Skip to main content
Top
Published in: Molecular and Cellular Pediatrics 1/2014

Open Access 01-12-2014 | Review

Proteostasis in pediatric pulmonary pathology

Authors: Silke Meiners, Korbinian Ballweg

Published in: Molecular and Cellular Pediatrics | Issue 1/2014

Login to get access

Abstract

Protein homeostasis describes the tight supervision of protein synthesis, correct protein maturation and folding, as well as the timely disposal of unwanted and damaged proteins by the ubiquitin-proteasome pathway or the lysosome-autophagy route. The cellular processes involved in preservation of protein homeostasis are collectively called proteostasis. Dysregulation of proteostasis is an emerging common pathomechanism for chronic lung diseases in the adult and aged patient. There is also rising evidence that impairment of protein homeostasis contributes to early sporadic disease onset in pediatric lung diseases beyond the well-known hereditary proteostasis disorders such as cystic fibrosis and alpha-1 antitrypsin (AAT) deficiency. Identifying the pathways that contribute to impaired proteostasis will provide new avenues for therapeutic interference with the pathogenesis of chronic lung diseases in the young and adult. Here, we introduce the concept of proteostasis and summarize available evidence on dysregulation of proteostasis pathways in pediatric and adult chronic lung diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Powers ET, Balch WE: Diversity in the origins of proteostasis networks — a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013, 14: 237–248. doi:10.1038/nrm3542 10.1038/nrm3542CrossRefPubMedPubMedCentral Powers ET, Balch WE: Diversity in the origins of proteostasis networks — a driver for protein function in evolution. Nat Rev Mol Cell Biol 2013, 14: 237–248. doi:10.1038/nrm3542 10.1038/nrm3542CrossRefPubMedPubMedCentral
2.
go back to reference Balch WE, Sznajder JI, Budinger S, Finley D, Laposky AD, Cuervo AM, Benjamin IJ, Barreiro E, Morimoto RI, Postow L, Weissman AM, Gail D, Banks-Schlegel S, Croxton T, Gan W (2013) NHLBI Workshop: Malfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 130913130718005. doi:10.1164/rccm.201306–1164WS Balch WE, Sznajder JI, Budinger S, Finley D, Laposky AD, Cuervo AM, Benjamin IJ, Barreiro E, Morimoto RI, Postow L, Weissman AM, Gail D, Banks-Schlegel S, Croxton T, Gan W (2013) NHLBI Workshop: Malfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 130913130718005. doi:10.1164/rccm.201306–1164WS
3.
go back to reference Meiners S, Green CM (2014) Protein quality control in lung disease: it's all about cloud networking. Eur Respir J. doi:10.1183/09031936.00105214 Meiners S, Green CM (2014) Protein quality control in lung disease: it's all about cloud networking. Eur Respir J. doi:10.1183/09031936.00105214
4.
go back to reference Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU: Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013, 82: 323–355. doi:10.1146/annurev-biochem-060208–092442 10.1146/annurev-biochem-060208-092442CrossRefPubMed Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU: Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013, 82: 323–355. doi:10.1146/annurev-biochem-060208–092442 10.1146/annurev-biochem-060208-092442CrossRefPubMed
5.
go back to reference Hartl FU, Bracher A, Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature 2011, 475: 324–332. doi:10.1038/nature10317 10.1038/nature10317CrossRefPubMed Hartl FU, Bracher A, Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature 2011, 475: 324–332. doi:10.1038/nature10317 10.1038/nature10317CrossRefPubMed
6.
go back to reference Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008, 22: 1427–1438. doi:10.1101/gad.1657108 10.1101/gad.1657108CrossRefPubMedPubMedCentral Morimoto RI: Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008, 22: 1427–1438. doi:10.1101/gad.1657108 10.1101/gad.1657108CrossRefPubMedPubMedCentral
7.
go back to reference Wickner S: Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286: 1888–1893. doi:10.1126/science.286.5446.1888 10.1126/science.286.5446.1888CrossRefPubMed Wickner S: Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286: 1888–1893. doi:10.1126/science.286.5446.1888 10.1126/science.286.5446.1888CrossRefPubMed
8.
go back to reference He C, Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009, 43: 67–93. doi:10.1146/annurev-genet-102808–114910 10.1146/annurev-genet-102808-114910CrossRefPubMedPubMedCentral He C, Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009, 43: 67–93. doi:10.1146/annurev-genet-102808–114910 10.1146/annurev-genet-102808-114910CrossRefPubMedPubMedCentral
9.
