Skip to main content

The Role of Immune Cells in the Tumor Microenvironment

  • Chapter
The Link Between Inflammation and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 130))

Abstract

Interactions between tumor infiltrating leukocytes and tumor cells have been of great interest because of the possibility that immune cells either interfere with tumor progression or actively promote tumor growth. The tumor microenvironment is shaped by cells entering it, and their functions reflect the local conditions. Successive changes occurring at the tumor site during tumor progression resemble chronic inflammation. This chronic inflammatory reaction seems to be largely orchestrated by the tumor, and it seems to promote tumor survival. Molecular and cellular mechanisms linking the inflammatory reaction and cancer are emerging, and this review summarizes the current understanding of interactions between inflammatory and cancer cells in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Albers, A.E. et al. (2005). Immune response to p53 in patients with cancer: enrichment in tetramer+p53 peptide-specific T cells and regulatory T cells at tumor sites. Cancer Immunol, Immunother. in press.

    Google Scholar 

  • Albers, A.E. et al. (2005). T-cell receptor variable gene β-restricted T lymphocytes are sensitive to apoptosis in patients with squamous cell carcinoma of the head and neck. Submitted.

    Google Scholar 

  • Aller, M.A. et al. (2004). Posttraumatic inflammation is a complex response based on the pathological expression of the nervous, immune and endocrine function systems. Exp. Biol. Med. 229: 170–181.

    CAS  Google Scholar 

  • Almand, B. et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6: 1755–1766.

    PubMed  CAS  Google Scholar 

  • Almand, B. et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166: 678–689.

    PubMed  CAS  Google Scholar 

  • Al-Sarireh, B. and Eremin, O. (2000). Tumour-associated macrophages (TAMS): disordered function, immune suppression and progressive tumour growth. J. R. Coll. Surg. Edinb. 45: 1–16.

    PubMed  CAS  Google Scholar 

  • Baeuerle, P.A. and Baltimore, D. (1996). NF-kappaB: ten years after. Cell 87: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, F. and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, F. (2004). Cancer and the chemokine network. Nat. Rev. Cancer 4: 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, F. and Coussens, L.M. (2004). Cancer: An inflammatory link. Nature 431: 405–406.

    Article  PubMed  CAS  Google Scholar 

  • Bamias, A. and Dimipoulos, M.A. (2003). Angiogenesis in human cancer: implications in cancer therapy. Eur. J. Intern. Med. 14: 459–469.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau, J. and Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature 392: 245–252.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau, J. et al. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767–811.

    Article  PubMed  CAS  Google Scholar 

  • Baxevanis, C.N. et al. (1994). Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 74: 1275–1282.

    Article  PubMed  CAS  Google Scholar 

  • Becker, Y. (1993). Dendritic cell activity against primary tumors: an overview. In Vivo 7: 187–191.

    PubMed  CAS  Google Scholar 

  • Bogenrieder, T. and Herlyn, M. (2003). Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22: 6524–6536.

    Article  PubMed  CAS  Google Scholar 

  • Borregaard, N. and Herlin T. (1982). Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70: 550–557.

    Article  PubMed  CAS  Google Scholar 

  • Coronella, J.A. et al. (2001). Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res. 61: 7889–7899.

    PubMed  CAS  Google Scholar 

  • Coronella, J.A. et al. (2002). Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J. Immunol. 169: 1829–1836.

    PubMed  CAS  Google Scholar 

  • Curiel, T.J. et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10: 942–949.

    Article  PubMed  CAS  Google Scholar 

  • Dworak, H.F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315: 1650–1659.

    Article  Google Scholar 

  • Denko, N.C. et al. (2003). Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22: 5907–5914.

    Article  PubMed  CAS  Google Scholar 

  • Engbring, J.A. and Kleinman, H.K. (2003). The basement membrane matrix in malignancy. J. Pathol. 200: 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, L.M. and Fidler, I.J. (1996). Angiogenesis and metastasis. Eur. J. Cancer 32A: 2451–2460.

    Article  PubMed  CAS  Google Scholar 

  • Esche, C. et al. (1999). Tumor’s other immune targets: dendritic cells. J. Leukocyte Biol. 66: 336–344.

    PubMed  CAS  Google Scholar 

  • Esche, C. et al. (2001). Tumor necrosis factor-alpha-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome C release mediated resistance of mature dendritic cells to melanoma-induced apoptosis. Clin. Cancer Res. 7: 974s–979s.

    PubMed  CAS  Google Scholar 

  • Fisher, E.R. et al. (1990). Medullary cancer of the breast revisited. Breast Cancer Res. Treat. 16: 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, T. et al. (1985). T-zone histiocytes in adenocarcinoma of the lung in relation to postoperative prognosis. Cancer 56: 2651–2656.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D.I. et al. (1996a). Decrease in antigen presentation by dendritic cells in patients with breast cancer. Nat. Med. 2: 1096–1103.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D.I. et al. (1996b). Vascular endothelial growth factor produced by human tumors inhibits the functional maturation of dendritic cells. Nature Med. 2: 1096–1103.

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich, D. et al. (1999). Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell functions. Clin. Cancer Res. 5: 2963–2970.

    PubMed  CAS  Google Scholar 

  • Gabrilovich, D. (2004). Mechanisms and functional significance of tumor-induced dendritic cell defects. Nature Med. 4: 941–952.

    CAS  Google Scholar 

  • Gallucci, S. and Matzinger, P. (2001). Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13: 114–119.

    Article  PubMed  CAS  Google Scholar 

  • Giannini, A. et al. (1991). Prognostic significance of accessory cells and lymphocytes in nasopharygeal carcinoma. Pathol. Res. Pract. 187: 496–502.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, S.A. et al. (1998). Peritumoral CD1a-positive dendritic cells are associated with improved survival in patients with tongue carcinoma. Arch. Otolaryngol. Head Neck Surg. 124: 641–646.

    PubMed  CAS  Google Scholar 

  • Greten, F.R. et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, T. and Yoshimura, A. (2002). Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 13: 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, M.H. et al. (2001). The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic tumor cells. Proc. Natl Acad. Sci. U.S.A. 98: 12659–12664.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, M. et al. (1996). Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites. J. Immunol. 156: 42–47.

    PubMed  CAS  Google Scholar 

  • Hoffmann, T.K. et al. (2002). Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin. Cancer Res. 8: 2553–2562.

    PubMed  Google Scholar 

  • Janeway Jr., C.A. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13: 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Kiessling, R. et al. (1996). Immunosuppression in human tumor-host interaction: role of cytokines and alterations in signal-transducing molecules. Springer Sem. Immunopathol. 18: 227–242.

    Article  CAS  Google Scholar 

  • Kornstein, M.J. et al. (1983). Immunoperoxidase localization of lymphocyte subsets in the host responses to melanoma and nevi. Cancer Res, 43: 2749–2753.

    PubMed  CAS  Google Scholar 

  • Kotlan, B. et al. (2003). Immunoglobulin reprtoire of B lymphocytes infiltrating breast medullary carcinoma. Hum. Antibodies 12: 113–121.

    PubMed  CAS  Google Scholar 

  • Kuss, I. et al. (1999). Clinical significance of decreased ζ chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin. Cancer Res. 5: 329–334.

    PubMed  CAS  Google Scholar 

  • Lanier, L.L. (2003). Natural killer cell receptor signaling. Curr. Opin. Immunol. 15: 308–314.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.M. et al. (1998). Molecular basis of T-cell inactivation by CTLA-4. Science 282: 2263–2266.

    Article  PubMed  CAS  Google Scholar 

  • Leek, R.D. et al. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56: 4625–4629.

    PubMed  CAS  Google Scholar 

  • Lespagnard, L. et al., (1999) Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int. J. Cancer 84: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Li, X. et al. (1994). T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res. 54: 5424–5429.

    PubMed  CAS  Google Scholar 

  • Lin, E.Y. et al. (2001). Colony-stimulating factor 1 promotes progression of mamary tumors to malignancy. J. Exp. Med. 193: 727–740.

    Article  PubMed  CAS  Google Scholar 

  • Ling, W. et al. (1998). Impaired activation of NFκB in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, IκBα. Blood 92: 1334–1341.

    PubMed  CAS  Google Scholar 

  • Liu, Y.J. (2001). Dendritic cell subsets and lineages and their functions in innate and adoptive immunity. Cell 106: 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Liyanage, U.K. et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169: 2756–2761.

    PubMed  CAS  Google Scholar 

  • Malik, S.T.A. et al. (1989). Paradoxical effects of tumor necrosis factor in experimental ovarian cancer. Int. J. Cancer 44: 918–925.

    Article  PubMed  CAS  Google Scholar 

  • Malmberg, K.J. et al. (2001). Inhibition of activated/memory (CD45RO(+)) T cells by oxidative stress associated with block of NK-kappaB activation. J. Immunol. 167: 2595–2601.

    PubMed  CAS  Google Scholar 

  • Mareel, M. and Leroy, A. (2003). Clinical cellular, and molecular aspects of cancer invasion. Physiol. Rev. 83: 337–376.

    PubMed  CAS  Google Scholar 

  • Matzinger, P. (1998). An innate sense of danger. Semin. Immunol. 10: 399–415.

