Skip to main content
Top
Published in: European Radiology Experimental 1/2018

Open Access 01-12-2018 | Narrative review

Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine

Authors: Filippo Pesapane, Marina Codari, Francesco Sardanelli

Published in: European Radiology Experimental | Issue 1/2018

Login to get access

Abstract

One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008 to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal, cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital role in multidisciplinary clinical teams.
Literature
1.
go back to reference Lakhani P, Prater AB, Hutson RK et al (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15:350–359CrossRef Lakhani P, Prater AB, Hutson RK et al (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15:350–359CrossRef
2.
go back to reference Russell S, Bohannon J (2015) Artificial intelligence. Fears of an AI pioneer. Science 349:252CrossRef Russell S, Bohannon J (2015) Artificial intelligence. Fears of an AI pioneer. Science 349:252CrossRef
3.
go back to reference Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRef Chartrand G, Cheng PM, Vorontsov E et al (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131CrossRef
4.
go back to reference Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229CrossRef Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3:210–229CrossRef
5.
go back to reference Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18:570–584CrossRef Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18:570–584CrossRef
6.
7.
go back to reference King BF Jr (2017) Guest editorial: discovery and artificial intelligence. AJR Am J Roentgenol 209:1189–1190CrossRef King BF Jr (2017) Guest editorial: discovery and artificial intelligence. AJR Am J Roentgenol 209:1189–1190CrossRef
8.
go back to reference Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515CrossRef Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515CrossRef
12.
go back to reference Jha S, Topol EJ (2016) Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316:2353–2354CrossRef Jha S, Topol EJ (2016) Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316:2353–2354CrossRef
13.
go back to reference Sardanelli F, Hunink MG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence-based radiology: why and how? Eur Radiol 20:1–15CrossRef Sardanelli F, Hunink MG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence-based radiology: why and how? Eur Radiol 20:1–15CrossRef
14.
go back to reference Dodd JD (2007) Evidence-based practice in radiology: steps 3 and 4--appraise and apply diagnostic radiology literature. Radiology 242:342–354CrossRef Dodd JD (2007) Evidence-based practice in radiology: steps 3 and 4--appraise and apply diagnostic radiology literature. Radiology 242:342–354CrossRef
15.
go back to reference Azavedo E, Zackrisson S, Mejàre I, Heibert Arnlind M (2012) Is single reading with computer-aided detection (CAD) as good as double reading in mammography screening? A systematic review. BMC Med Imaging 12:22CrossRef Azavedo E, Zackrisson S, Mejàre I, Heibert Arnlind M (2012) Is single reading with computer-aided detection (CAD) as good as double reading in mammography screening? A systematic review. BMC Med Imaging 12:22CrossRef
16.
go back to reference Dheeba J, Albert Singh N, Tamil Selvi S (2014) Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52CrossRef Dheeba J, Albert Singh N, Tamil Selvi S (2014) Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J Biomed Inform 49:45–52CrossRef
17.
go back to reference Kohli M, Prevedello LM, Filice RW, Geis JR (2017) Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 208:754–760CrossRef Kohli M, Prevedello LM, Filice RW, Geis JR (2017) Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 208:754–760CrossRef
18.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
19.
go back to reference Sardanelli F, Di Leo G (2009) Reproducibility: Intraobserver and Interobserver variability. In: Springer (ed) Biostatistics for radiologists - planning, performing, and writing a radiologic study, pp 125–140CrossRef Sardanelli F, Di Leo G (2009) Reproducibility: Intraobserver and Interobserver variability. In: Springer (ed) Biostatistics for radiologists - planning, performing, and writing a radiologic study, pp 125–140CrossRef
20.
go back to reference Sardanelli F, Ali M, Hunink MG, Houssami N, Sconfienza LM, Di Leo G (2018) To share or not to share? Expected pros and cons of data sharing in radiological research. Eur Radiol 28:2328–2335CrossRef Sardanelli F, Ali M, Hunink MG, Houssami N, Sconfienza LM, Di Leo G (2018) To share or not to share? Expected pros and cons of data sharing in radiological research. Eur Radiol 28:2328–2335CrossRef
21.