go back to reference Kroemer G, Mariño G, Levine B: Autophagy and the integrated stress response. Mol Cell 2010, 40: 280–293. doi:10.1016/j.molcel.2010.09.023 10.1016/j.molcel.2010.09.023CrossRefPubMedPubMedCentral Kroemer G, Mariño G, Levine B: Autophagy and the integrated stress response. Mol Cell 2010, 40: 280–293. doi:10.1016/j.molcel.2010.09.023 10.1016/j.molcel.2010.09.023CrossRefPubMedPubMedCentral
10.
go back to reference Crotzer VL, Blum JS (2010) Autophagy and adaptive immunity: autophagy and immunity. Immunology. doi:10.1111/j.1365–2567.2010.03321.x Crotzer VL, Blum JS (2010) Autophagy and adaptive immunity: autophagy and immunity. Immunology. doi:10.1111/j.1365–2567.2010.03321.x
11.
go back to reference Komander D, Rape M: The ubiquitin code. Annu Rev Biochem 2012, 81: 203–229. doi:10.1146/annurev-biochem-060310–170328 10.1146/annurev-biochem-060310-170328CrossRefPubMed Komander D, Rape M: The ubiquitin code. Annu Rev Biochem 2012, 81: 203–229. doi:10.1146/annurev-biochem-060310–170328 10.1146/annurev-biochem-060310-170328CrossRefPubMed
12.
go back to reference Finley D: Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009, 78: 477–513. doi:10.1146/annurev.biochem.78.081507.101607 10.1146/annurev.biochem.78.081507.101607CrossRefPubMedPubMedCentral Finley D: Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009, 78: 477–513. doi:10.1146/annurev.biochem.78.081507.101607 10.1146/annurev.biochem.78.081507.101607CrossRefPubMedPubMedCentral
13.
go back to reference Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2011, 10: 29–46. doi:10.1038/nrd3321 10.1038/nrd3321CrossRefPubMed Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 2011, 10: 29–46. doi:10.1038/nrd3321 10.1038/nrd3321CrossRefPubMed
14.
go back to reference Kloetzel PM, Ossendorp F: Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004, 16: 76–81. 10.1016/j.coi.2003.11.004CrossRefPubMed Kloetzel PM, Ossendorp F: Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 2004, 16: 76–81. 10.1016/j.coi.2003.11.004CrossRefPubMed
15.
go back to reference Meiners S, Eickelberg O: What shall we do with the damaged proteins in lung disease? Ask the proteasome! Eur Respir J 2012, 40: 1260–1268. doi:10.1183/09031936.00208511 10.1183/09031936.00208511CrossRefPubMed Meiners S, Eickelberg O: What shall we do with the damaged proteins in lung disease? Ask the proteasome! Eur Respir J 2012, 40: 1260–1268. doi:10.1183/09031936.00208511 10.1183/09031936.00208511CrossRefPubMed
16.
go back to reference Meiners S, Keller IE, Semren N, Caniard A (2014) Regulation of the proteasome: evaluating the lung proteasome as a new therapeutic target. Antioxid Redox Signal 140314142218004. doi:10.1089/ars.2013.5798 Meiners S, Keller IE, Semren N, Caniard A (2014) Regulation of the proteasome: evaluating the lung proteasome as a new therapeutic target. Antioxid Redox Signal 140314142218004. doi:10.1089/ars.2013.5798
17.
go back to reference Mijaljica D, Devenish RJ: Nucleophagy at a glance. J Cell Sci 2013, 126: 4325–4330. doi:10.1242/jcs.133090 10.1242/jcs.133090CrossRefPubMed Mijaljica D, Devenish RJ: Nucleophagy at a glance. J Cell Sci 2013, 126: 4325–4330. doi:10.1242/jcs.133090 10.1242/jcs.133090CrossRefPubMed
18.
go back to reference Claessen JHL, Kundrat L, Ploegh HL: Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 2012, 22: 22–32. doi:10.1016/j.tcb.2011.09.010 10.1016/j.tcb.2011.09.010CrossRefPubMedPubMedCentral Claessen JHL, Kundrat L, Ploegh HL: Protein quality control in the ER: balancing the ubiquitin checkbook. Trends Cell Biol 2012, 22: 22–32. doi:10.1016/j.tcb.2011.09.010 10.1016/j.tcb.2011.09.010CrossRefPubMedPubMedCentral
19.
go back to reference Karbowski M, Youle RJ: Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol 2011, 23: 476–482. doi:10.1016/j.ceb.2011.05.007 10.1016/j.ceb.2011.05.007CrossRefPubMedPubMedCentral Karbowski M, Youle RJ: Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol 2011, 23: 476–482. doi:10.1016/j.ceb.2011.05.007 10.1016/j.ceb.2011.05.007CrossRefPubMedPubMedCentral
20.
