Skip to main content
Top
Published in: Cardiovascular Toxicology 3/2024

Open Access 07-03-2024 | Abdominal Aortic Aneurysm | Research

M1 Macrophage-Derived Exosome LncRNA PVT1 Promotes Inflammation and Pyroptosis of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm by Inhibiting miR-186-5p and Regulating HMGB1

Authors: Jinhui Zhang, Xili Zhang, Xunqiang Liu, Huanjun Chen, Jifeng Wang, Min Ji

Published in: Cardiovascular Toxicology | Issue 3/2024

Login to get access

Abstract

Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease. Vascular smooth muscle cells (VSMCs) are essential for maintaining the integrity of healthy blood vessels. Macrophages play an important role in the inflammatory process of AAA. However, the effect of macrophage-derived exosome LncRNA PVT1 on VSMCs is unclear. Exosomes from M1 macrophages (M1φ-exos) were isolated and identified. The expression of LncRNA PVT1 in M1φ-exos was determined. AAA cell model was constructed by treating VSMCs with Ang-II. AAA cell model was treated with M1φ exosomes transfected with si-LncRNA PVT1 (M1φsi–LncRNA PVT1-exo). VSMCs were transfected with miR-186-5p mimic and oe-HMGB1. Cell viability was detected by CCK-8. The accumulation of LDH was detected by ELISA. Western blot was used to detect the expression of HMGB1, inflammatory factors (IL-6, TNF-α and IL-1β) and pyroptosis-related proteins (GSDMD, N-GSDMD, ASC, NLRP3, Caspase-1 and Cleaved-Capase-1). Cell pyroptosis rate was detected by flow cytometry. At the same time, the targeting relationship between miR-186-5p and LncRNA PVT1 and HMGB1 was verified by double fluorescein experiment. Exosomes from M1φ were successfully extracted. The expression of LncRNA PVT1 in M1φ-exos was significantly increased. M1φ-exo promotes inflammation and pyroptosis of VSMCs. M1φsi−LncRNA PVT1-exos inhibited the inflammation and pyroptosis of VSMCs. LncRNA PVT1 can sponge miR-186-5p mimic to regulate HMGB1 expression. MiR-186-5p mimic further inhibited inflammation and pyroptosis induced by M1φsi−LncRNA PVT1-exos. However, oe-HMGB1 could inhibit the reversal effect of miR-186-5p mimic. LncRNA PVT1 in exosomes secreted by M1φ can regulate HMGB1 by acting as ceRNA on sponge miR-186-5p, thereby promoting cell inflammatory and pyroptosis and accelerating AAA progression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hensley, S. E., & Upchurch, G. R. (2022). Repair of abdominal aortic aneurysms: JACC focus seminar, part 1. Journal of the American College of Cardiology, 80(8), 821–831.CrossRefPubMed Hensley, S. E., & Upchurch, G. R. (2022). Repair of abdominal aortic aneurysms: JACC focus seminar, part 1. Journal of the American College of Cardiology, 80(8), 821–831.CrossRefPubMed
2.
go back to reference Kent, K. C. (2014). Clinical practice. Abdominal aortic aneurysms. The New England Journal of Medicine, 371(22), 2101–2108.CrossRefPubMed Kent, K. C. (2014). Clinical practice. Abdominal aortic aneurysms. The New England Journal of Medicine, 371(22), 2101–2108.CrossRefPubMed
4.
go back to reference Klink, A., Hyafil, F., Rudd, J., Faries, P., Fuster, V., Mallat, Z., Meilhac, O., Mulder, W. J. M., Michel, J. -B., Ramirez, F., Storm, G., Thompson, R., Turnbull, I. C., Egido, J., Martín-Ventura, J. L., Zaragoza, C., Letourneur, D., & Fayad, Z. A. (2011). Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nature Reviews Cardiology, 8(6), 338–347.CrossRefPubMed Klink, A., Hyafil, F., Rudd, J., Faries, P., Fuster, V., Mallat, Z., Meilhac, O., Mulder, W. J. M., Michel, J. -B., Ramirez, F., Storm, G., Thompson, R., Turnbull, I. C., Egido, J., Martín-Ventura, J. L., Zaragoza, C., Letourneur, D., & Fayad, Z. A. (2011). Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nature Reviews Cardiology, 8(6), 338–347.CrossRefPubMed