go back to reference Krittanawong C (2018) The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 48:e13–e14CrossRef Krittanawong C (2018) The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 48:e13–e14CrossRef
22.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef
23.
go back to reference Yip SSF, Parmar C, Kim J, Huynh E, Mak RH, Aerts H (2017) Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol 97:8–15CrossRef Yip SSF, Parmar C, Kim J, Huynh E, Mak RH, Aerts H (2017) Impact of experimental design on PET radiomics in predicting somatic mutation status. Eur J Radiol 97:8–15CrossRef
24.
go back to reference Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43CrossRef Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43CrossRef
25.
go back to reference Sutton EJ, Huang EP, Drukker K et al (2017) Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes. Eur Radiol Exp 1:22CrossRef Sutton EJ, Huang EP, Drukker K et al (2017) Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes. Eur Radiol Exp 1:22CrossRef
26.
go back to reference Becker AS, Schneider MA, Wurnig MC, Wagner M, Clavien PA, Boss A (2018) Radiomics of liver MRI predict metastases in mice. Eur Radiol Exp 2:11CrossRef Becker AS, Schneider MA, Wurnig MC, Wagner M, Clavien PA, Boss A (2018) Radiomics of liver MRI predict metastases in mice. Eur Radiol Exp 2:11CrossRef
27.
go back to reference Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589CrossRef Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589CrossRef
28.
go back to reference Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef
29.
go back to reference Rahmim A, Salimpour Y, Jain S et al (2016) Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. Neuroimage Clin 12:e1–e9CrossRef Rahmim A, Salimpour Y, Jain S et al (2016) Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. Neuroimage Clin 12:e1–e9CrossRef
30.
go back to reference Pesapane F, Patella F, Fumarola EM et al (2017) Intravoxel incoherent motion (IVIM) diffusion weighted imaging (DWI) in the Periferic prostate cancer detection and stratification. Med Oncol 34:35CrossRef Pesapane F, Patella F, Fumarola EM et al (2017) Intravoxel incoherent motion (IVIM) diffusion weighted imaging (DWI) in the Periferic prostate cancer detection and stratification. Med Oncol 34:35CrossRef
31.
go back to reference Fusco R, Di Marzo M, Sansone C, Sansone M, Petrillo A (2017) Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system. Eur Radiol Exp 1:10CrossRef Fusco R, Di Marzo M, Sansone C, Sansone M, Petrillo A (2017) Breast DCE-MRI: lesion classification using dynamic and morphological features by means of a multiple classifier system. Eur Radiol Exp 1:10CrossRef
33.
go back to reference King AD, Chow KK, Yu KH et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 266:531–538CrossRef King AD, Chow KK, Yu KH et al (2013) Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 266:531–538CrossRef
34.
go back to reference Peng SL, Chen CF, Liu HL et al (2013) Analysis of parametric histogram from dynamic contrast-enhanced MRI: application in evaluating brain tumor response to radiotherapy. NMR Biomed 26:443–450CrossRef Peng SL, Chen CF, Liu HL et al (2013) Analysis of parametric histogram from dynamic contrast-enhanced MRI: application in evaluating brain tumor response to radiotherapy. NMR Biomed 26:443–450CrossRef
35.
go back to reference Dey D, Commandeur F (2017) Radiomics to identify high-risk atherosclerotic plaque from computed tomography: the power of quantification. Circ Cardiovasc Imaging. 10:e007254 Dey D, Commandeur F (2017) Radiomics to identify high-risk atherosclerotic plaque from computed tomography: the power of quantification. Circ Cardiovasc Imaging. 10:e007254
36.
go back to reference Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on Radiomic techniques. J Thorac Imaging 33:26–34CrossRef Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P (2018) Cardiac computed tomography radiomics: a comprehensive review on Radiomic techniques. J Thorac Imaging 33:26–34CrossRef
37.
go back to reference Sachs PB, Gassert G, Cain M, Rubinstein D, Davey M, Decoteau D (2013) Imaging study protocol selection in the electronic medical record. J Am Coll Radiol 10:220–222CrossRef Sachs PB, Gassert G, Cain M, Rubinstein D, Davey M, Decoteau D (2013) Imaging study protocol selection in the electronic medical record. J Am Coll Radiol 10:220–222CrossRef
38.
go back to reference Chen H, Zhang Y, Zhang W et al (2017) Low-dose CT via convolutional neural network. Biomed Opt Express 8:679–694CrossRef Chen H, Zhang Y, Zhang W et al (2017) Low-dose CT via convolutional neural network. Biomed Opt Express 8:679–694CrossRef
39.
go back to reference Golkov V, Dosovitskiy A, Sperl JI et al (2016) Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 35:1344–1351CrossRef Golkov V, Dosovitskiy A, Sperl JI et al (2016) Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 35:1344–1351CrossRef
