Skip to main content
Top
Published in: International Journal of Implant Dentistry 1/2019

Open Access 01-12-2019 | Computed Tomography | Research

Relation between insertion torque and tactile, visual, and rescaled gray value measures of bone quality: a cross-sectional clinical study with short implants

Authors: Diego Fernandes Triches, Fernando Rizzo Alonso, Luis André Mezzomo, Danilo Renato Schneider, Eduardo Aydos Villarinho, Maria Ivete Rockenbach, Eduardo Rolim Teixeira, Rosemary Sadami Shinkai

Published in: International Journal of Implant Dentistry | Issue 1/2019

Login to get access

Abstract

Background

This study assessed the relationship between insertion torque and bone quality evaluated during surgery and in preoperative computed tomographic (CT) images analyzed either visually or by rescaled mean gray values (MGVs). The study also tested the correlation between the clinical and radiographic measures of bone quality.

Methods

The consecutive sample was composed of 45 short implants (4.1 × 6 mm) placed in the posterior region of 20 patients. Intra-surgical tactile bone quality, based on the classification of bone types by Lekholm and Zarb, and insertion torque were recorded during the implant placement. Visual bone quality and normalized MGV were assessed in standardized axial, coronal, and sagittal sections of preoperative CT images. Data were analyzed by ANOVA and Spearman correlation (alpha = 0.05).

Results

Insertion torque was associated with all assessment methods of bone quality (tactile, CT visual, MGV). A moderate correlation was found among all methods of bone quality, except for CT visual assessment and tactile evaluation. MGVs varied as a function of arch, dental region, insertion torque, and bone types.