5.
go back to reference Lu, H., Sun, J., Liang, W., Chang, Z., Rom, O., Zhao, Y., Zhao, G., Xiong, W., Wang, H., Zhu, T., Guo, Y., Chang, L., Garcia-Barrio, M. T., Zhang, J., Chen, Y. E., & Fan, Y. (2020). Cyclodextrin prevents abdominal aortic aneurysm via activation of vascular smooth muscle cell transcription factor EB. Circulation, 142(5), 483–498.CrossRefPubMedPubMedCentral Lu, H., Sun, J., Liang, W., Chang, Z., Rom, O., Zhao, Y., Zhao, G., Xiong, W., Wang, H., Zhu, T., Guo, Y., Chang, L., Garcia-Barrio, M. T., Zhang, J., Chen, Y. E., & Fan, Y. (2020). Cyclodextrin prevents abdominal aortic aneurysm via activation of vascular smooth muscle cell transcription factor EB. Circulation, 142(5), 483–498.CrossRefPubMedPubMedCentral
7.
go back to reference Lu, H., Du, W., Ren, L., Hamblin, M. H., Becker, R. C., Chen, Y. E., & Fan, Y. (2021). Vascular smooth muscle cells in aortic aneurysm: From genetics to mechanisms. Journal of the American Heart Association, 10(24), e023601.CrossRefPubMedPubMedCentral Lu, H., Du, W., Ren, L., Hamblin, M. H., Becker, R. C., Chen, Y. E., & Fan, Y. (2021). Vascular smooth muscle cells in aortic aneurysm: From genetics to mechanisms. Journal of the American Heart Association, 10(24), e023601.CrossRefPubMedPubMedCentral
8.
go back to reference Zhao, G., Fu, Y., Cai, Z., Yu, F., Gong, Z., Dai, R., Hu, Y., Zeng, L., Xu, Q., & Kong, W. (2017). Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circulation Research, 121(12), 1331–1345.CrossRefPubMed Zhao, G., Fu, Y., Cai, Z., Yu, F., Gong, Z., Dai, R., Hu, Y., Zeng, L., Xu, Q., & Kong, W. (2017). Unspliced XBP1 confers VSMC homeostasis and prevents aortic aneurysm formation via FoxO4 interaction. Circulation Research, 121(12), 1331–1345.CrossRefPubMed
9.
go back to reference Kim, W., Lee, E. J., Bae, I. -H., Myoung, K., Kim, S. T., Park, P. J., Lee, K. -H., Pham, A. V. Q., Ko, J., Oh, S. H., & Cho, E. G. (2020). Lactobacillus plantarum-derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. Journal of Extracellular Vesicles, 9(1), 1793514.CrossRefPubMedPubMedCentral Kim, W., Lee, E. J., Bae, I. -H., Myoung, K., Kim, S. T., Park, P. J., Lee, K. -H., Pham, A. V. Q., Ko, J., Oh, S. H., & Cho, E. G. (2020). Lactobacillus plantarum-derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. Journal of Extracellular Vesicles, 9(1), 1793514.CrossRefPubMedPubMedCentral
10.
go back to reference Chinetti-Gbaguidi, G., Colin, S., & Staels, B. (2015). Macrophage subsets in atherosclerosis. Nature Reviews Cardiology, 12(1), 10–17.CrossRefPubMed Chinetti-Gbaguidi, G., Colin, S., & Staels, B. (2015). Macrophage subsets in atherosclerosis. Nature Reviews Cardiology, 12(1), 10–17.CrossRefPubMed
12.
go back to reference Wang, C., Li, Z., Liu, Y., & Yuan, L. (2021). Exosomes in atherosclerosis: Performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 11(8), 3996–4010.CrossRefPubMedPubMedCentral Wang, C., Li, Z., Liu, Y., & Yuan, L. (2021). Exosomes in atherosclerosis: Performers, bystanders, biomarkers, and therapeutic targets. Theranostics, 11(8), 3996–4010.CrossRefPubMedPubMedCentral