40.
go back to reference Verghese A, Shah NH, Harrington RA (2018) What this computer needs is a physician: humanism and artificial intelligence. JAMA 319:19–20CrossRef Verghese A, Shah NH, Harrington RA (2018) What this computer needs is a physician: humanism and artificial intelligence. JAMA 319:19–20CrossRef
41.
go back to reference Chockley K, Emanuel E (2016) The end of radiology? Three threats to the future practice of radiology. J Am Coll Radiol 13:1415–1420CrossRef Chockley K, Emanuel E (2016) The end of radiology? Three threats to the future practice of radiology. J Am Coll Radiol 13:1415–1420CrossRef
42.
go back to reference Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219CrossRef Obermeyer Z, Emanuel EJ (2016) Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219CrossRef
45.
go back to reference Sardanelli F (2017) Trends in radiology and experimental research. Eur Radiol Exp 1:1CrossRef Sardanelli F (2017) Trends in radiology and experimental research. Eur Radiol Exp 1:1CrossRef
46.
go back to reference Recht M, Bryan RN (2017) Artificial intelligence: threat or boon to radiologists? J Am Coll Radiol 14:1476–1480CrossRef Recht M, Bryan RN (2017) Artificial intelligence: threat or boon to radiologists? J Am Coll Radiol 14:1476–1480CrossRef
47.
go back to reference Becker AS, Blüthgen C, Phi van VD et al (2018) Detection of tuberculosis patterns in digital photographs of chest x-ray images using deep learning: feasibility study. Int J Tuberc Lung Dis 22:328–335CrossRef Becker AS, Blüthgen C, Phi van VD et al (2018) Detection of tuberculosis patterns in digital photographs of chest x-ray images using deep learning: feasibility study. Int J Tuberc Lung Dis 22:328–335CrossRef
48.
go back to reference Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A (2018) Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol 91:20170576PubMed Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A (2018) Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol 91:20170576PubMed
49.
go back to reference Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol 52:434–440CrossRef Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A (2017) Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Investig Radiol 52:434–440CrossRef
50.
go back to reference Cheng JZ, Ni D, Chou YH et al (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6:24454CrossRef Cheng JZ, Ni D, Chou YH et al (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6:24454CrossRef
51.
go back to reference Lu X, Yang Y, Wu F et al (2016) Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 95:e3973CrossRef Lu X, Yang Y, Wu F et al (2016) Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 95:e3973CrossRef
52.
go back to reference Li R, Zhang W, Suk HI et al (2014) Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv 17:305–312PubMedPubMedCentral Li R, Zhang W, Suk HI et al (2014) Deep learning based imaging data completion for improved brain disease diagnosis. Med Image Comput Comput Assist Interv 17:305–312PubMedPubMedCentral
53.
go back to reference Korfiatis P, Kline TL, Coufalova L et al (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835–2844CrossRef Korfiatis P, Kline TL, Coufalova L et al (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835–2844CrossRef
54.
go back to reference Matsuo K, Purushotham S, Moeini A et al (2017) A pilot study in using deep learning to predict limited life expectancy in women with recurrent cervical cancer. Am J Obstet Gynecol 217:703–705CrossRef Matsuo K, Purushotham S, Moeini A et al (2017) A pilot study in using deep learning to predict limited life expectancy in women with recurrent cervical cancer. Am J Obstet Gynecol 217:703–705CrossRef
55.
go back to reference Obrzut B, Kusy M, Semczuk A, Obrzut M, Kluska J (2017) Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC Cancer 17:840CrossRef Obrzut B, Kusy M, Semczuk A, Obrzut M, Kluska J (2017) Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC Cancer 17:840CrossRef
56.
go back to reference van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP (2017) Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 13:361–369CrossRef van der Burgh HK, Schmidt R, Westeneng HJ, de Reus MA, van den Berg LH, van den Heuvel MP (2017) Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis. Neuroimage Clin 13:361–369CrossRef
57.
go back to reference Nance JW Jr, Meenan C, Nagy PG (2013) The future of the radiology information system. AJR Am J Roentgenol 200:1064–1070CrossRef Nance JW Jr, Meenan C, Nagy PG (2013) The future of the radiology information system. AJR Am J Roentgenol 200:1064–1070CrossRef
58.