go back to reference Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007, 8: 519–529. doi:10.1038/nrm2199 10.1038/nrm2199CrossRefPubMed Ron D, Walter P: Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007, 8: 519–529. doi:10.1038/nrm2199 10.1038/nrm2199CrossRefPubMed
21.
go back to reference Pellegrino MW (2013) Nargund AM, Haynes CM Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta BBA - Mol Cell Res. doi:10.1016/j.bbamcr.2012.02.019 Pellegrino MW (2013) Nargund AM, Haynes CM Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta BBA - Mol Cell Res. doi:10.1016/j.bbamcr.2012.02.019
22.
go back to reference Shore GC, Papa FR, Oakes SA: Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 2011, 23: 143–149. doi:10.1016/j.ceb.2010.11.003 10.1016/j.ceb.2010.11.003CrossRefPubMedPubMedCentral Shore GC, Papa FR, Oakes SA: Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 2011, 23: 143–149. doi:10.1016/j.ceb.2010.11.003 10.1016/j.ceb.2010.11.003CrossRefPubMedPubMedCentral
23.
go back to reference Papa L, Germain D: Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J Cell Sci 2011, 124: 1396–1402. doi:10.1242/jcs.078220 10.1242/jcs.078220CrossRefPubMedPubMedCentral Papa L, Germain D: Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J Cell Sci 2011, 124: 1396–1402. doi:10.1242/jcs.078220 10.1242/jcs.078220CrossRefPubMedPubMedCentral
24.
go back to reference Rambold AS, Lippincott-Schwartz J: Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle Georget Tex 2011, 10: 4032–4038. doi:10.4161/cc.10.23.18384 10.4161/cc.10.23.18384CrossRef Rambold AS, Lippincott-Schwartz J: Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle Georget Tex 2011, 10: 4032–4038. doi:10.4161/cc.10.23.18384 10.4161/cc.10.23.18384CrossRef
25.
go back to reference McElvaney NG, Greene CM: Mechanisms of protein misfolding in conformational lung diseases. Curr Mol Med 2012, 12: 850–859. 10.2174/156652412801318728CrossRefPubMed McElvaney NG, Greene CM: Mechanisms of protein misfolding in conformational lung diseases. Curr Mol Med 2012, 12: 850–859. 10.2174/156652412801318728CrossRefPubMed
26.
go back to reference Tanjore H, Blackwell TS, Lawson WE: Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. AJP Lung Cell Mol Physiol 2012, 302: L721-L729. doi:10.1152/ajplung.00410.2011 10.1152/ajplung.00410.2011CrossRef Tanjore H, Blackwell TS, Lawson WE: Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. AJP Lung Cell Mol Physiol 2012, 302: L721-L729. doi:10.1152/ajplung.00410.2011 10.1152/ajplung.00410.2011CrossRef
27.
go back to reference Bouchecareilh M, Balch WE: Proteostasis: a new therapeutic paradigm for pulmonary disease. Proc Am Thorac Soc 2011, 8: 189–195. doi:10.1513/pats.201008–055MS 10.1513/pats.201008-055MSCrossRefPubMedPubMedCentral Bouchecareilh M, Balch WE: Proteostasis: a new therapeutic paradigm for pulmonary disease. Proc Am Thorac Soc 2011, 8: 189–195. doi:10.1513/pats.201008–055MS 10.1513/pats.201008-055MSCrossRefPubMedPubMedCentral
28.
go back to reference Turnbull EL, Rosser MFN, Cyr DM: The role of the UPS in cystic fibrosis. BMC Biochem 2007, 8(Suppl 1):S11. doi:10.1186/1471–2091–8-S1-S11 10.1186/1471-2091-8-S1-S11CrossRefPubMedPubMedCentral Turnbull EL, Rosser MFN, Cyr DM: The role of the UPS in cystic fibrosis. BMC Biochem 2007, 8(Suppl 1):S11. doi:10.1186/1471–2091–8-S1-S11 10.1186/1471-2091-8-S1-S11CrossRefPubMedPubMedCentral
29.
go back to reference Hetz C, Chevet E, Harding HP: Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013, 12: 703–719. 10.1038/nrd3976CrossRefPubMed Hetz C, Chevet E, Harding HP: Targeting the unfolded protein response in disease. Nat Rev Drug Discov 2013, 12: 703–719. 10.1038/nrd3976CrossRefPubMed
30.
go back to reference Mizumura K, Cloonan SM, Haspel JA, Choi AMK: The emerging importance of autophagy in pulmonary diseases. Chest J 2012, 142: 1289. doi:10.1378/chest.12–0809 10.1378/chest.12-0809CrossRef Mizumura K, Cloonan SM, Haspel JA, Choi AMK: The emerging importance of autophagy in pulmonary diseases. Chest J 2012, 142: 1289. doi:10.1378/chest.12–0809 10.1378/chest.12-0809CrossRef
31.
go back to reference Ribeiro CMP, Boucher RC: Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Proc Am Thorac Soc 2010, 7: 387–394. doi:10.1513/pats.201001–017AW 10.1513/pats.201001-017AWCrossRefPubMedPubMedCentral Ribeiro CMP, Boucher RC: Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Proc Am Thorac Soc 2010, 7: 387–394. doi:10.1513/pats.201001–017AW 10.1513/pats.201001-017AWCrossRefPubMedPubMedCentral
32.
go back to reference Lawson WE, Grant SW, Ambrosini V, Womble KE, Dawson EP, Lane KB, Markin C, Renzoni E, Lympany P, Thomas AQ, Roldan J, Scott TA, Blackwell TS, Phillips JA 3rd, Loyd JE, du Bois RM: Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 2004, 59: 977–980. doi:10.1136/thx.2004.026336 10.1136/thx.2004.026336CrossRefPubMedPubMedCentral Lawson WE, Grant SW, Ambrosini V, Womble KE, Dawson EP, Lane KB, Markin C, Renzoni E, Lympany P, Thomas AQ, Roldan J, Scott TA, Blackwell TS, Phillips JA 3rd, Loyd JE, du Bois RM: Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 2004, 59: 977–980. doi:10.1136/thx.2004.026336 10.1136/thx.2004.026336CrossRefPubMedPubMedCentral
33.
go back to reference Mulugeta S: A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 2005, 32: 521–530. doi:10.1165/rcmb.2005–0009OC 10.1165/rcmb.2005-0009OCCrossRefPubMedPubMedCentral Mulugeta S: A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am J Respir Cell Mol Biol 2005, 32: 521–530. doi:10.1165/rcmb.2005–0009OC 10.1165/rcmb.2005-0009OCCrossRefPubMedPubMedCentral
34.
go back to reference Mahavadi P, Guenther A, Gochuico BR: Hermansky-Pudlak syndrome interstitial pneumonia: it's the epithelium, stupid! Am J Respir Crit Care Med 2012, 186: 939–940. doi:10.1164/rccm.201210–1771ED 10.1164/rccm.201210-1771EDCrossRefPubMedPubMedCentral Mahavadi P, Guenther A, Gochuico BR: Hermansky-Pudlak syndrome interstitial pneumonia: it's the epithelium, stupid! Am J Respir Crit Care Med 2012, 186: 939–940. doi:10.1164/rccm.201210–1771ED 10.1164/rccm.201210-1771EDCrossRefPubMedPubMedCentral
35.
go back to reference Selman M, Pardo A: Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014, 189: 1161–1172. doi:10.1164/rccm.201312–2221PP 10.1164/rccm.201312-2221PPCrossRefPubMed Selman M, Pardo A: Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014, 189: 1161–1172. doi:10.1164/rccm.201312–2221PP 10.1164/rccm.201312-2221PPCrossRefPubMed
36.
go back to reference Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM (2013) Chronic lung disease in the preterm infant: lessons learned from animal models. Am J Respir Cell Mol Biol 130911135746008. doi:10.1165/rcmb.2013–0014TR Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM (2013) Chronic lung disease in the preterm infant: lessons learned from animal models. Am J Respir Cell Mol Biol 130911135746008. doi:10.1165/rcmb.2013–0014TR
37.
go back to reference Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT: Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 2013, 61: 51–60. 10.1016/j.freeradbiomed.2013.03.003CrossRefPubMed Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT: Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 2013, 61: 51–60. 10.1016/j.freeradbiomed.2013.03.003CrossRefPubMed
38.
go back to reference Birukov KG: Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal 2009, 11: 1651–1667. doi:10.1089/ars.2008.2390 10.1089/ars.2008.2390CrossRefPubMedPubMedCentral Birukov KG: Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxid Redox Signal 2009, 11: 1651–1667. doi:10.1089/ars.2008.2390 10.1089/ars.2008.2390CrossRefPubMedPubMedCentral
39.