13.
go back to reference Kok, V. C., & Yu, C. C. (2020). Cancer-derived exosomes: Their role in cancer biology and biomarker development. International Journal of Nanomedicine, 15, 8019–8036.CrossRefPubMedPubMedCentral Kok, V. C., & Yu, C. C. (2020). Cancer-derived exosomes: Their role in cancer biology and biomarker development. International Journal of Nanomedicine, 15, 8019–8036.CrossRefPubMedPubMedCentral
14.
go back to reference Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, 73(10), 1907–1920.CrossRefPubMed Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, 73(10), 1907–1920.CrossRefPubMed
15.
go back to reference Zhu, J., Liu, B., Wang, Z., Wang, D., Ni, H., Zhang, L., & Wang, Y. (2019). Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics, 9(23), 6901–6919.CrossRefPubMedPubMedCentral Zhu, J., Liu, B., Wang, Z., Wang, D., Ni, H., Zhang, L., & Wang, Y. (2019). Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics, 9(23), 6901–6919.CrossRefPubMedPubMedCentral
16.
go back to reference Xu, M., Zhou, C., Weng, J., Chen, Z., Zhou, Q., Gao, J., Shi, G., Ke, A., Ren, N., Sun, H., & Shen, Y. (2022). Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. Journal of Experimental & Clinical Cancer Research, 41(1), 253.CrossRef Xu, M., Zhou, C., Weng, J., Chen, Z., Zhou, Q., Gao, J., Shi, G., Ke, A., Ren, N., Sun, H., & Shen, Y. (2022). Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway. Journal of Experimental & Clinical Cancer Research, 41(1), 253.CrossRef
17.
go back to reference Wang, P., Wang, H., Huang, Q., Peng, C., Yao, L., Chen, H., Qiu, Z., Wu, Y., Wang, L., & Chen, W. (2019). Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics, 9(6), 1714–1727.CrossRefPubMedPubMedCentral Wang, P., Wang, H., Huang, Q., Peng, C., Yao, L., Chen, H., Qiu, Z., Wu, Y., Wang, L., & Chen, W. (2019). Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics, 9(6), 1714–1727.CrossRefPubMedPubMedCentral
19.
go back to reference Huang, Y., Ren, L., Li, J., & Zou, H. (2021). Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells. Bioengineered, 12(2), 12583–12596.CrossRefPubMedPubMedCentral Huang, Y., Ren, L., Li, J., & Zou, H. (2021). Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells. Bioengineered, 12(2), 12583–12596.CrossRefPubMedPubMedCentral
20.
go back to reference Xiong, J. -M., Liu, H., Chen, J., Zou, Q. -Q., Wang, Y. -Y. -J., & Bi, G. -S. (2021). Curcumin nicotinate suppresses abdominal aortic aneurysm pyroptosis via lncRNA PVT1/miR-26a/KLF4 axis through regulating the PI3K/AKT signaling pathway. Toxicology Research, 10(3), 651–661.CrossRefPubMedPubMedCentral Xiong, J. -M., Liu, H., Chen, J., Zou, Q. -Q., Wang, Y. -Y. -J., & Bi, G. -S. (2021). Curcumin nicotinate suppresses abdominal aortic aneurysm pyroptosis via lncRNA PVT1/miR-26a/KLF4 axis through regulating the PI3K/AKT signaling pathway. Toxicology Research, 10(3), 651–661.CrossRefPubMedPubMedCentral
21.
go back to reference Zhang, Z., Zou, G., Chen, X., Lu, W., Liu, J., Zhai, S., & Qiao, G. (2019). PVT1 knockdown of lncRNA inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model. Molecules and Cells, 42(3), 218–227.PubMedPubMedCentral Zhang, Z., Zou, G., Chen, X., Lu, W., Liu, J., Zhai, S., & Qiao, G. (2019). PVT1 knockdown of lncRNA inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model. Molecules and Cells, 42(3), 218–227.PubMedPubMedCentral
22.
go back to reference Wang, Y., Jia, L., Xie, Y., Cai, Z., Liu, Z., Shen, J., Lu, Y., Wang, Y., Su, S., Ma, Y., & Xiang, M. (2019). Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis, 289, 64–72.CrossRefPubMed Wang, Y., Jia, L., Xie, Y., Cai, Z., Liu, Z., Shen, J., Lu, Y., Wang, Y., Su, S., Ma, Y., & Xiang, M. (2019). Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis, 289, 64–72.CrossRefPubMed
23.
go back to reference Martinez-Pinna, R., Gonzalez de Peredo, A., Monsarrat, B., Burlet-Schiltz, O., & Martin-Ventura, J. L. (2014). Label-free quantitative proteomic analysis of human plasma-derived microvesicles to find protein signatures of abdominal aortic aneurysms. Proteomics Clinical Applications, 8(7–8), 620–625.CrossRefPubMed Martinez-Pinna, R., Gonzalez de Peredo, A., Monsarrat, B., Burlet-Schiltz, O., & Martin-Ventura, J. L. (2014). Label-free quantitative proteomic analysis of human plasma-derived microvesicles to find protein signatures of abdominal aortic aneurysms. Proteomics Clinical Applications, 8(7–8), 620–625.CrossRefPubMed
24.
go back to reference Zhang, Y., Huang, X., Sun, T., Shi, L., Liu, B., Hong, Y., Fu, Q. L., Zhang, Y., & Li, X. (2023). MicroRNA-19b-3p dysfunction of mesenchymal stem cell-derived exosomes from patients with abdominal aortic aneurysm impairs therapeutic efficacy. Journal of Nanobiotechnology, 21(1), 135.CrossRefPubMedPubMedCentral Zhang, Y., Huang, X., Sun, T., Shi, L., Liu, B., Hong, Y., Fu, Q. L., Zhang, Y., & Li, X. (2023). MicroRNA-19b-3p dysfunction of mesenchymal stem cell-derived exosomes from patients with abdominal aortic aneurysm impairs therapeutic efficacy. Journal of Nanobiotechnology, 21(1), 135.CrossRefPubMedPubMedCentral
25.
go back to reference Davis, F. M., Tsoi, L. C., Melvin, W. J., denDekker, A., Wasikowski, R., Joshi, A. D., Wolf, S., Obi, A. T., Billi, A. C., Xing, X., Audu, C., Moore, B. B., Kunkel, S. L., Daugherty, A., Lu, H. S., Gudjonsson, J. E., & Gallagher, K. A. (2021). Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. The Journal of Experimental Medicine, 218(6), e20201839. Davis, F. M., Tsoi, L. C., Melvin, W. J., denDekker, A., Wasikowski, R., Joshi, A. D., Wolf, S., Obi, A. T., Billi, A. C., Xing, X., Audu, C., Moore, B. B., Kunkel, S. L., Daugherty, A., Lu, H. S., Gudjonsson, J. E., & Gallagher, K. A. (2021). Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. The Journal of Experimental Medicine, 218(6), e20201839.
26.
go back to reference Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 30(9), 3097–3106.CrossRefPubMed Tang, N., Sun, B., Gupta, A., Rempel, H., & Pulliam, L. (2016). Monocyte exosomes induce adhesion molecules and cytokines via activation of NF-κB in endothelial cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 30(9), 3097–3106.CrossRefPubMed
27.
go back to reference Zhou, C., Yi, C., Yi, Y., Qin, W., Yan, Y., Dong, X., Zhang, X., Huang, Y., Zhang, R., Wei, J., Ali, D. W., Michalak, M., Chen, X. Z., & Tang, J. (2020). LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619–5p/Pygo2 and miR-619–5p/ATG14 axes. Molecular Cancer, 19(1), 118. Zhou, C., Yi, C., Yi, Y., Qin, W., Yan, Y., Dong, X., Zhang, X., Huang, Y., Zhang, R., Wei, J., Ali, D. W., Michalak, M., Chen, X. Z., & Tang, J. (2020). LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619–5p/Pygo2 and miR-619–5p/ATG14 axes. Molecular Cancer, 19(1), 118.
28.