go back to reference Chaudhary K, Poirion OB, Lu L, Garmire LX (2018) Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 24:1248–1259CrossRef Chaudhary K, Poirion OB, Lu L, Garmire LX (2018) Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 24:1248–1259CrossRef
59.
go back to reference Abajian A, Murali N, Savic LJ et al (2018) Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept. J Vasc Interv Radiol 29:850–857CrossRef Abajian A, Murali N, Savic LJ et al (2018) Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning-an artificial intelligence concept. J Vasc Interv Radiol 29:850–857CrossRef
60.
go back to reference El-Sayed ME, Rakha EA, Reed J, Lee AH, Evans AJ, Ellis IO (2008) Predictive value of needle core biopsy diagnoses of lesions of uncertain malignant potential (B3) in abnormalities detected by mammographic screening. Histopathology 53:650–657CrossRef El-Sayed ME, Rakha EA, Reed J, Lee AH, Evans AJ, Ellis IO (2008) Predictive value of needle core biopsy diagnoses of lesions of uncertain malignant potential (B3) in abnormalities detected by mammographic screening. Histopathology 53:650–657CrossRef
61.
go back to reference Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52CrossRef Itu L, Rapaka S, Passerini T et al (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol (1985) 121:42–52CrossRef
62.
go back to reference Nakajima K, Okuda K, Watanabe S et al (2018) Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann Nucl Med 32:303–310CrossRef Nakajima K, Okuda K, Watanabe S et al (2018) Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann Nucl Med 32:303–310CrossRef
63.
go back to reference Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251CrossRef Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251CrossRef
64.
go back to reference Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35:1252–1261CrossRef Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35:1252–1261CrossRef
65.
go back to reference Makris GC, Uberoi R (2016) Interventional radiology-the future: evolution or extinction? Cardiovasc Intervent Radiol 39:1789–1790CrossRef Makris GC, Uberoi R (2016) Interventional radiology-the future: evolution or extinction? Cardiovasc Intervent Radiol 39:1789–1790CrossRef
66.
go back to reference Kwan SW, Talenfeld AD, Brunner MC (2016) The top three health care developments impacting the practice of interventional radiology in the next decade. AJR Am J Roentgenol 19:1–6 Kwan SW, Talenfeld AD, Brunner MC (2016) The top three health care developments impacting the practice of interventional radiology in the next decade. AJR Am J Roentgenol 19:1–6
67.
go back to reference Kwan SW, Fidelman N, Ma E, Kerlan RK Jr, Yao FY (2012) Imaging predictors of the response to transarterial chemoembolization in patients with hepatocellular carcinoma: a radiological-pathological correlation. Liver Transpl 18:727–736CrossRef Kwan SW, Fidelman N, Ma E, Kerlan RK Jr, Yao FY (2012) Imaging predictors of the response to transarterial chemoembolization in patients with hepatocellular carcinoma: a radiological-pathological correlation. Liver Transpl 18:727–736CrossRef
68.
go back to reference Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131:129–133CrossRef Miller DD, Brown EW (2018) Artificial intelligence in medical practice: the question to the answer? Am J Med 131:129–133CrossRef
70.
go back to reference Francavilla ML, Arleo EK, Bluth EI, Straus CM, Reddy S, Recht MP (2016) Surveying academic radiology department chairs regarding new and effective strategies for medical student recruitment. AJR Am J Roentgenol 207:1171–1175CrossRef Francavilla ML, Arleo EK, Bluth EI, Straus CM, Reddy S, Recht MP (2016) Surveying academic radiology department chairs regarding new and effective strategies for medical student recruitment. AJR Am J Roentgenol 207:1171–1175CrossRef
71.
go back to reference Liew C (2018) The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol 102:152–156CrossRef Liew C (2018) The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol 102:152–156CrossRef
73.
go back to reference Lisboa PJ, Taktak AF (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19:408–415CrossRef Lisboa PJ, Taktak AF (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19:408–415CrossRef
74.
go back to reference Ravi D, Wong C, Deligianni F et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inform 21:4–21CrossRef Ravi D, Wong C, Deligianni F et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inform 21:4–21CrossRef
Metadata
Title
Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine
Authors
Filippo Pesapane
Marina Codari
Francesco Sardanelli
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
European Radiology Experimental / Issue 1/2018
Electronic ISSN: 2509-9280
DOI
https://doi.org/10.1186/s41747-018-0061-6

Other articles of this Issue 1/2018

European Radiology Experimental 1/2018 Go to the issue