go back to reference Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V: Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 2013, 48: 749–757. doi:10.1165/rcmb.2012–0381OC 10.1165/rcmb.2012-0381OCCrossRefPubMedPubMedCentral Choo-Wing R, Syed MA, Harijith A, Bowen B, Pryhuber G, Janér C, Andersson S, Homer RJ, Bhandari V: Hyperoxia and interferon-γ-induced injury in developing lungs occur via cyclooxygenase-2 and the endoplasmic reticulum stress-dependent pathway. Am J Respir Cell Mol Biol 2013, 48: 749–757. doi:10.1165/rcmb.2012–0381OC 10.1165/rcmb.2012-0381OCCrossRefPubMedPubMedCentral
40.
go back to reference Konsavage WM, Zhang L, Wu Y, Shenberger JS: Hyperoxia-induced activation of the integrated stress response in the newborn rat lung. AJP Lung Cell Mol Physiol 2012, 302: L27-L35. doi:10.1152/ajplung.00174.2011 10.1152/ajplung.00174.2011CrossRef Konsavage WM, Zhang L, Wu Y, Shenberger JS: Hyperoxia-induced activation of the integrated stress response in the newborn rat lung. AJP Lung Cell Mol Physiol 2012, 302: L27-L35. doi:10.1152/ajplung.00174.2011 10.1152/ajplung.00174.2011CrossRef
41.
go back to reference López-Alonso I, Aguirre A, González-López A, Fernández AF, Amado-Rodríguez L, Astudillo A, Batalla-Solís E, Albaiceta GM: Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-κB pathway. AJP Lung Cell Mol Physiol 2013, 304: L844-L852. doi:10.1152/ajplung.00422.2012 10.1152/ajplung.00422.2012CrossRef López-Alonso I, Aguirre A, González-López A, Fernández AF, Amado-Rodríguez L, Astudillo A, Batalla-Solís E, Albaiceta GM: Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-κB pathway. AJP Lung Cell Mol Physiol 2013, 304: L844-L852. doi:10.1152/ajplung.00422.2012 10.1152/ajplung.00422.2012CrossRef
42.
go back to reference Tanaka A, Jin Y, Lee SJ, Zhang M, Kim HP, Stolz DB, Ryter SW, Choi AM: Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. Am J Respir Cell Mol Biol 2012, 46: 507–514. doi:10.1165/rcmb.2009–0415OC 10.1165/rcmb.2009-0415OCCrossRefPubMedPubMedCentral Tanaka A, Jin Y, Lee SJ, Zhang M, Kim HP, Stolz DB, Ryter SW, Choi AM: Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. Am J Respir Cell Mol Biol 2012, 46: 507–514. doi:10.1165/rcmb.2009–0415OC 10.1165/rcmb.2009-0415OCCrossRefPubMedPubMedCentral
43.
go back to reference Zhang Y, Sauler M, Shinn AS, Gong H, Haslip M, Shan P, Mannam P, Lee PJ: Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J Immunol 2014, 192: 5296–5304. doi:10.4049/jimmunol.1400653 10.4049/jimmunol.1400653CrossRefPubMedPubMedCentral Zhang Y, Sauler M, Shinn AS, Gong H, Haslip M, Shan P, Mannam P, Lee PJ: Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J Immunol 2014, 192: 5296–5304. doi:10.4049/jimmunol.1400653 10.4049/jimmunol.1400653CrossRefPubMedPubMedCentral
44.
go back to reference Chambellan A, Cruickshank PJ, McKenzie P, Cannady SB, Szabo K, Comhair SA, Erzurum SC: Gene expression profile of human airway epithelium induced by hyperoxia in vivo . Am J Respir Cell Mol Biol 2006, 35: 424–435. doi:10.1165/rcmb.2005–0251OC 10.1165/rcmb.2005-0251OCCrossRefPubMedPubMedCentral Chambellan A, Cruickshank PJ, McKenzie P, Cannady SB, Szabo K, Comhair SA, Erzurum SC: Gene expression profile of human airway epithelium induced by hyperoxia in vivo . Am J Respir Cell Mol Biol 2006, 35: 424–435. doi:10.1165/rcmb.2005–0251OC 10.1165/rcmb.2005-0251OCCrossRefPubMedPubMedCentral
45.
go back to reference Shao L, Perez RE, Gerthoffer WT, Truog WE, Xu D: Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. Pediatr Res 2009, 65: 328–333. doi:10.1203/PDR.0b013e3181961a51 10.1203/PDR.0b013e3181961a51CrossRefPubMed Shao L, Perez RE, Gerthoffer WT, Truog WE, Xu D: Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. Pediatr Res 2009, 65: 328–333. doi:10.1203/PDR.0b013e3181961a51 10.1203/PDR.0b013e3181961a51CrossRefPubMed
46.
go back to reference British Thoracic Society:The burden of lung disease. British Thoracic Society, London UK; 2006. British Thoracic Society:The burden of lung disease. British Thoracic Society, London UK; 2006.
47.
go back to reference Holgate ST: Has the time come to rethink the pathogenesis of asthma? Curr Opin Allergy Clin Immunol 2010, 10: 48–53. doi:10.1097/ACI.0b013e3283347be5 10.1097/ACI.0b013e3283347be5CrossRefPubMed Holgate ST: Has the time come to rethink the pathogenesis of asthma? Curr Opin Allergy Clin Immunol 2010, 10: 48–53. doi:10.1097/ACI.0b013e3283347be5 10.1097/ACI.0b013e3283347be5CrossRefPubMed
48.
go back to reference Sugiura H, Ichinose M: Oxidative and nitrative stress in bronchial asthma. Antioxid Redox Signal 2008, 10: 785–798. doi:10.1089/ars.2007.1937 10.1089/ars.2007.1937CrossRefPubMed Sugiura H, Ichinose M: Oxidative and nitrative stress in bronchial asthma. Antioxid Redox Signal 2008, 10: 785–798. doi:10.1089/ars.2007.1937 10.1089/ars.2007.1937CrossRefPubMed
49.
go back to reference Zuo L, Otenbaker NP, Rose BA, Salisbury KS: Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol 2013, 56: 57–63. doi:10.1016/j.molimm.2013.04.002 10.1016/j.molimm.2013.04.002CrossRefPubMed Zuo L, Otenbaker NP, Rose BA, Salisbury KS: Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol 2013, 56: 57–63. doi:10.1016/j.molimm.2013.04.002 10.1016/j.molimm.2013.04.002CrossRefPubMed
50.
go back to reference Kim SR, Kim DI, Kang MR, Lee KS, Park SY, Jeong JS, Lee YC: Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation. J Allergy Clin Immunol 2013, 132: 1397–1408.e11. doi:10.1016/j.jaci.2013.08.041 10.1016/j.jaci.2013.08.041CrossRefPubMed Kim SR, Kim DI, Kang MR, Lee KS, Park SY, Jeong JS, Lee YC: Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation. J Allergy Clin Immunol 2013, 132: 1397–1408.e11. doi:10.1016/j.jaci.2013.08.041 10.1016/j.jaci.2013.08.041CrossRefPubMed
51.
go back to reference Martin LJ, Gupta J, Jyothula SS, Butsch Kovacic M, Biagini Myers JM, Patterson TL, Ericksen MB, He H, Gibson AM, Baye TM, Amirisetty S, Tsoras AM, Sha Y, Eissa NT, Hershey GK: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One 2012, 7: e33454. doi:10.1371/journal.pone.0033454 10.1371/journal.pone.0033454CrossRefPubMedPubMedCentral Martin LJ, Gupta J, Jyothula SS, Butsch Kovacic M, Biagini Myers JM, Patterson TL, Ericksen MB, He H, Gibson AM, Baye TM, Amirisetty S, Tsoras AM, Sha Y, Eissa NT, Hershey GK: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma. PLoS One 2012, 7: e33454. doi:10.1371/journal.pone.0033454 10.1371/journal.pone.0033454CrossRefPubMedPubMedCentral
52.
go back to reference Poon AH, Chouiali F, Tse SM, Litonjua AA, Hussain SN, Baglole CJ, Eidelman DH, Olivenstein R, Martin JG, Weiss ST, Hamid Q, Laprise C: Genetic and histologic evidence for autophagy in asthma pathogenesis. J Allergy Clin Immunol 2012, 129: 569–571. doi:10.1016/j.jaci.2011.09.035 10.1016/j.jaci.2011.09.035CrossRefPubMedPubMedCentral Poon AH, Chouiali F, Tse SM, Litonjua AA, Hussain SN, Baglole CJ, Eidelman DH, Olivenstein R, Martin JG, Weiss ST, Hamid Q, Laprise C: Genetic and histologic evidence for autophagy in asthma pathogenesis. J Allergy Clin Immunol 2012, 129: 569–571. doi:10.1016/j.jaci.2011.09.035 10.1016/j.jaci.2011.09.035CrossRefPubMedPubMedCentral
53.
go back to reference Volkov A, Hagner S, Löser S, Alnahas S, Raifer H, Hellhund A, Garn H, Steinhoff U: β5i subunit deficiency of the immunoproteasome leads to reduced Th2 response in OVA induced acute asthma. PLoS One 2013, 8: e60565. doi:10.1371/journal.pone.0060565 10.1371/journal.pone.0060565CrossRefPubMedPubMedCentral Volkov A, Hagner S, Löser S, Alnahas S, Raifer H, Hellhund A, Garn H, Steinhoff U: β5i subunit deficiency of the immunoproteasome leads to reduced Th2 response in OVA induced acute asthma. PLoS One 2013, 8: e60565. doi:10.1371/journal.pone.0060565 10.1371/journal.pone.0060565CrossRefPubMedPubMedCentral
54.