    Article  PubMed  CAS  Google Scholar 

  • May, M.J. and Ghosh, S. (1998). Signal transduction through NF-κB. Immunol. Today 19: 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Miescher, S. et al. (1987). Clonal and frequency analyses of tumor-infiltrating T lymphocytes from human solid tumors. J. Immunol. 138: 4004–4011.

    PubMed  CAS  Google Scholar 

  • Mihm, M.C. et al. (1996). Tumor infiltrating lymphocytes in lymph node melanoma metastases — a histopathologic prognostic indicator and an expression of local immune response. Lab. Invest. 74: 43–47.

    PubMed  Google Scholar 

  • Murphy, G.F. et al. (1993). Autologous melanoma vaccine induces inflammatory responses in melanoma metastases: relevance to immunologic regression and immunotherapy. J. Invest. Dermatol. 100: 335s–341s.

    Article  PubMed  CAS  Google Scholar 

  • Naito, Y. et al. (1998). CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58: 3491–3494.

    PubMed  CAS  Google Scholar 

  • Nakano, O. et al. (2001). Proliferative activity of intratumoral CD8+ T lymphocytes as aprognostic factor in human renal cell carcinoma: Clinicopathologic demonstration of antitumor immunity. Cancer Res. 61: 5132–5136.

    PubMed  CAS  Google Scholar 

  • Nzula, S. et al. (2003). Antigen-driven clonal proliferation, somatic hypermutation and selection of B lymphocytes infiltrating human ductal breast carcinomas. Cancer Res. 63: 3275–3280.

    PubMed  CAS  Google Scholar 

  • O’Brien, P.M. et al. (2001). Immunoglobin genes expressed by B-lymphocytes infiltrating cervical carcinomas show evidence of antigen-driven selection. Cancer Immunol. Immunother. 50: 523–532.

    Article  PubMed  CAS  Google Scholar 

  • Otsuji, M. et al. (1996). Oxidative stress by tumor-derived macrophagessuppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific cell responses. Proc. Natl Acad. Sci. U.S.A. 93: 13119–13124.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, S.M. et al. (2004). Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br. J. Cancer 91: 469–475.

    CAS  Google Scholar 

  • Pikarsky, E. et al. (2004). NF-kappaB functions as a tumor promoter in inflammation-associated cancer. Nature 431: 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Ramsdell, F. (2003). Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 19: 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, T.E. et al. (1998a). Human immune cells in the tumor microenvironment: mechanisms responsible for signaling and functional defects. J. Immunother. 21: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, T.E. et al. (1998b). Absent of low expression of the ζ chain in T cells at the tumor site correlates with poor survival in patients with oral carcinoma. Cancer Res. 58: 5344–5347.

    PubMed  CAS  Google Scholar 

  • Reichert, T.E. et al. (2001). The number of intratumoral dendritic cells and ζ-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 91: 2136–2147.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, T.E. et al. (2002). Signaling abnormalities and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin. Cancer Res. 8: 3137–3145.

    PubMed  Google Scholar 

  • Ribatti, D. et al. (2003). New non-angiogenesis dependent pathways for tumor growth. Eur. J. Cancer 39: 1835–1841.

    Article  PubMed  CAS  Google Scholar 

  • Schmielau, J. and Finn, O.J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61: 4756–4760.

    PubMed  CAS  Google Scholar 

  • Sheu, B.C. et al. (1999). Reversed CD4/CD8 percentages of tumor-infiltrating lymphocytes correlate with disease progression in human cervical cancer. Cancer 86: 1537–1543.

    Article  PubMed  CAS  Google Scholar 

  • Shevach, E.M. (2000). Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18: 423–449.

    Article  PubMed  CAS  Google Scholar 

  • Shevach, E.M. (2004). Fatal attraction: tumors becon regulatory T cells. Nature Med. 10: 900–901.

    Article  PubMed  CAS  Google Scholar 

  • Shurin, M.R. et al. (1999). ‘Apoptosis in dendritic cells’ in Dendritic Cells: Biology and Clinical Applications. M.T. Lotze and A.W. Thomson (eds), Academic Press, New York, 673–692.

    Google Scholar 

  • Shurin, G.V. et al. (2001). Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 61: 363–369.

    PubMed  CAS  Google Scholar 

  • Sitkovsky, M.V. et al. (2004). Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22: 657–682.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, G.L. et al. (2004). Engagement of glucocorticoid induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol. 173: 5008–5020.

    PubMed  CAS  Google Scholar 

  • Toi, M. (2002). Proinflammation in human tumor microenvironment: its status and implication. Med. Sci. Monit. 8: 25–26.

    Google Scholar 

  • Tourkova, I.L. et al. (2004). IL-15 restores MHC class I antigen processing machinery in human dendritic cells inhibited by tumor-derived gangliosides. Submitted.

