Skip to main content
Top
Published in: Annals of Surgical Oncology 3/2010

01-03-2010 | Melanomas

Local and Distant Immunity Induced by Intralesional Vaccination with an Oncolytic Herpes Virus Encoding GM-CSF in Patients with Stage IIIc and IV Melanoma

Authors: Howard L. Kaufman, MD, Dae Won Kim, MD, Gail DeRaffele, RN, Josephine Mitcham, BS, Rob S. Coffin, PhD, Seunghee Kim-Schulze, PhD

Published in: Annals of Surgical Oncology | Issue 3/2010

Login to get access

Abstract

Background

An oncolytic herpes simplex virus engineered to replicate selectively in tumor cells and to express granulocyte–macrophage colony-stimulating factor (GM-CSF) was tested as a direct intralesional vaccination in melanoma patients. The work reported herein was performed to better characterize the effect of vaccination on local and distant antitumor immunity.

Methods

Metastatic melanoma patients with accessible lesions were enrolled in a multicenter 50-patient phase II clinical trial of an oncolytic herpesvirus encoding GM-CSF (OncovexGM-CSF). An initial priming dose of 106 pfu vaccine was given by intratumoral injection, followed by 108 pfu every 2 weeks to 24 total doses. Peripheral blood and tumor tissue were collected for analysis of effector T cells, CD4+FoxP3+ regulatory T cells (Treg), CD8+FoxP3+ suppressor T cells (Ts), and myeloid-derived suppressive cells (MDSC).

Results

Phenotypic analysis of T cells derived from tumor samples suggested distinct differences from peripheral blood T cells. There was an increase in melanoma-associated antigen recognized by T cells (MART-1)-specific T cells in tumors undergoing regression after vaccination compared with T cells derived from melanoma patients not treated with vaccine. There was also a significant decrease in Treg and Ts cells in injected lesions compared with noninjected lesions in the same and different melanoma patients. Similarly MDSC were increased in melanoma lesions but underwent a significant decrease only in vaccinated lesions.