go back to reference Kenche H, Baty CJ, Vedagiri K, Shapiro SD, Blumental-Perry A: Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J 2013, 27: 965–977. doi:10.1096/fj.12–216234 10.1096/fj.12-216234CrossRefPubMed Kenche H, Baty CJ, Vedagiri K, Shapiro SD, Blumental-Perry A: Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J 2013, 27: 965–977. doi:10.1096/fj.12–216234 10.1096/fj.12-216234CrossRefPubMed
55.
go back to reference Yao H, Rahman I: Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011, 254: 72–85. doi:10.1016/j.taap.2009.10.022 10.1016/j.taap.2009.10.022CrossRefPubMedPubMedCentral Yao H, Rahman I: Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol 2011, 254: 72–85. doi:10.1016/j.taap.2009.10.022 10.1016/j.taap.2009.10.022CrossRefPubMedPubMedCentral
56.
go back to reference Ryter SW, Nakahira K, Haspel JA, Choi AMK: Autophagy in pulmonary diseases. Annu Rev Physiol 2012, 74: 377–401. doi:10.1146/annurev-physiol-020911–153348 10.1146/annurev-physiol-020911-153348CrossRefPubMed Ryter SW, Nakahira K, Haspel JA, Choi AMK: Autophagy in pulmonary diseases. Annu Rev Physiol 2012, 74: 377–401. doi:10.1146/annurev-physiol-020911–153348 10.1146/annurev-physiol-020911-153348CrossRefPubMed
57.
go back to reference Patel AS, Morse D, Choi AMK (2012) Regulation and functional significance of autophagy in respiratory cell biology and disease. Am J Respir Cell Mol Biol. doi10.1165/rcmb.2012–0282TR Patel AS, Morse D, Choi AMK (2012) Regulation and functional significance of autophagy in respiratory cell biology and disease. Am J Respir Cell Mol Biol. doi10.1165/rcmb.2012–0282TR
58.
go back to reference Dromparis P, Michelakis ED: Mitochondria in vascular health and disease. Annu Rev Physiol 2013, 75: 95–126. doi:10.1146/annurev-physiol-030212–183804 10.1146/annurev-physiol-030212-183804CrossRefPubMed Dromparis P, Michelakis ED: Mitochondria in vascular health and disease. Annu Rev Physiol 2013, 75: 95–126. doi:10.1146/annurev-physiol-030212–183804 10.1146/annurev-physiol-030212-183804CrossRefPubMed
59.
go back to reference Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D: Autophagy in idiopathic pulmonary fibrosis. PLoS One 2012, 7: e41394. doi:10.1371/journal.pone.0041394 10.1371/journal.pone.0041394CrossRefPubMedPubMedCentral Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, Rosas IO, Morse D: Autophagy in idiopathic pulmonary fibrosis. PLoS One 2012, 7: e41394. doi:10.1371/journal.pone.0041394 10.1371/journal.pone.0041394CrossRefPubMedPubMedCentral
60.
go back to reference Baker TA, Bach HH 4th, Gamelli RL, Love RB, Majetschak M (2014) Proteasomes in lungs from organ donors and patients with end-stage pulmonary diseases. Physiol. Res. Acad. Sci. Bohemoslov 63(3):311–319 Baker TA, Bach HH 4th, Gamelli RL, Love RB, Majetschak M (2014) Proteasomes in lungs from organ donors and patients with end-stage pulmonary diseases. Physiol. Res. Acad. Sci. Bohemoslov 63(3):311–319
61.
go back to reference Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P, Tuder RM, Biswal S: Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008, 178: 592–604. doi:10.1164/rccm.200803–380OC 10.1164/rccm.200803-380OCCrossRefPubMedPubMedCentral Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P, Tuder RM, Biswal S: Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008, 178: 592–604. doi:10.1164/rccm.200803–380OC 10.1164/rccm.200803-380OCCrossRefPubMedPubMedCentral
62.
go back to reference Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K: Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest J 2013, 143: 1098. doi:10.1378/chest. 12–2133 10.1378/chest.12-2133CrossRef Wei J, Rahman S, Ayaub EA, Dickhout JG, Ask K: Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest J 2013, 143: 1098. doi:10.1378/chest. 12–2133 10.1378/chest.12-2133CrossRef
63.
go back to reference Yeager ME, Reddy MB, Nguyen CM, Colvin KL, Ivy DD, Stenmark KR (2012) Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ 2:229–240CrossRefPubMedPubMedCentral Yeager ME, Reddy MB, Nguyen CM, Colvin KL, Ivy DD, Stenmark KR (2012) Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ 2:229–240CrossRefPubMedPubMedCentral
64.
go back to reference van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, Meiners S: Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 2012, 303(9):L814–823. 10.1152/ajplung.00128.2012CrossRefPubMed van Rijt SH, Keller IE, John G, Kohse K, Yildirim AÖ, Eickelberg O, Meiners S: Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 2012, 303(9):L814–823. 10.1152/ajplung.00128.2012CrossRefPubMed
65.
go back to reference Somborac-Bacura A, van der Toorn M, Franciosi L, Slebos DJ, Zanic-Grubisic T, Bischoff R, van Oosterhout AJ: Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp Physiol 2012, 98: 316–325. doi:10.1113/expphysiol.2012.067249 10.1113/expphysiol.2012.067249CrossRefPubMed Somborac-Bacura A, van der Toorn M, Franciosi L, Slebos DJ, Zanic-Grubisic T, Bischoff R, van Oosterhout AJ: Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp Physiol 2012, 98: 316–325. doi:10.1113/expphysiol.2012.067249 10.1113/expphysiol.2012.067249CrossRefPubMed
66.
go back to reference López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G: The hallmarks of aging. Cell 2013, 153: 1194–1217. doi:10.1016/j.cell.2013.05.039 10.1016/j.cell.2013.05.039CrossRefPubMedPubMedCentral López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G: The hallmarks of aging. Cell 2013, 153: 1194–1217. doi:10.1016/j.cell.2013.05.039 10.1016/j.cell.2013.05.039CrossRefPubMedPubMedCentral
67.
go back to reference Brown MK, Naidoo N: The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 2012, 3: 263. doi:10.3389/fphys.2012.00263PubMedPubMedCentral Brown MK, Naidoo N: The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 2012, 3: 263. doi:10.3389/fphys.2012.00263PubMedPubMedCentral
68.
go back to reference Rojas M, Meiners S, Le Saux CJ (2014) Molecular Aspects of Aging: Understanding Lung Aging. John Wiley & Sons, Hoboken, New JerseyCrossRef Rojas M, Meiners S, Le Saux CJ (2014) Molecular Aspects of Aging: Understanding Lung Aging. John Wiley & Sons, Hoboken, New JerseyCrossRef
69.
go back to reference Torres-González E, Bueno M, Tanaka A, Krug LT, Cheng DS, Polosukhin VV, Sorescu D, Lawson WE, Blackwell TS, Rojas M, Mora AL: Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 2012, 46: 748–756. doi:10.1165/rcmb.2011–0224OC 10.1165/rcmb.2011-0224OCCrossRefPubMedPubMedCentral Torres-González E, Bueno M, Tanaka A, Krug LT, Cheng DS, Polosukhin VV, Sorescu D, Lawson WE, Blackwell TS, Rojas M, Mora AL: Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol 2012, 46: 748–756. doi:10.1165/rcmb.2011–0224OC 10.1165/rcmb.2011-0224OCCrossRefPubMedPubMedCentral
70.
go back to reference Martinez J, Verbist K, Wang R, Green DR: The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab 2013, 17: 895–900. doi:10.1016/j.cmet.2013.05.012 10.1016/j.cmet.2013.05.012CrossRefPubMedPubMedCentral Martinez J, Verbist K, Wang R, Green DR: The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab 2013, 17: 895–900. doi:10.1016/j.cmet.2013.05.012 10.1016/j.cmet.2013.05.012CrossRefPubMedPubMedCentral
71.
go back to reference Osorio F, Lambrecht B, Janssens S: The UPR and lung disease. Semin Immunopathol 2013, 35: 293–306. doi:10.1007/s00281–013–0368–6 10.1007/s00281-013-0368-6CrossRefPubMed Osorio F, Lambrecht B, Janssens S: The UPR and lung disease. Semin Immunopathol 2013, 35: 293–306. doi:10.1007/s00281–013–0368–6 10.1007/s00281-013-0368-6CrossRefPubMed
Metadata
Title
Proteostasis in pediatric pulmonary pathology
Authors
Silke Meiners
Korbinian Ballweg
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Molecular and Cellular Pediatrics / Issue 1/2014
Electronic ISSN: 2194-7791
DOI
https://doi.org/10.1186/s40348-014-0011-1

Other articles of this Issue 1/2014

Molecular and Cellular Pediatrics 1/2014 Go to the issue