go back to reference Zhang, R., Pan, T., Xiang, Y., Zhang, M., Xie, H., Liang, Z., Chen, B., Xu, C., Wang, J., Huang, X., Zhu, Q., Zhao, Z., Gao, Q., Wen, C., Liu, W., Ma, W., Feng, J., Sun, X., Duan, T., Lai-Han Leung, E., Xie, T., Wu, Q., & Sui, X. (2022). Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioactive Materials, 13, 23–36. Zhang, R., Pan, T., Xiang, Y., Zhang, M., Xie, H., Liang, Z., Chen, B., Xu, C., Wang, J., Huang, X., Zhu, Q., Zhao, Z., Gao, Q., Wen, C., Liu, W., Ma, W., Feng, J., Sun, X., Duan, T., Lai-Han Leung, E., Xie, T., Wu, Q., & Sui, X. (2022). Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis. Bioactive Materials, 13, 23–36.
29.
go back to reference Liu, H., Deng, H., Zhao, Y., Li, C., & Liang, Y. (2018). LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. Journal of Experimental & Clinical Cancer Research, 37(1), 279.CrossRefADS Liu, H., Deng, H., Zhao, Y., Li, C., & Liang, Y. (2018). LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. Journal of Experimental & Clinical Cancer Research, 37(1), 279.CrossRefADS
30.
go back to reference IsIsoda, K., Akita, K., Kitamura, K., Sato-Okabayashi, Y., Kadoguchi, T., Isobe, S., Ohtomo, F., Sano, M., Shimada, K., Iwakura, Y., & Daida, H. (2018). Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation. International Journal of Cardiology, 270, 221–227. IsIsoda, K., Akita, K., Kitamura, K., Sato-Okabayashi, Y., Kadoguchi, T., Isobe, S., Ohtomo, F., Sano, M., Shimada, K., Iwakura, Y., & Daida, H. (2018). Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation. International Journal of Cardiology, 270, 221–227.
31.
go back to reference Yuan, Z., Lu, Y., Wei, J., Wu, J., Yang, J., & Cai, Z. (2020). Abdominal aortic aneurysm: Roles of inflammatory cells. Frontiers in Immunology, 11, 609161.CrossRefPubMed Yuan, Z., Lu, Y., Wei, J., Wu, J., Yang, J., & Cai, Z. (2020). Abdominal aortic aneurysm: Roles of inflammatory cells. Frontiers in Immunology, 11, 609161.CrossRefPubMed
32.
go back to reference Sun, Y., Zhong, L., He, X., Wang, S., Lai, Y., Wu, W., Song, H., Chen, Y., Yang, Y., Liao, W., Liao, Y., & Bin J. (2019). LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA. Journal of Molecular and Cellular Cardiology, 131, 66–81. Sun, Y., Zhong, L., He, X., Wang, S., Lai, Y., Wu, W., Song, H., Chen, Y., Yang, Y., Liao, W., Liao, Y., & Bin J. (2019). LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA. Journal of Molecular and Cellular Cardiology, 131, 66–81.
33.
go back to reference Song, H., Xu T., Feng, X., Lai, Y., Yang, Y., Zheng, H., He, X., Wei, G., Liao W., Liao, Y., Zhong, L., & Bin, J. (2020). Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. eBioMedicine, 57, 102832. Song, H., Xu T., Feng, X., Lai, Y., Yang, Y., Zheng, H., He, X., Wei, G., Liao W., Liao, Y., Zhong, L., & Bin, J. (2020). Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. eBioMedicine, 57, 102832.
Metadata
Title
M1 Macrophage-Derived Exosome LncRNA PVT1 Promotes Inflammation and Pyroptosis of Vascular Smooth Muscle Cells in Abdominal Aortic Aneurysm by Inhibiting miR-186-5p and Regulating HMGB1
Authors
Jinhui Zhang
Xili Zhang
Xunqiang Liu
Huanjun Chen
Jifeng Wang
Min Ji
Publication date
07-03-2024
Publisher
Springer US
Published in
Cardiovascular Toxicology / Issue 3/2024
Print ISSN: 1530-7905
Electronic ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-024-09838-5

Other articles of this Issue 3/2024

Cardiovascular Toxicology 3/2024 Go to the issue