Conclusions

The results suggest that bone quality measures affect primary stability as recorded by insertion torque, and the assessment methods are consistently related.
Literature
1.
go back to reference Degidi M, Daprile G, Piattelli A. Determination of primary stability: a comparison of the surgeon’s perception and objective measurements. Int J Oral Maxillofac Implants. 2010;25:558–61.PubMed Degidi M, Daprile G, Piattelli A. Determination of primary stability: a comparison of the surgeon’s perception and objective measurements. Int J Oral Maxillofac Implants. 2010;25:558–61.PubMed
3.
go back to reference Ribeiro-Rotta RF, Lindh C, Pereira AC, Rohlin M. Ambiguity in bone tissue characteristics as presented in studies on dental implant planning and placement: a systematic review. Clin Oral Implants Res. 2011;22:789–801.CrossRef Ribeiro-Rotta RF, Lindh C, Pereira AC, Rohlin M. Ambiguity in bone tissue characteristics as presented in studies on dental implant planning and placement: a systematic review. Clin Oral Implants Res. 2011;22:789–801.CrossRef
4.
go back to reference Valiyaparambil JV, Yamany I, Ortiz D, Shafer DM, Pendrys D, Freilich M, et al. Bone quality evaluation: comparison of cone beam computed tomography and subjective surgical assessment. Int J Oral Maxillofac Implants. 2012;27:1271–7.PubMed Valiyaparambil JV, Yamany I, Ortiz D, Shafer DM, Pendrys D, Freilich M, et al. Bone quality evaluation: comparison of cone beam computed tomography and subjective surgical assessment. Int J Oral Maxillofac Implants. 2012;27:1271–7.PubMed
5.
go back to reference Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albektsson T, editors. Tissue integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985. p. 199–209. Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albektsson T, editors. Tissue integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence; 1985. p. 199–209.
6.
go back to reference Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol. 1990;6:23–31.PubMed Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol. 1990;6:23–31.PubMed
7.
go back to reference Lindh C, Petersson A, Rohlin M. Assessment of the trabecular pattern before endosseous implant treatment: diagnostic outcome of periapical radiography in the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:335–43.CrossRef Lindh C, Petersson A, Rohlin M. Assessment of the trabecular pattern before endosseous implant treatment: diagnostic outcome of periapical radiography in the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:335–43.CrossRef
8.
go back to reference Trisi P, Rao W. Bone classification: clinical histomorphometric comparison. Clin Oral Implants Res. 1999;10:1–7.CrossRef Trisi P, Rao W. Bone classification: clinical histomorphometric comparison. Clin Oral Implants Res. 1999;10:1–7.CrossRef
9.
go back to reference Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE. Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res. 2008;10:238–44.PubMed Turkyilmaz I, Ozan O, Yilmaz B, Ersoy AE. Determination of bone quality of 372 implant recipient sites using Hounsfield unit from computerized tomography: a clinical study. Clin Implant Dent Relat Res. 2008;10:238–44.PubMed
10.
go back to reference Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone-beam computed tomography and the primary stability of dental implants. Clin Oral Implants Res. 2012;23:832–6.CrossRef Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone-beam computed tomography and the primary stability of dental implants. Clin Oral Implants Res. 2012;23:832–6.CrossRef
12.
go back to reference Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res. 2010;21:558–62.CrossRef Nomura Y, Watanabe H, Honda E, Kurabayashi T. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res. 2010;21:558–62.CrossRef
13.
go back to reference Reeves TE, Mah P, McDavid WD. Deriving Hounsfield units using gray levels in cone beam CT: a clinical application. Dentomaxillofac Radiol. 2012;41:500–8.CrossRef Reeves TE, Mah P, McDavid WD. Deriving Hounsfield units using gray levels in cone beam CT: a clinical application. Dentomaxillofac Radiol. 2012;41:500–8.CrossRef
15.
go back to reference Marquezan M, Osório A, Sant’Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012;23:767–74.CrossRef Marquezan M, Osório A, Sant’Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res. 2012;23:767–74.CrossRef
16.
go back to reference Makary C, Rebaudi A, Mokbel N, Naaman N. Peak insertion torque correlated to histologically and clinically evaluated bone density. Implant Dent. 2011;20:182–91.CrossRef Makary C, Rebaudi A, Mokbel N, Naaman N. Peak insertion torque correlated to histologically and clinically evaluated bone density. Implant Dent. 2011;20:182–91.CrossRef
17.
go back to reference Merheb J, Van Assche N, Coucke W, Jacobs R, Naert I, Quirynen M. Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin Oral Implants Res. 2010;21:612–7.CrossRef Merheb J, Van Assche N, Coucke W, Jacobs R, Naert I, Quirynen M. Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin Oral Implants Res. 2010;21:612–7.CrossRef
18.
go back to reference Miura K, editor. Bioimage data analysis. Weinheim: Wiley-VCH; 2016. p. 293. Miura K, editor. Bioimage data analysis. Weinheim: Wiley-VCH; 2016. p. 293.
19.
go back to reference Barone A, Covani U, Cornelini R, Gherlone E. Radiographic bone density around immediately loaded oral implants. Clin Oral Implants Res. 2003;14:610–5.CrossRef Barone A, Covani U, Cornelini R, Gherlone E. Radiographic bone density around immediately loaded oral implants. Clin Oral Implants Res. 2003;14:610–5.CrossRef
20.
go back to reference Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, et al. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2005;20:416–24.PubMed Aranyarachkul P, Caruso J, Gantes B, Schulz E, Riggs M, Dus I, et al. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int J Oral Maxillofac Implants. 2005;20:416–24.PubMed
21.
go back to reference Lee S, Gantes B, Riggs M, Crigger M. Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement. Int J Oral Maxillofac Implants. 2007;22:208–12.PubMed Lee S, Gantes B, Riggs M, Crigger M. Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement. Int J Oral Maxillofac Implants. 2007;22:208–12.PubMed
22.
go back to reference Song YD, Jun SH, Kwon JJ. Correlation between bone quality evaluated by cone-beam computerized tomography and implant primary stability. Int J Oral Maxillofac Implants. 2009;24:59–64.PubMed Song YD, Jun SH, Kwon JJ. Correlation between bone quality evaluated by cone-beam computerized tomography and implant primary stability. Int J Oral Maxillofac Implants. 2009;24:59–64.PubMed
23.
go back to reference Fuster-Torres MA, Peñarrocha-Diago M, Peñarrocha-Oltra D. Relationships between bone density values from cone beam computed tomography, maximum insertion torque, and resonance frequency analysis at implant placement: a pilot study. Int J Oral Maxillofac Implants. 2011;26:1051–6.PubMed Fuster-Torres MA, Peñarrocha-Diago M, Peñarrocha-Oltra D. Relationships between bone density values from cone beam computed tomography, maximum insertion torque, and resonance frequency analysis at implant placement: a pilot study. Int J Oral Maxillofac Implants. 2011;26:1051–6.PubMed
24.
go back to reference Kaya S, Yavuz I, Uysal I, Akkus Z. Measuring bone density in healing periapical lesions by using cone beam computed tomography: a clinical investigation. J Endod. 2012;38:28–31.CrossRef Kaya S, Yavuz I, Uysal I, Akkus Z. Measuring bone density in healing periapical lesions by using cone beam computed tomography: a clinical investigation. J Endod. 2012;38:28–31.CrossRef
25.
go back to reference Brosh T, Yekaterina BE, Pilo R, Shpack N, Geron S. Can cone beam CT predict the hardness of interradicular cortical bone? Head Face Med. 2014;10:12.CrossRef Brosh T, Yekaterina BE, Pilo R, Shpack N, Geron S. Can cone beam CT predict the hardness of interradicular cortical bone? Head Face Med. 2014;10:12.CrossRef
26.
go back to reference Tatli U, Salimov F, Kürkcü M, Akoğlan M, Kurtoğlu C. Does cone beam computed tomography-derived bone density give predictable data about stability changes of immediately loaded implants?: a 1-year resonance frequency follow-up study. J Craniofac Surg. 2014;25:e293–9.CrossRef Tatli U, Salimov F, Kürkcü M, Akoğlan M, Kurtoğlu C. Does cone beam computed tomography-derived bone density give predictable data about stability changes of immediately loaded implants?: a 1-year resonance frequency follow-up study. J Craniofac Surg. 2014;25:e293–9.CrossRef
27.
go back to reference Sennerby L, Andersson P, Pagliani L, Giani C, Moretti G, Molinari M, et al. Evaluation of a novel cone beam computed tomography scanner for bone density examinations in pre-operative 3D reconstructions and correlation with primary implant stability. Clin Implant Dent Relat Res. 2015;17:844–53.CrossRef Sennerby L, Andersson P, Pagliani L, Giani C, Moretti G, Molinari M, et al. Evaluation of a novel cone beam computed tomography scanner for bone density examinations in pre-operative 3D reconstructions and correlation with primary implant stability. Clin Implant Dent Relat Res. 2015;17:844–53.CrossRef
28.
go back to reference Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, et al. Variability of dental cone beam CT gray values for density estimations. Br J Radiol. 2013;86:20120135.CrossRef Pauwels R, Nackaerts O, Bellaiche N, Stamatakis H, Tsiklakis K, Walker A, et al. Variability of dental cone beam CT gray values for density estimations. Br J Radiol. 2013;86:20120135.CrossRef
29.
go back to reference Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using gray levels in cone beam computed tomography. Dentomaxillofac Radiol. 2010;39:323–35.CrossRef Mah P, Reeves TE, McDavid WD. Deriving Hounsfield units using gray levels in cone beam computed tomography. Dentomaxillofac Radiol. 2010;39:323–35.CrossRef
30.
go back to reference Magill D, Beckmann N, Felice MA, Yoo T, Luo M, Mupparapu M. Investigation of dental cone-beam CT pixel data and a modified method for conversion to Hounsfield unit (HU). Dentomaxillofac Radiol. 2018;47:20170321.CrossRef Magill D, Beckmann N, Felice MA, Yoo T, Luo M, Mupparapu M. Investigation of dental cone-beam CT pixel data and a modified method for conversion to Hounsfield unit (HU). Dentomaxillofac Radiol. 2018;47:20170321.CrossRef
31.
go back to reference González-García R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. 2013;24:871–9.CrossRef González-García R, Monje F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. 2013;24:871–9.CrossRef
Metadata
Title
Relation between insertion torque and tactile, visual, and rescaled gray value measures of bone quality: a cross-sectional clinical study with short implants
Authors
Diego Fernandes Triches
Fernando Rizzo Alonso
Luis André Mezzomo
Danilo Renato Schneider
Eduardo Aydos Villarinho
Maria Ivete Rockenbach
Eduardo Rolim Teixeira
Rosemary Sadami Shinkai
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Implant Dentistry / Issue 1/2019
Electronic ISSN: 2198-4034
DOI
https://doi.org/10.1186/s40729-019-0158-6

Other articles of this Issue 1/2019

International Journal of Implant Dentistry 1/2019 Go to the issue