Skip to main content
Top
Published in: Maxillofacial Plastic and Reconstructive Surgery 1/2019

Open Access 01-12-2019 | Injectable Filler | Research

Effect of bFGF and fibroblasts combined with hyaluronic acid-based hydrogels on soft tissue augmentation: an experimental study in rats

Authors: Su Yeon Lee, Yongdoo Park, Soon Jung Hwang

Published in: Maxillofacial Plastic and Reconstructive Surgery | Issue 1/2019

Login to get access

Abstract

Background

Hyaluronic acid (HA) has been applied as a primary biomaterial for temporary soft tissue augmentation and as a carrier for cells and the delivery of growth factors to promote tissue regeneration. Although HA derivatives are the most versatile soft tissue fillers on the market, they are resorbed early, within 3 to 12 months. To overcome their short duration, they can be combined with cells or growth factors. The purpose of this study was to investigate the stimulating effects of human fibroblasts and basic fibroblast growth factors (bFGF) on collagen synthesis during soft tissue augmentation by HA hydrogels and to compare these with the effects of a commercial HA derivative (Restylane®).

Methods

The hydrogel group included four conditions. The first condition consisted of hydrogel (H) alone as a negative control, and the other three conditions were bFGF-containing hydrogel (HB), human fibroblast-containing hydrogel (HF), and human fibroblast/bFGF-containing hydrogel (HBF). In the Restylane® group (HGF), the hydrogel was replaced with Restylane® (R, RB, RF, RBF). The gels were implanted subdermally into the back of each nude mouse at four separate sites. Twelve nude mice were used for the hydrogel (n = 6) and Restylane® groups (n = 6). The specimens were harvested 8 weeks after implantation and assessed histomorphometrically, and collagen synthesis was evaluated by RT-PCR.

Results

The hydrogel group showed good biocompatibility with the surrounding tissues and stimulated the formation of a fibrous matrix. HBF and HF showed significantly higher soft tissue synthesis compared to H (p < 0.05), and human collagen type I was well expressed in HB, HF, and HBF; HBF showed the strongest expression. The Restylane® filler was surrounded by a fibrous capsule without any soft tissue infiltration from the neighboring tissue, and collagen synthesis within the Restylane® filler could not be observed, even though no inflammatory reactions were observed.

Conclusion

This study revealed that HA-based hydrogel alone or hydrogel combined with fibroblasts and/or bFGF can be effectively used for soft tissue augmentation.
Literature
1.
go back to reference Kasper DA, Cohen JL, Saxena A, Morganroth GS (2008) Fillers for postsurgical depressed scars after skin cancer reconstruction. J Drugs Dermatol 7:486–487PubMed Kasper DA, Cohen JL, Saxena A, Morganroth GS (2008) Fillers for postsurgical depressed scars after skin cancer reconstruction. J Drugs Dermatol 7:486–487PubMed
2.
go back to reference Fagien S, Klein AW (2007) A brief overview and history of temporary fillers: evolution, advantages, and limitations. Plast Reconstr Surg 120:8S–16SPubMedCrossRef Fagien S, Klein AW (2007) A brief overview and history of temporary fillers: evolution, advantages, and limitations. Plast Reconstr Surg 120:8S–16SPubMedCrossRef
4.
go back to reference Fernandez EM, Mackley CL (2006) Soft tissue augmentation: a review. J Drugs Dermatol 5:630–641PubMed Fernandez EM, Mackley CL (2006) Soft tissue augmentation: a review. J Drugs Dermatol 5:630–641PubMed
5.
go back to reference Eppley BL, Dadvand B (2006) Injectable soft-tissue fillers: clinical overview. Plast Reconstr Surg 118:98e–106eCrossRefPubMed Eppley BL, Dadvand B (2006) Injectable soft-tissue fillers: clinical overview. Plast Reconstr Surg 118:98e–106eCrossRefPubMed
6.
go back to reference Fernandez-Cossio S, Castano-Oreja MT (2006) Biocompatibility of two novel dermal fillers: histological evaluation of implants of a hyaluronic acid filler and a polyacrylamide filler. Plast Reconstr Surg 117:1789–1796PubMedCrossRef Fernandez-Cossio S, Castano-Oreja MT (2006) Biocompatibility of two novel dermal fillers: histological evaluation of implants of a hyaluronic acid filler and a polyacrylamide filler. Plast Reconstr Surg 117:1789–1796PubMedCrossRef
7.
go back to reference Jeyanthi R, Rao KP (1990) In vivo biocompatibility of collagen-poly (hydroxyethyl methacrylate) hydrogels. Biomaterials 11:238–243PubMedCrossRef Jeyanthi R, Rao KP (1990) In vivo biocompatibility of collagen-poly (hydroxyethyl methacrylate) hydrogels. Biomaterials 11:238–243PubMedCrossRef
8.
go back to reference Brandt FS, Cazzaniga A (2007) Hyaluronic acid fillers: Restylane and Perlane. Facial Plast Surg Clin North Am 15(63–76):vii Brandt FS, Cazzaniga A (2007) Hyaluronic acid fillers: Restylane and Perlane. Facial Plast Surg Clin North Am 15(63–76):vii
10.
go back to reference Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD (2005) Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil 13:318–329CrossRef Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD (2005) Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil 13:318–329CrossRef
11.
go back to reference Nuttelman CR, Tripodi MC, Anseth KS (2006) Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J Biomed Mater Res A 76:183–195PubMedCrossRef Nuttelman CR, Tripodi MC, Anseth KS (2006) Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J Biomed Mater Res A 76:183–195PubMedCrossRef
12.
go back to reference Hong L, Tabata Y, Yamamoto M, Miyamoto S, Yamada K, Hashimoto N et al (1998) Comparison of bone regeneration in a rabbit skull defect by recombinant human BMP-2 incorporated in biodegradable hydrogel and in solution. J Biomater Sci Polym Ed 9:1001–1014PubMedCrossRef Hong L, Tabata Y, Yamamoto M, Miyamoto S, Yamada K, Hashimoto N et al (1998) Comparison of bone regeneration in a rabbit skull defect by recombinant human BMP-2 incorporated in biodegradable hydrogel and in solution. J Biomater Sci Polym Ed 9:1001–1014PubMedCrossRef
13.
go back to reference Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M et al (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26:3527–3536PubMedCrossRef Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M et al (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26:3527–3536PubMedCrossRef
14.
go back to reference Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S et al (2005) Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng 11:1224–1233PubMedCrossRef Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S et al (2005) Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue Eng 11:1224–1233PubMedCrossRef
15.
go back to reference Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G et al (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28:1830–1837PubMedCrossRef Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G et al (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28:1830–1837PubMedCrossRef
16.
go back to reference Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029PubMedCrossRef Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 80:2025–2029PubMedCrossRef
17.
go back to reference Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818PubMedCrossRef Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ (1999) Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg 103:1809–1818PubMedCrossRef
18.
go back to reference Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950PubMedCrossRef Oest ME, Dupont KM, Kong HJ, Mooney DJ, Guldberg RE (2007) Quantitative assessment of scaffold and growth factor-mediated repair of critically sized bone defects. J Orthop Res 25:941–950PubMedCrossRef
19.
go back to reference Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–5998PubMedCrossRef Yang F, Williams CG, Wang DA, Lee H, Manson PN, Elisseeff J (2005) The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26:5991–5998PubMedCrossRef
21.
go back to reference Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53:93–103PubMedCrossRef Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53:93–103PubMedCrossRef
22.
go back to reference You HJ, Namgoong S, Rhee SM, Han SK (2016) Tracking and increasing viability of topically injected fibroblasts suspended in hyaluronic acid filler. J Craniofac Surg 27:521–525PubMedCrossRef You HJ, Namgoong S, Rhee SM, Han SK (2016) Tracking and increasing viability of topically injected fibroblasts suspended in hyaluronic acid filler. J Craniofac Surg 27:521–525PubMedCrossRef
23.
go back to reference Solakoglu S, Tiryaki T, Ciloglu SE (2008) The effect of cultured autologous fibroblasts on longevity of cross-linked hyaluronic acid used as a filler. Aesthet Surg J 28:412–416PubMedCrossRef Solakoglu S, Tiryaki T, Ciloglu SE (2008) The effect of cultured autologous fibroblasts on longevity of cross-linked hyaluronic acid used as a filler. Aesthet Surg J 28:412–416PubMedCrossRef
24.
go back to reference Yoon ES, Han SK, Kim WK (2003) Advantages of the presence of living dermal fibroblasts within restylane for soft tissue augmentation. Ann Plast Surg 51:587–592PubMedCrossRef Yoon ES, Han SK, Kim WK (2003) Advantages of the presence of living dermal fibroblasts within restylane for soft tissue augmentation. Ann Plast Surg 51:587–592PubMedCrossRef
25.
go back to reference Moon KC, Kim KB, Han SK, Jeong SH, Dhong ES (2019) Assessment of long-term outcomes of soft-tissue augmentation by injecting fibroblasts suspended in hyaluronic acid filler. JAMA Facial Plast Surg 21:312–318PubMedCrossRefPubMedCentral Moon KC, Kim KB, Han SK, Jeong SH, Dhong ES (2019) Assessment of long-term outcomes of soft-tissue augmentation by injecting fibroblasts suspended in hyaluronic acid filler. JAMA Facial Plast Surg 21:312–318PubMedCrossRefPubMedCentral
26.
go back to reference Draelos ZD (2016) The effect of a combination of recombinant EGF cosmetic serum and a crosslinked hyaluronic acid serum as compared to a fibroblast-conditioned media serum on the appearance of aging skin. J Drugs Dermatol 15:738–741PubMed Draelos ZD (2016) The effect of a combination of recombinant EGF cosmetic serum and a crosslinked hyaluronic acid serum as compared to a fibroblast-conditioned media serum on the appearance of aging skin. J Drugs Dermatol 15:738–741PubMed
27.
go back to reference Hoben G, Schmidt VJ, Bannasch H, Horch RE (2011) Tissue augmentation with fibrin sealant and cultured fibroblasts: a preliminary study. Aesthetic Plast Surg 35:1009–1015PubMedCrossRef Hoben G, Schmidt VJ, Bannasch H, Horch RE (2011) Tissue augmentation with fibrin sealant and cultured fibroblasts: a preliminary study. Aesthetic Plast Surg 35:1009–1015PubMedCrossRef
28.
go back to reference Schmidt A, Ladage D, Schinköthe T, Klausmann U, Ulrichs C, Klinz FJ et al (2006) Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24:1750–1758PubMedCrossRef Schmidt A, Ladage D, Schinköthe T, Klausmann U, Ulrichs C, Klinz FJ et al (2006) Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 24:1750–1758PubMedCrossRef
29.
go back to reference Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H et al (2007) Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 16:119–129PubMedCrossRef Ozaki Y, Nishimura M, Sekiya K, Suehiro F, Kanawa M, Nikawa H et al (2007) Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells Dev 16:119–129PubMedCrossRef
30.
go back to reference Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image J. Biophotonics Int 11:36–42 Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image J. Biophotonics Int 11:36–42
31.
go back to reference Moscona R, Ullman Y, Har-Shai Y, Hirshowitz B (1989) Free-fat injections for the correction of hemifacial atrophy. Plast Reconstr Surg 84:501–507 discussion 8-9PubMedCrossRef Moscona R, Ullman Y, Har-Shai Y, Hirshowitz B (1989) Free-fat injections for the correction of hemifacial atrophy. Plast Reconstr Surg 84:501–507 discussion 8-9PubMedCrossRef
32.
go back to reference Horl HW, Feller AM, Biemer E (1991) Technique for liposuction fat reimplantation and long-term volume evaluation by magnetic resonance imaging. Ann Plast Surg 26:248–258PubMedCrossRef Horl HW, Feller AM, Biemer E (1991) Technique for liposuction fat reimplantation and long-term volume evaluation by magnetic resonance imaging. Ann Plast Surg 26:248–258PubMedCrossRef
33.
go back to reference Toledo LS, Mauad R (2006) Fat injection: a 20-year revision. Clin Plast Surg 33(47–53):vi Toledo LS, Mauad R (2006) Fat injection: a 20-year revision. Clin Plast Surg 33(47–53):vi
34.
go back to reference Matarasso SL (2006) The use of injectable collagens for aesthetic rejuvenation. Semin Cutan Med Surg 25:151–157PubMedCrossRef Matarasso SL (2006) The use of injectable collagens for aesthetic rejuvenation. Semin Cutan Med Surg 25:151–157PubMedCrossRef
35.
go back to reference Zimmermann US, Clerici TJ (2004) The histological aspects of fillers complications. Semin Cutan Med Surg 23:241–250PubMedCrossRef Zimmermann US, Clerici TJ (2004) The histological aspects of fillers complications. Semin Cutan Med Surg 23:241–250PubMedCrossRef
36.
go back to reference Lemperle G, Morhenn V, Charrier U (2003) Human histology and persistence of various injectable filler substances for soft tissue augmentation. Aesthetic Plast Surg 27:354–366 discussion 67CrossRefPubMed Lemperle G, Morhenn V, Charrier U (2003) Human histology and persistence of various injectable filler substances for soft tissue augmentation. Aesthetic Plast Surg 27:354–366 discussion 67CrossRefPubMed
37.
go back to reference Wei YT, Tian WM, Yu X, Cui FZ, Hou SP, Xu QY et al (2007) Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomed Mater 2:S142–S146PubMedCrossRef Wei YT, Tian WM, Yu X, Cui FZ, Hou SP, Xu QY et al (2007) Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomed Mater 2:S142–S146PubMedCrossRef
38.
go back to reference Zawko SA, Truong Q, Schmidt CE (2008) Drug-binding hydrogels of hyaluronic acid functionalized with beta-cyclodextrin. J Biomed Mater Res A 87:1044–1052PubMedCrossRef Zawko SA, Truong Q, Schmidt CE (2008) Drug-binding hydrogels of hyaluronic acid functionalized with beta-cyclodextrin. J Biomed Mater Res A 87:1044–1052PubMedCrossRef
39.
go back to reference Cai S, Liu Y, Zheng Shu X, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067PubMedCrossRef Cai S, Liu Y, Zheng Shu X, Prestwich GD (2005) Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26:6054–6067PubMedCrossRef
40.
go back to reference Fernandez-Cossio S, Leon-Mateos A, Sampedro FG, Oreja MT (2007) Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg 120:1161–1169PubMedCrossRef Fernandez-Cossio S, Leon-Mateos A, Sampedro FG, Oreja MT (2007) Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg 120:1161–1169PubMedCrossRef
41.
go back to reference von Buelow S, von Heimburg D, Pallua N (2005) Efficacy and safety of polyacrylamide hydrogel for facial soft-tissue augmentation. Plast Reconstr Surg 116:1137–1146 discussion 47-8CrossRef von Buelow S, von Heimburg D, Pallua N (2005) Efficacy and safety of polyacrylamide hydrogel for facial soft-tissue augmentation. Plast Reconstr Surg 116:1137–1146 discussion 47-8CrossRef
42.
go back to reference Bello G, Jackson IT, Keskin M, Kelly C, Dajani K, Studinger R et al (2007) The use of polyacrylamide gel in soft-tissue augmentation: an experimental assessment. Plast Reconstr Surg 119:1326–1336PubMedCrossRef Bello G, Jackson IT, Keskin M, Kelly C, Dajani K, Studinger R et al (2007) The use of polyacrylamide gel in soft-tissue augmentation: an experimental assessment. Plast Reconstr Surg 119:1326–1336PubMedCrossRef
43.
go back to reference Lahiri A, Waters R (2007) Experience with Bio-Alcamid, a new soft tissue endoprosthesis. J Plast Reconstr Aesthet Surg 60:663–667PubMedCrossRef Lahiri A, Waters R (2007) Experience with Bio-Alcamid, a new soft tissue endoprosthesis. J Plast Reconstr Aesthet Surg 60:663–667PubMedCrossRef
44.
go back to reference Ramires PA, Miccoli MA, Panzarini E, Dini L, Protopapa C (2005) In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation. J Biomed Mater Res B Appl Biomater 72:230–238PubMedCrossRef Ramires PA, Miccoli MA, Panzarini E, Dini L, Protopapa C (2005) In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation. J Biomed Mater Res B Appl Biomater 72:230–238PubMedCrossRef
45.
go back to reference Marler JJ, Guha A, Rowley J, Koka R, Mooney D, Upton J et al (2000) Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast Reconstr Surg 105:2049–2058PubMedCrossRef Marler JJ, Guha A, Rowley J, Koka R, Mooney D, Upton J et al (2000) Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast Reconstr Surg 105:2049–2058PubMedCrossRef
46.
go back to reference Loebsack A, Greene K, Wyatt S, Culberson C, Austin C, Beiler R et al (2001) In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J Biomed Mater Res 57:575–581PubMedCrossRef Loebsack A, Greene K, Wyatt S, Culberson C, Austin C, Beiler R et al (2001) In vivo characterization of a porous hydrogel material for use as a tissue bulking agent. J Biomed Mater Res 57:575–581PubMedCrossRef
47.
go back to reference Halberstadt C, Austin C, Rowley J, Culberson C, Loebsack A, Wyatt S et al (2002) A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng 8:309–319PubMedCrossRef Halberstadt C, Austin C, Rowley J, Culberson C, Loebsack A, Wyatt S et al (2002) A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng 8:309–319PubMedCrossRef
48.
go back to reference Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321PubMedCrossRef Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321PubMedCrossRef
49.
go back to reference Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83:7297–7301PubMedPubMedCentralCrossRef Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83:7297–7301PubMedPubMedCentralCrossRef
50.
go back to reference McGee GS, Davidson JM, Buckley A, Sommer A, Woodward SC, Aquino AM et al (1988) Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res 45:145–153PubMedCrossRef McGee GS, Davidson JM, Buckley A, Sommer A, Woodward SC, Aquino AM et al (1988) Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res 45:145–153PubMedCrossRef
51.
go back to reference Schweigerer L (1988) Basic fibroblast growth factor as a wound healing hormone. Trends Pharmacol Sci 9:427–428PubMedCrossRef Schweigerer L (1988) Basic fibroblast growth factor as a wound healing hormone. Trends Pharmacol Sci 9:427–428PubMedCrossRef
52.
go back to reference Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2006) Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J Control Release 116:e88–e90PubMedCrossRef Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2006) Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J Control Release 116:e88–e90PubMedCrossRef
53.
go back to reference Wong T, McGrath JA, Navsaria H (2007) The role of fibroblasts in tissue engineering and regeneration. Br J Dermatol 156:1149–1155PubMedCrossRef Wong T, McGrath JA, Navsaria H (2007) The role of fibroblasts in tissue engineering and regeneration. Br J Dermatol 156:1149–1155PubMedCrossRef
54.
go back to reference Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y et al (2004) Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25:699–706PubMedCrossRef Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y et al (2004) Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials 25:699–706PubMedCrossRef
55.
go back to reference Keller G, Sebastian J, Lacombe U, Toft K, Lask G, Revazova E (2000) Safety of injectable autologous human fibroblasts. Bull Exp Biol Med 130:786–789PubMedCrossRef Keller G, Sebastian J, Lacombe U, Toft K, Lask G, Revazova E (2000) Safety of injectable autologous human fibroblasts. Bull Exp Biol Med 130:786–789PubMedCrossRef
56.
go back to reference Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, phase III clinical trial. Dermatol Surg 33:263–268PubMed Weiss RA, Weiss MA, Beasley KL, Munavalli G (2007) Autologous cultured fibroblast injection for facial contour deformities: a prospective, placebo-controlled, phase III clinical trial. Dermatol Surg 33:263–268PubMed
57.
go back to reference Han SK, Shin SH, Kang HJ, Kim WK (2006) Augmentation rhinoplasty using injectable tissue-engineered soft tissue: a pilot study. Ann Plast Surg 56:251–255CrossRefPubMed Han SK, Shin SH, Kang HJ, Kim WK (2006) Augmentation rhinoplasty using injectable tissue-engineered soft tissue: a pilot study. Ann Plast Surg 56:251–255CrossRefPubMed
58.
go back to reference Park DJ, Choi JH, Kim YJ, Kim JH, Kim KT (2006) Nasal augmentation using injectable alginate and mesenchymal stem cells in the rabbit. Am J Rhinol 20:520–523PubMedCrossRef Park DJ, Choi JH, Kim YJ, Kim JH, Kim KT (2006) Nasal augmentation using injectable alginate and mesenchymal stem cells in the rabbit. Am J Rhinol 20:520–523PubMedCrossRef
Metadata
Title
Effect of bFGF and fibroblasts combined with hyaluronic acid-based hydrogels on soft tissue augmentation: an experimental study in rats
Authors
Su Yeon Lee
Yongdoo Park
Soon Jung Hwang
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Maxillofacial Plastic and Reconstructive Surgery / Issue 1/2019
Electronic ISSN: 2288-8586
DOI
https://doi.org/10.1186/s40902-019-0234-0

Other articles of this Issue 1/2019

Maxillofacial Plastic and Reconstructive Surgery 1/2019 Go to the issue