    Google Scholar 

  • Tsujitani, S. et al. (1987). Langerhans cells and prognosis in patients with gastric carcinoma. Cancer 59: 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Tsujitani, S. et al. (1990). Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer 66: 2012–2016.

    Article  PubMed  CAS  Google Scholar 

  • Treilleux, I. et al. (2004). Dendritic cell infiltration and prognosis of early stage breast cancer. Clin. Cancer Res. 10: 7466–7474.

    Article  PubMed  CAS  Google Scholar 

  • Troy, A.J. et al. (1998). Minimal recruitment and activation of dendritic cells in within renal cell carcinoma. Clin. Cancer Res. 4: 585–593.

    PubMed  CAS  Google Scholar 

  • Uzzo, R.G. et al. (1999a). Renal cell carcinoma-derived gangliosides suppress NFκB activation in T cells. J. Clin. Invest. 104: 769–776.

    Article  PubMed  CAS  Google Scholar 

  • Uzzo, R.G. et al. (1999b). Alterations in NFκB activation in T lymphocytes of patients with renal cell carcinoma. J. Nat. Cancer Inst. 91: 718–721.

    Article  PubMed  CAS  Google Scholar 

  • Vacarello, L. et al. (1993). Tumor-infiltrating lymphocytes from ovarian tumors of low malignant potential. Int. J. Gynecol. Path. 12: 41–50.

    Article  Google Scholar 

  • Vitolo, D. et al. (1993). In situ hybridization for cytokine gene transcripts in the solid tumor microenvironment. Eur. J. Cancer 3: 371–377.

    Article  Google Scholar 

  • Von Kleist, S. et al. (1987). Immunohistochemical analysis of lymphocyte subpopulations infiltrating breast carcinomas and benign lesions. Int. J. Cancer 40: 18–23.

    Article  Google Scholar 

  • Weidmann, E. et al. (1992). The T-cell receptor V beta gene usage in tumor-infiltrating lymphocytes and blood of patients with hepatocellular carcinoma. Cancer Res. 52: 5913–5920.

    PubMed  CAS  Google Scholar 

  • Weidmann, E. et al. (1993). Usage of T-cell receptor V beta chain genes in fresh and cultured tumor-infiltrating lymphocytes from human melanoma. Int. J. Cancer 54: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside, T.L. (1992). Tumor Infiltrating Lymphocytes as antitumor effector cells. Biotherapy 5: 47–61.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside, T.L. (1993). Tumor Infiltrating Lymphocytes in Human Malignancies. Medical Intelligence Unit, R.G. Landes Co., Austin, TX.

    Google Scholar 

  • Whiteside, T.L. et al. (1998). Natural killer cells and tumor therapy. Curr. Topics Microbiol. Immunol. 230: 221–244.

    CAS  Google Scholar 

  • Whiteside, T.L. and Rabinowich, H. (1998). The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol. Immunother. 46: 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Whiteside, T.L. (2002). Tumor-induced death of immune cells: its mechanisms and consequences. Sem. Cancer Biol. 12: 43–50.

    Article  CAS  Google Scholar 

  • Whiteside, T.L. (2004). Down-regulation of ζ chain expression in T cells: A biomarker of prognosis in cancer? Cancer Immunol. Immunother. 53: 865–876.

    PubMed  CAS  Google Scholar 

  • Whiteside, T.L. et al. (2004). Antigen processing machinery (APM) in human dendritic cells: up-regulation by maturation and down regulation by tumor cells. J. Immunol. 173: 1526–1534.

    PubMed  CAS  Google Scholar 

  • Whiteside, T.L. et al. (2005). ‘Tumor induced immune suppression and immune escape: Mechanisms and possible solutions’ in: Monitoring T cell Directed Vaccine Trials in Cancer Patients. D. Nagorsen and F. Manincola (eds) in press.

    Google Scholar 

  • Whitford, P. et al. (1990). Flow cytometric analysis of tumour infiltrating lymphocytes in breast cancer. Br. J. Cancer 62: 971–975.

    Article  PubMed  CAS  Google Scholar 

  • Woo, E.Y. et al. (2001). Regulatory CD4+ CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late stage ovarian cancer. Cancer Res. 61: 4766–4772.

    PubMed  CAS  Google Scholar 

  • Zhang, L. et al. (1997). Gene expression profiles in normal and cancer cells. Science 276: 1268–1272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Whiteside, T.L. (2006). The Role of Immune Cells in the Tumor Microenvironment. In: Dalgleish, A.G., Haefner, B. (eds) The Link Between Inflammation and Cancer. Cancer Treatment and Research, vol 130. Springer, Boston, MA. https://doi.org/10.1007/0-387-26283-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-26283-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26282-6

  • Online ISBN: 978-0-387-26283-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics