Skip to main content
Top
Published in: Seminars in Immunopathology 3/2013

01-05-2013 | Review

The UPR and lung disease

Authors: Fabiola Osorio, Bart Lambrecht, Sophie Janssens

Published in: Seminars in Immunopathology | Issue 3/2013

Login to get access

Abstract

The respiratory tract has a surface area of approximately 70 m2 that is in direct contact with the external environment. Approximately 12,000 l of air are inhaled daily, exposing the airway epithelium to up to 25 million particles an hour. Several inhaled environmental triggers, like cigarette smoke, diesel exhaust, or allergens, are known inducers of endoplasmatic reticulum (ER) stress and cause a dysregulation in ER homeostasis. Furthermore, some epithelial cell types along the respiratory tract have a secretory function, producing large amounts of mucus or pulmonary surfactant, as well as innate host defense molecules like defensins. To keep up with their secretory demands, these cells must rely on the appropriate functioning and folding capacity of the ER, and they are particularly more vulnerable to conditions of unresolved ER stress. In the lung interstitium, triggering of ER stress pathways has a major impact on the functioning of vascular smooth muscle cells and fibroblasts, causing aberrant dedifferentiation and proliferation. Given the large amounts of foreign material inhaled, the lung is densely populated by various types of immune cells specialized in engulfing and killing pathogens and in secreting cytokines/chemokines for efficient microbial clearance. Unfolded protein response signaling cascades have been shown to intersect with the functioning of immune cells at all levels. The current review aims to highlight the role of ER stress in health and disease in the lung, focusing on its impact on different structural and inflammatory cell types.
Literature
1.
go back to reference Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102PubMed Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102PubMed
2.
go back to reference Bertolotti A et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–32PubMed Bertolotti A et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–32PubMed
3.
go back to reference Credle JJ et al (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(52):18773–84PubMed Credle JJ et al (2005) On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(52):18773–84PubMed
4.
go back to reference Kawaguchi S, Ng DT (2011) Cell biology.Sensing ER stress. Science 333(6051):1830–1PubMed Kawaguchi S, Ng DT (2011) Cell biology.Sensing ER stress. Science 333(6051):1830–1PubMed
5.
go back to reference Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–29PubMed Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–29PubMed
6.
go back to reference Urano F et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–6PubMed Urano F et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–6PubMed
7.
go back to reference Zhou Y et al (2011) Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nat Med 17(3):356–365PubMed Zhou Y et al (2011) Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nat Med 17(3):356–365PubMed
8.
go back to reference Shaffer AL et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1):81–93PubMed Shaffer AL et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1):81–93PubMed
9.
go back to reference Lee A-H et al (2008) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320(5882):1492–1496PubMed Lee A-H et al (2008) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320(5882):1492–1496PubMed
10.
go back to reference Acosta-Alvear D et al (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27(1):53–66PubMed Acosta-Alvear D et al (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27(1):53–66PubMed
11.
go back to reference Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313(5783):104–107PubMed Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313(5783):104–107PubMed
12.
go back to reference Hollien J et al (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186(3):323–331PubMed Hollien J et al (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186(3):323–331PubMed
13.
go back to reference Hur KY et al (2012) IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J Exp Med 209(2):307–318PubMed Hur KY et al (2012) IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J Exp Med 209(2):307–318PubMed
14.
go back to reference Asada R et al (2011) The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 149(5):507–18PubMed Asada R et al (2011) The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem 149(5):507–18PubMed
15.
go back to reference Wu J et al (2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13(3):351–64PubMed Wu J et al (2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13(3):351–64PubMed
16.
go back to reference Kondo S et al (2012) Activation of OASIS family, ER stress transducers, is dependent on its stabilization. Cell Death Differ 19:1939–1949 Kondo S et al (2012) Activation of OASIS family, ER stress transducers, is dependent on its stabilization. Cell Death Differ 19:1939–1949
17.
go back to reference Asada R et al (2012) The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine. J Biol Chem 287(11):8144–53PubMed Asada R et al (2012) The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine. J Biol Chem 287(11):8144–53PubMed
18.
go back to reference Harding HP et al (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904PubMed Harding HP et al (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904PubMed
19.
go back to reference Harding HP et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–63PubMed Harding HP et al (2001) Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7(6):1153–63PubMed
20.
go back to reference Cullinan SB et al (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20):7198–7209PubMed Cullinan SB et al (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23(20):7198–7209PubMed
21.
go back to reference Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 96(22):12731–6PubMed Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 96(22):12731–6PubMed
22.
go back to reference Iwakoshi NN et al (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4(4):321–329PubMed Iwakoshi NN et al (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4(4):321–329PubMed
23.
go back to reference Iwakoshi NN, Pypaert M, Glimcher LH (2007) The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 204(10):2267–2275PubMed Iwakoshi NN, Pypaert M, Glimcher LH (2007) The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 204(10):2267–2275PubMed
24.
go back to reference Tohmonda T et al (2011) The IRE1alpha–XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep 12(5):451–7PubMed Tohmonda T et al (2011) The IRE1alpha–XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep 12(5):451–7PubMed
25.
go back to reference Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–92PubMed Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–92PubMed
26.
go back to reference Park KS et al (2007) SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest 117(4):978–88PubMed Park KS et al (2007) SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest 117(4):978–88PubMed
27.
go back to reference Park KS et al (2006) Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol 34(2):151–7PubMed Park KS et al (2006) Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol 34(2):151–7PubMed
28.
go back to reference Ribeiro CM, O'Neal WK (2012) Endoplasmic reticulum stress in chronic obstructive lung diseases. Curr Mol Med 12(7):872–82PubMed Ribeiro CM, O'Neal WK (2012) Endoplasmic reticulum stress in chronic obstructive lung diseases. Curr Mol Med 12(7):872–82PubMed
29.
go back to reference Ribeiro CMP, Boucher RC (2010) Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Proc Am Thorac Soc 7(6):387–394PubMed Ribeiro CMP, Boucher RC (2010) Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Proc Am Thorac Soc 7(6):387–394PubMed
30.
go back to reference Martino MEB et al (2009) Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1. J Biol Chem 284(22):14904–14913PubMed Martino MEB et al (2009) Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1. J Biol Chem 284(22):14904–14913PubMed
31.
go back to reference Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMed Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMed
32.
go back to reference Heazlewood CK et al (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5(3):e54PubMed Heazlewood CK et al (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5(3):e54PubMed
33.
go back to reference Eri RD et al (2011) An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol 4(3):354–364PubMed Eri RD et al (2011) An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol 4(3):354–364PubMed
34.
go back to reference Martino MB et al (2012) The ER stress transducer IRE1beta is required for airway epithelial mucin production. Mucosal Immunol. doi:10.1038/mi.2012.105 Martino MB et al (2012) The ER stress transducer IRE1beta is required for airway epithelial mucin production. Mucosal Immunol. doi:10.1038/mi.2012.105
35.
go back to reference Bertolotti A et al (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107(5):585–593PubMed Bertolotti A et al (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107(5):585–593PubMed
36.
go back to reference Calfon M et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96PubMed Calfon M et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96PubMed
37.
go back to reference Imagawa Y et al (2008) RNase domains determine the functional difference between IRE1alpha and IRE1beta. FEBS Lett 582(5):656–660PubMed Imagawa Y et al (2008) RNase domains determine the functional difference between IRE1alpha and IRE1beta. FEBS Lett 582(5):656–660PubMed
38.
go back to reference Iqbal J et al (2008) IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab 7(5):445–55PubMed Iqbal J et al (2008) IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab 7(5):445–55PubMed
39.
go back to reference Iwawaki T et al (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3(2):158–164PubMed Iwawaki T et al (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3(2):158–164PubMed
40.
go back to reference Rogers DF (2007) Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir Care 52(9):1134–46, discussion 1146–9PubMed Rogers DF (2007) Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir Care 52(9):1134–46, discussion 1146–9PubMed
41.
go back to reference Park S-W et al (2009) The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A 106(17):6950–6955PubMed Park S-W et al (2009) The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A 106(17):6950–6955PubMed
42.
go back to reference Zhao F et al (2010) Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol 338(2):270–279PubMed Zhao F et al (2010) Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol 338(2):270–279PubMed
43.
go back to reference Zheng W et al (2006) Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun 7(1):11–8PubMed Zheng W et al (2006) Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun 7(1):11–8PubMed
44.
go back to reference Whitsett JA, Weaver TE (2002) Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347(26):2141–8PubMed Whitsett JA, Weaver TE (2002) Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347(26):2141–8PubMed
45.
go back to reference Wang Y et al (2009) Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 84(1):52–9PubMed Wang Y et al (2009) Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am J Hum Genet 84(1):52–9PubMed
46.
go back to reference Bullard JE et al (2005) ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med 172(8):1026–31PubMed Bullard JE et al (2005) ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med 172(8):1026–31PubMed
47.
go back to reference King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378(9807):1949–61PubMed King TE Jr, Pardo A, Selman M (2011) Idiopathic pulmonary fibrosis. Lancet 378(9807):1949–61PubMed
48.
go back to reference Korfei M et al (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178(8):838–46PubMed Korfei M et al (2008) Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 178(8):838–46PubMed
49.
go back to reference Maguire JA, Mulugeta S, Beers MF (2012) Multiple ways to die: delineation of the unfolded protein response and apoptosis induced by Surfactant Protein C BRICHOS mutants. Int J Biochem Cell Biol 44(1):101–12PubMed Maguire JA, Mulugeta S, Beers MF (2012) Multiple ways to die: delineation of the unfolded protein response and apoptosis induced by Surfactant Protein C BRICHOS mutants. Int J Biochem Cell Biol 44(1):101–12PubMed
50.
go back to reference Weichert N et al (2011) Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells. Respir Res 12:4PubMed Weichert N et al (2011) Some ABCA3 mutations elevate ER stress and initiate apoptosis of lung epithelial cells. Respir Res 12:4PubMed
51.
go back to reference Franke-Ullmann G et al (1996) Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. J Immun (Baltimore, Md: 1950) 157(7):3097–3104 Franke-Ullmann G et al (1996) Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. J Immun (Baltimore, Md: 1950) 157(7):3097–3104
52.
go back to reference Martinon F et al (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Publishing Group 11(5):411–418 Martinon F et al (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Publishing Group 11(5):411–418
53.
go back to reference Woo CW et al (2012) Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat Cell Biol 14(2):192–200PubMed Woo CW et al (2012) Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat Cell Biol 14(2):192–200PubMed
54.
go back to reference Plantinga M et al (2013) Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38:322–335 Plantinga M et al (2013) Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38:322–335
55.
go back to reference McGill J, van Rooijen N, Legge KL (2008) Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J Exp Med 205(7):1635–1646PubMed McGill J, van Rooijen N, Legge KL (2008) Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J Exp Med 205(7):1635–1646PubMed
56.
go back to reference GeurtsvanKessel CH et al (2008) Clearance of influenza virus from the lung depends on migratory langerin+CD11b− but not plasmacytoid dendritic cells. J Exp Med 205(7):1621–1634PubMed GeurtsvanKessel CH et al (2008) Clearance of influenza virus from the lung depends on migratory langerin+CD11b− but not plasmacytoid dendritic cells. J Exp Med 205(7):1621–1634PubMed
57.
go back to reference Lambrecht BN, Hammad H (2012) Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 30:243–270PubMed Lambrecht BN, Hammad H (2012) Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu Rev Immunol 30:243–270PubMed
58.
go back to reference Hu F et al (2011) ER stress and its regulator X-box-binding protein-1 enhance polyIC-induced innate immune response in dendritic cells. Eur J Immunol 41(4):1086–1097PubMed Hu F et al (2011) ER stress and its regulator X-box-binding protein-1 enhance polyIC-induced innate immune response in dendritic cells. Eur J Immunol 41(4):1086–1097PubMed
59.
go back to reference Goodall JC et al (2010) Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A 107(41):17698–17703PubMed Goodall JC et al (2010) Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A 107(41):17698–17703PubMed
60.
go back to reference Ulianich L et al (2011) ER stress impairs MHC Class I surface expression and increases susceptibility of thyroid cells to NK-mediated cytotoxicity. Biochim Biophys Acta 1812(4):431–438PubMed Ulianich L et al (2011) ER stress impairs MHC Class I surface expression and increases susceptibility of thyroid cells to NK-mediated cytotoxicity. Biochim Biophys Acta 1812(4):431–438PubMed
61.
go back to reference Granados DP et al (2009) ER stress affects processing of MHC class I-associated peptides. BMC Immunol 10:10PubMed Granados DP et al (2009) ER stress affects processing of MHC class I-associated peptides. BMC Immunol 10:10PubMed
62.
go back to reference Reimold AM et al (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med 183(2):393–401PubMed Reimold AM et al (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med 183(2):393–401PubMed
63.
go back to reference Peters LR, Raghavan M (2011) Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. J Immunol 187(2):919–931PubMed Peters LR, Raghavan M (2011) Endoplasmic reticulum calcium depletion impacts chaperone secretion, innate immunity, and phagocytic uptake of cells. J Immunol 187(2):919–931PubMed
64.
go back to reference Panaretakis T et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590PubMed Panaretakis T et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590PubMed
65.
go back to reference Garg AD et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079PubMed Garg AD et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079PubMed
66.
go back to reference Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61PubMed Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61PubMed
67.
go back to reference Todd DJ, Lee A-H, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8(9):663–674PubMed Todd DJ, Lee A-H, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8(9):663–674PubMed
68.
go back to reference Hengstermann A, Müller T (2008) Endoplasmic reticulum stress induced by aqueous extracts of cigarette smoke in 3T3 cells activates the unfolded-protein-response-dependent PERK pathway of cell survival. Free Radic Biol Med 44(6):1097–1107PubMed Hengstermann A, Müller T (2008) Endoplasmic reticulum stress induced by aqueous extracts of cigarette smoke in 3T3 cells activates the unfolded-protein-response-dependent PERK pathway of cell survival. Free Radic Biol Med 44(6):1097–1107PubMed
69.
go back to reference Knörr-Wittmann C et al (2005) Characterization of Nrf2 activation and heme oxygenase-1 expression in NIH3T3 cells exposed to aqueous extracts of cigarette smoke. Free Radic Biol Med 39(11):1438–1448PubMed Knörr-Wittmann C et al (2005) Characterization of Nrf2 activation and heme oxygenase-1 expression in NIH3T3 cells exposed to aqueous extracts of cigarette smoke. Free Radic Biol Med 39(11):1438–1448PubMed
70.
go back to reference Tagawa Y et al (2008) Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic Biol Med 45(1):50–59PubMed Tagawa Y et al (2008) Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP). Free Radic Biol Med 45(1):50–59PubMed
71.
go back to reference Jorgensen E et al (2008) Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 8:229PubMed Jorgensen E et al (2008) Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 8:229PubMed
72.
go back to reference Kelsen SG et al (2007) Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 38(5):541–550PubMed Kelsen SG et al (2007) Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 38(5):541–550PubMed
73.
go back to reference Malhotra D et al (2009) Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 180(12):1196–1207PubMed Malhotra D et al (2009) Heightened endoplasmic reticulum stress in the lungs of patients with chronic obstructive pulmonary disease: the role of Nrf2-regulated proteasomal activity. Am J Respir Crit Care Med 180(12):1196–1207PubMed
74.
go back to reference Saxon A, Diaz-Sanchez D (2005) Air pollution and allergy: you are what you breathe. Nat Immunol 6(3):223–226PubMed Saxon A, Diaz-Sanchez D (2005) Air pollution and allergy: you are what you breathe. Nat Immunol 6(3):223–226PubMed
75.
go back to reference Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360(9341):1233–1242PubMed Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360(9341):1233–1242PubMed
76.
go back to reference Laing S et al (2010) Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol 299(4):C736–49PubMed Laing S et al (2010) Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol 299(4):C736–49PubMed
77.
go back to reference Li YJ et al (2008) Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol (Orlando, Fla) 128(3):366–373 Li YJ et al (2008) Disruption of Nrf2 enhances susceptibility to airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol (Orlando, Fla) 128(3):366–373
78.
go back to reference Palm NW, Rosenstein RK, Medzhitov R (2012) Allergic host defences. Nature 484(7395):465–472PubMed Palm NW, Rosenstein RK, Medzhitov R (2012) Allergic host defences. Nature 484(7395):465–472PubMed
79.
go back to reference Trompette A et al (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457(7229):585–588PubMed Trompette A et al (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457(7229):585–588PubMed
80.
go back to reference Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867PubMed Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867PubMed
81.
go back to reference Hammad H, Lambrecht BN (2012) The airway epithelium in asthma. Nat Med 18(5):684–692PubMed Hammad H, Lambrecht BN (2012) The airway epithelium in asthma. Nat Med 18(5):684–692PubMed
82.
go back to reference He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13(3):393–403PubMed He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13(3):393–403PubMed
83.
go back to reference Roberson EC et al (2012) Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol 46(5):573–581PubMed Roberson EC et al (2012) Influenza induces endoplasmic reticulum stress, caspase-12-dependent apoptosis, and c-Jun N-terminal kinase-mediated transforming growth factor-β release in lung epithelial cells. Am J Respir Cell Mol Biol 46(5):573–581PubMed
84.
go back to reference Hassan IH et al (2012) Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J Biol Chem 287(7):4679–4689PubMed Hassan IH et al (2012) Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J Biol Chem 287(7):4679–4689PubMed
85.
go back to reference Smith JA et al (2008) Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur J Immunol 38(5):1194–1203PubMed Smith JA et al (2008) Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur J Immunol 38(5):1194–1203PubMed
86.
go back to reference Zeng L et al (2010) XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J Immunol 185(4):2324–2330PubMed Zeng L et al (2010) XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J Immunol 185(4):2324–2330PubMed
87.
go back to reference Hammad H et al (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15(4):410–416PubMed Hammad H et al (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15(4):410–416PubMed
88.
go back to reference Kuperman DA et al (2005) Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol 116(2):305–311PubMed Kuperman DA et al (2005) Dissecting asthma using focused transgenic modeling and functional genomics. J Allergy Clin Immunol 116(2):305–311PubMed
89.
go back to reference Schroeder BW et al (2012) AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. Am J Respir Cell Mol Biol 47(2):178–185PubMed Schroeder BW et al (2012) AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. Am J Respir Cell Mol Biol 47(2):178–185PubMed
90.
go back to reference Chen G et al (2010) Foxa2 programs Th2 cell-mediated innate immunity in the developing lung. J Immunol 184(11):6133–41PubMed Chen G et al (2010) Foxa2 programs Th2 cell-mediated innate immunity in the developing lung. J Immunol 184(11):6133–41PubMed
91.
go back to reference Rangasamy T et al (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202(1):47–59PubMed Rangasamy T et al (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202(1):47–59PubMed
92.
go back to reference Belmont PJ et al (2012) Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 52:1176–1182 Belmont PJ et al (2012) Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol 52:1176–1182
93.
go back to reference Voeltz GK et al (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3):573–586PubMed Voeltz GK et al (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3):573–586PubMed
94.
go back to reference Wright PL et al (2010) Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation. J Exp Med 207(12):2595–2607PubMed Wright PL et al (2010) Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation. J Exp Med 207(12):2595–2607PubMed
95.
go back to reference Moffatt MF et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473PubMed Moffatt MF et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473PubMed
96.
go back to reference Bouzigon E et al (2008) Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 359(19):1985–1994PubMed Bouzigon E et al (2008) Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 359(19):1985–1994PubMed
97.
go back to reference Galanter J et al (2008) ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 177(11):1194–1200PubMed Galanter J et al (2008) ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 177(11):1194–1200PubMed
98.
go back to reference Hirota T et al (2008) Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J Allergy Clin Immunol 121(3):769–770PubMed Hirota T et al (2008) Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J Allergy Clin Immunol 121(3):769–770PubMed
99.
go back to reference Hjelmqvist L et al (2002) ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol 3(6):RESEARCH0027PubMed Hjelmqvist L et al (2002) ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol 3(6):RESEARCH0027PubMed
100.
go back to reference Han S et al (2010) Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc Natl Acad Sci U S A 107(13):5851–5856PubMed Han S et al (2010) Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc Natl Acad Sci U S A 107(13):5851–5856PubMed
101.
go back to reference Cantero-Recasens G et al (2010) The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet 19(1):111–121PubMed Cantero-Recasens G et al (2010) The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet 19(1):111–121PubMed
102.
go back to reference Breslow DK et al (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053PubMed Breslow DK et al (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053PubMed
103.
go back to reference Idzko M et al (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 116(11):2935–44PubMed Idzko M et al (2006) Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 116(11):2935–44PubMed
104.
go back to reference Ryan JJ, Spiegel S (2008) The role of sphingosine-1-phosphate and its receptors in asthma. Drug News Perspect 21(2):89–96PubMed Ryan JJ, Spiegel S (2008) The role of sphingosine-1-phosphate and its receptors in asthma. Drug News Perspect 21(2):89–96PubMed
105.
go back to reference Verlaan DJ et al (2009) Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet 85(3):377–393PubMed Verlaan DJ et al (2009) Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet 85(3):377–393PubMed
106.
go back to reference Miller M et al (2012) ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 109:16648–16653 Miller M et al (2012) ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci U S A 109:16648–16653
107.
go back to reference Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–50PubMed Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–50PubMed
108.
go back to reference Zoz DF, Lawson WE, Blackwell TS (2011) Idiopathic pulmonary fibrosis: a disorder of epithelial cell dysfunction. Am J Med Sci 341(6):435–8PubMed Zoz DF, Lawson WE, Blackwell TS (2011) Idiopathic pulmonary fibrosis: a disorder of epithelial cell dysfunction. Am J Med Sci 341(6):435–8PubMed
109.
go back to reference Selman M, Pardo A (2002) Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res 3:3PubMed Selman M, Pardo A (2002) Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res 3:3PubMed
110.
go back to reference Uhal BD et al (1998) Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 275(6 Pt 1):L1192–9PubMed Uhal BD et al (1998) Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 275(6 Pt 1):L1192–9PubMed
111.
go back to reference Sisson TH et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181(3):254–63PubMed Sisson TH et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181(3):254–63PubMed
112.
go back to reference Kuwano K et al (1999) Essential roles of the Fas–Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 104(1):13–9PubMed Kuwano K et al (1999) Essential roles of the Fas–Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 104(1):13–9PubMed
113.
go back to reference Tanjore H, Blackwell TS, Lawson WE (2012) Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 302(8):L721–9PubMed Tanjore H, Blackwell TS, Lawson WE (2012) Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 302(8):L721–9PubMed
114.
go back to reference Lawson WE et al (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A 108(26):10562–10567PubMed Lawson WE et al (2011) Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A 108(26):10562–10567PubMed
115.
go back to reference Tang YW et al (2003) Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol 41(6):2633–40PubMed Tang YW et al (2003) Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol 41(6):2633–40PubMed
116.
go back to reference Kropski JA, Lawson WE, Blackwell TS (2012) Right place, right time: the evolving role of herpesvirus infection as a "second hit" in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 302(5):L441–4PubMed Kropski JA, Lawson WE, Blackwell TS (2012) Right place, right time: the evolving role of herpesvirus infection as a "second hit" in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 302(5):L441–4PubMed
117.
go back to reference Lawson WE et al (2008) Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 294(6):L1119–26PubMed Lawson WE et al (2008) Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 294(6):L1119–26PubMed
118.
go back to reference Rock JR et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–83PubMed Rock JR et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–83PubMed
119.
go back to reference Tanjore H et al (2011) Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem 286(35):30972–30980PubMed Tanjore H et al (2011) Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem 286(35):30972–30980PubMed
120.
go back to reference Zhong Q et al (2011) Role of endoplasmic reticulum stress in epithelial–mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 45(3):498–509PubMed Zhong Q et al (2011) Role of endoplasmic reticulum stress in epithelial–mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 45(3):498–509PubMed
121.
go back to reference Tsang KY et al (2007) Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol 5(3):e44PubMed Tsang KY et al (2007) Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol 5(3):e44PubMed
122.
go back to reference Baek HA et al (2012) Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol 46(6):731–9PubMed Baek HA et al (2012) Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol 46(6):731–9PubMed
123.
go back to reference Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118(7):2372–9PubMed Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118(7):2372–9PubMed
124.
go back to reference Giaid A et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328(24):1732–9PubMed Giaid A et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328(24):1732–9PubMed
125.
go back to reference Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333(4):214–21PubMed Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333(4):214–21PubMed
126.
go back to reference Macchia A et al (2010) Systematic review of trials using vasodilators in pulmonary arterial hypertension: why a new approach is needed. Am Heart J 159(2):245–57PubMed Macchia A et al (2010) Systematic review of trials using vasodilators in pulmonary arterial hypertension: why a new approach is needed. Am Heart J 159(2):245–57PubMed
127.
go back to reference Sutendra G et al (2010) Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2(44):44ra58PubMed Sutendra G et al (2010) Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med 2(44):44ra58PubMed
128.
go back to reference Xu W et al (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 104(4):1342–7PubMed Xu W et al (2007) Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 104(4):1342–7PubMed
129.
go back to reference McMurtry MS et al (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95(8):830–40PubMed McMurtry MS et al (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95(8):830–40PubMed
130.
go back to reference Sutendra G et al (2011) The role of Nogo and the mitochondria–endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 3(88):88ra55PubMed Sutendra G et al (2011) The role of Nogo and the mitochondria–endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med 3(88):88ra55PubMed
131.
go back to reference Yeager ME et al (2012) Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 46(1):14–22PubMed Yeager ME et al (2012) Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 46(1):14–22PubMed
132.
go back to reference Yeager ME et al (2012) Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ 2(2):229–40PubMed Yeager ME et al (2012) Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ 2(2):229–40PubMed
133.
go back to reference Lenna S et al (2010) HLA-B35 upregulates endothelin-1 and downregulates endothelial nitric oxide synthase via endoplasmic reticulum stress response in endothelial cells. J Immunol 184(9):4654–61PubMed Lenna S et al (2010) HLA-B35 upregulates endothelin-1 and downregulates endothelial nitric oxide synthase via endoplasmic reticulum stress response in endothelial cells. J Immunol 184(9):4654–61PubMed
134.
go back to reference Acevedo L et al (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10(4):382–8PubMed Acevedo L et al (2004) A new role for Nogo as a regulator of vascular remodeling. Nat Med 10(4):382–8PubMed
135.
go back to reference Chipuk JE et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148(5):988–1000PubMed Chipuk JE et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148(5):988–1000PubMed
136.
go back to reference Gilbert A et al (1998) Delta F508 CFTR localizes in the endoplasmic reticulum–Golgi intermediate compartment in cystic fibrosis cells. Exp Cell Res 242(1):144–52PubMed Gilbert A et al (1998) Delta F508 CFTR localizes in the endoplasmic reticulum–Golgi intermediate compartment in cystic fibrosis cells. Exp Cell Res 242(1):144–52PubMed
137.
go back to reference Davis PB, Drumm M, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 154(5):1229–56PubMed Davis PB, Drumm M, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 154(5):1229–56PubMed
138.
go back to reference Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011:174306PubMed Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011:174306PubMed
139.
go back to reference Matsui H et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95(7):1005–15PubMed Matsui H et al (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95(7):1005–15PubMed
140.
go back to reference Doring G, Gulbins E (2009) Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell Microbiol 11(2):208–16PubMed Doring G, Gulbins E (2009) Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell Microbiol 11(2):208–16PubMed
141.
go back to reference Zahm JM et al (1997) Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Physiol 272(3 Pt 1):C853–9PubMed Zahm JM et al (1997) