kuang, P., Liu, H., Wei, Q., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L. (2019). Sodium fluoride (NaF) induces inflammatory responses via activating MAPKs/NF-κB signalling pathway and reducing anti-inflammatory cytokine expression in the mouse liver. Biological Trace Element Research, 189, 157–171.PubMedCrossRef
76.
go back to reference Yang, W., Liu, L., Li, C., Luo, N., Chen, R., Li, L., Yu, F., & Cheng, Z. (2018). TRIM52 plays an oncogenic role in ovarian cancer associated with NF-kB pathway. Cell Death and Disease, 9(9), 908.PubMedPubMedCentralCrossRef Yang, W., Liu, L., Li, C., Luo, N., Chen, R., Li, L., Yu, F., & Cheng, Z. (2018). TRIM52 plays an oncogenic role in ovarian cancer associated with NF-kB pathway. Cell Death and Disease, 9(9), 908.PubMedPubMedCentralCrossRef
Metadata
Title
Fermented Rooibos tea (Aspalathus linearis) Ameliorates Sodium Fluoride-Induced Cardiorenal Toxicity, Oxidative Stress, and Inflammation via Modulation of NF-κB/IκB/IκKB Signaling Pathway in Wistar Rats
Authors
Olawale Razaq Ajuwon
Toyosi Abiodun Adeleke
Basiru Olaitan Ajiboye
Akeem Olalekan Lawal
Ibukun Folorunso
Bartholomew Brai
Fisayo Abraham Bamisaye
John Adeolu Falode
Ikenna Maximillian Odoh
Kabirat Iyabode Adegbite
Oluwasayo Bosede Adegoke
Publication date
05-02-2024
Publisher
Springer US
Keyword
Lisinopril
Published in
Cardiovascular Toxicology / Issue 3/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09826-9

Other articles of this Issue 3/2024

Cardiovascular Toxicology 3/2024 Go to the issue