Conclusions

Melanoma patients present with elevated levels of Tregs, Ts, and MDSC within established tumors. Direct injection of OncovexGM-CSF induces local and systemic antigen-specific T cell responses and decreases Treg, Ts, and MDSC in patients exhibiting therapeutic responses.
Literature
1.
go back to reference Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303. Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303.
2.
go back to reference Toda M, Martuza RL, Rabkin SD. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther. 2000;2(4):324–9.CrossRefPubMed Toda M, Martuza RL, Rabkin SD. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther. 2000;2(4):324–9.CrossRefPubMed
3.
go back to reference Hu JCC, Coffin RS, Davis CJ, et al. A Phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47.CrossRefPubMed Hu JCC, Coffin RS, Davis CJ, et al. A Phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12(22):6737–47.CrossRefPubMed
4.
go back to reference Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial with a second generation, GM-CSF encoding, oncolytic herpesvirus in unresectable metastatic melanoma. J Clin Oncol. 2008;26:(May 20 suppl; abstr 9008). Senzer NN, Kaufman HL, Amatruda T, et al. Phase II clinical trial with a second generation, GM-CSF encoding, oncolytic herpesvirus in unresectable metastatic melanoma. J Clin Oncol. 2008;26:(May 20 suppl; abstr 9008).
5.
go back to reference Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.CrossRefPubMed Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.CrossRefPubMed
6.
go back to reference Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMed Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMed
7.
go back to reference Whiteside TL. The role of immune cells in the tumor microenvironment. Cancer Treat Res. 2006;130:103–24.CrossRefPubMed Whiteside TL. The role of immune cells in the tumor microenvironment. Cancer Treat Res. 2006;130:103–24.CrossRefPubMed
8.
go back to reference Conejo-Garcia JR, Benencia F, Courreges M-C, et al. Tumor-infiltrating dendritic cell precursors recruited by a [beta]-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 2004;10(9):950–8.CrossRefPubMed Conejo-Garcia JR, Benencia F, Courreges M-C, et al. Tumor-infiltrating dendritic cell precursors recruited by a [beta]-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 2004;10(9):950–8.CrossRefPubMed
9.
go back to reference Battaglia A, Buzzonetti A, Baranello C, et al. Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol Immunother. 2009;58(9):1363–73. Battaglia A, Buzzonetti A, Baranello C, et al. Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol Immunother. 2009;58(9):1363–73.
10.
go back to reference Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.CrossRefPubMed Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.CrossRefPubMed
11.
go back to reference Kaufman HL, DeRaffele G, Mitcham J, et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest. 2005;115(7):1903–12.CrossRefPubMed Kaufman HL, DeRaffele G, Mitcham J, et al. Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Invest. 2005;115(7):1903–12.CrossRefPubMed
12.
go back to reference Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58(16):3491–4.PubMed Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58(16):3491–4.PubMed
13.
go back to reference Nakano O, Sato M, Naito Y, et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61(13):5132–6.PubMed Nakano O, Sato M, Naito Y, et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 2001;61(13):5132–6.PubMed
14.
go back to reference Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3(3):237–43.CrossRefPubMed Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3(3):237–43.CrossRefPubMed
15.
go back to reference Najafian N, Chitnis T, Salama AD, et al. Regulatory functions of CD8+ CD28− T cells in an autoimmune disease model. J Clin Invest. 2003;112(7):1037–48.PubMed Najafian N, Chitnis T, Salama AD, et al. Regulatory functions of CD8+ CD28− T cells in an autoimmune disease model. J Clin Invest. 2003;112(7):1037–48.PubMed
16.
go back to reference Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med. 2004;200(9):1123–34.CrossRefPubMed Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med. 2004;200(9):1123–34.CrossRefPubMed
17.
go back to reference Xystrakis E, Dejean AS, Bernard I, et al. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood. 2004;104(10):3294–301.CrossRefPubMed Xystrakis E, Dejean AS, Bernard I, et al. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood. 2004;104(10):3294–301.CrossRefPubMed
18.
go back to reference Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 2003;102(12):4107–14.CrossRefPubMed Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood. 2003;102(12):4107–14.CrossRefPubMed
19.
go back to reference Liu Z, Tugulea S, Cortesini R, Suciu-Foca N. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28− T cells. Int Immunol. 1998;10(6):775–83.CrossRefPubMed Liu Z, Tugulea S, Cortesini R, Suciu-Foca N. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28− T cells. Int Immunol. 1998;10(6):775–83.CrossRefPubMed
20.
go back to reference Ciubotariu R, Colovai AI, Pennesi G, et al. Specific suppression of human CD4+ Th cell responses to pig MHC antigens by CD8+CD28− regulatory T cells. J Immunol. 1998;161(10):5193–202.PubMed Ciubotariu R, Colovai AI, Pennesi G, et al. Specific suppression of human CD4+ Th cell responses to pig MHC antigens by CD8+CD28− regulatory T cells. J Immunol. 1998;161(10):5193–202.PubMed
21.
go back to reference Colovai AI, Liu Z, Ciubotariu R, et al. Induction of xenoreactive CD4+ T-cell anergy by suppressor CD8+ CD28− T cells. Transplantation. 2000;69(7):1304–10.CrossRefPubMed Colovai AI, Liu Z, Ciubotariu R, et al. Induction of xenoreactive CD4+ T-cell anergy by suppressor CD8+ CD28− T cells. Transplantation. 2000;69(7):1304–10.CrossRefPubMed
22.
go back to reference Chaput N, Louafi S, Bardier A, et al. Identification of CD8+CD25+FoxP3+ suppressive T cells in colorectal cancer tissue. Gut. 2008:gut.2008.158824. Chaput N, Louafi S, Bardier A, et al. Identification of CD8+CD25+FoxP3+ suppressive T cells in colorectal cancer tissue. Gut. 2008:gut.2008.158824.
23.
go back to reference Kiniwa Y, Miyahara Y, Wang HY, et al. CD8+FoxP3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 2007;13(23):6947–58.CrossRefPubMed Kiniwa Y, Miyahara Y, Wang HY, et al. CD8+FoxP3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 2007;13(23):6947–58.CrossRefPubMed
24.
go back to reference Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74 (advanced online publication). Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74 (advanced online publication).
25.
go back to reference Rodriguez PC, Zea AH, Culotta KS, et al. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem. 2002;277(24):21123–9.CrossRefPubMed Rodriguez PC, Zea AH, Culotta KS, et al. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem. 2002;277(24):21123–9.CrossRefPubMed
26.
go back to reference Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65(8):3044–8.PubMed Zea AH, Rodriguez PC, Atkins MB, et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65(8):3044–8.PubMed
27.
go back to reference Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66.PubMed Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood. 1998;92(11):4150–66.PubMed
28.
go back to reference Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. 2006;24(7):1169–77.CrossRefPubMed Cesana GC, DeRaffele G, Cohen S, et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol. 2006;24(7):1169–77.CrossRefPubMed
29.
go back to reference Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+CD25(hi) FoxP3+ regulatory T cells in cancer patients. Blood. 2006;107(6):2409–14.CrossRefPubMed Ahmadzadeh M, Rosenberg SA. IL-2 administration increases CD4+CD25(hi) FoxP3+ regulatory T cells in cancer patients. Blood. 2006;107(6):2409–14.CrossRefPubMed
30.
go back to reference Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother. 2008;57(12):1795–805.CrossRefPubMed Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma patients compared to peripheral blood. Cancer Immunol Immunother. 2008;57(12):1795–805.CrossRefPubMed
31.
go back to reference Filaci G, Fenoglio D, Fravega M, et al. CD8+CD28 T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol. 2007;179(7):4323–34.PubMed Filaci G, Fenoglio D, Fravega M, et al. CD8+CD28 T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol. 2007;179(7):4323–34.PubMed
32.
go back to reference Maynard CL, Hatton RD, Helms WS, et al. Contrasting roles for all-trans retinoic acid in TGF-beta-mediated induction of FoxP3 and Il10 genes in developing regulatory T cells. J Exp Med. 2009;206(2):343–57.CrossRefPubMed Maynard CL, Hatton RD, Helms WS, et al. Contrasting roles for all-trans retinoic acid in TGF-beta-mediated induction of FoxP3 and Il10 genes in developing regulatory T cells. J Exp Med. 2009;206(2):343–57.CrossRefPubMed
33.
go back to reference Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.PubMed Strome SE, Dong H, Tamura H, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501–5.PubMed
34.
go back to reference Shibakita M, Tachibana M, Dhar DK, et al. Prognostic significance of Fas and Fas ligand expressions in human esophageal cancer. Clin Cancer Res. 1999;5(9):2464–9.PubMed Shibakita M, Tachibana M, Dhar DK, et al. Prognostic significance of Fas and Fas ligand expressions in human esophageal cancer. Clin Cancer Res. 1999;5(9):2464–9.PubMed
35.
go back to reference Ohm JE, Gabrilovich DI, Sempowski GD, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood. 2003;101(12):4878–86.CrossRefPubMed Ohm JE, Gabrilovich DI, Sempowski GD, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood. 2003;101(12):4878–86.CrossRefPubMed
36.
go back to reference Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FoxP3. Science. 2003;299(5609):1057–61.CrossRefPubMed Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor FoxP3. Science. 2003;299(5609):1057–61.CrossRefPubMed
37.
go back to reference Gavin MA, Rasmussen JP, Fontenot JD, et al. FoxP3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771–5.CrossRefPubMed Gavin MA, Rasmussen JP, Fontenot JD, et al. FoxP3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(7129):771–5.CrossRefPubMed
38.
go back to reference Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+DCs induces FoxP3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.CrossRefPubMed Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+DCs induces FoxP3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.CrossRefPubMed
39.
go back to reference Marigo I, Dolcetti L, Serafini P, et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222(1):162–79.CrossRefPubMed Marigo I, Dolcetti L, Serafini P, et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222(1):162–79.CrossRefPubMed
40.
go back to reference Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006;55(3):237–45.CrossRefPubMed Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006;55(3):237–45.CrossRefPubMed
41.
go back to reference Joetham A, Matsubara S, Okamoto M, et al. Plasticity of regulatory T cells: subversion of suppressive function and conversion to enhancement of lung allergic responses. J Immunol. 2008;180(11):7117–7124.PubMed Joetham A, Matsubara S, Okamoto M, et al. Plasticity of regulatory T cells: subversion of suppressive function and conversion to enhancement of lung allergic responses. J Immunol. 2008;180(11):7117–7124.PubMed
42.
go back to reference Qin H, Vlad G, Cortesini R, et al. CD8+ suppressor and cytotoxic T cells recognize the same human leukocyte antigen-A2 restricted cytomegalovirus peptide. Hum Immunol. 2008;69(11):776–80.CrossRefPubMed Qin H, Vlad G, Cortesini R, et al. CD8+ suppressor and cytotoxic T cells recognize the same human leukocyte antigen-A2 restricted cytomegalovirus peptide. Hum Immunol. 2008;69(11):776–80.CrossRefPubMed
Metadata
Title
Local and Distant Immunity Induced by Intralesional Vaccination with an Oncolytic Herpes Virus Encoding GM-CSF in Patients with Stage IIIc and IV Melanoma
Authors
Howard L. Kaufman, MD
Dae Won Kim, MD
Gail DeRaffele, RN
Josephine Mitcham, BS
Rob S. Coffin, PhD
Seunghee Kim-Schulze, PhD
Publication date
01-03-2010
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 3/2010
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-009-0809-6

Other articles of this Issue 3/2010

Annals of Surgical Oncology 3/2010 Go to the issue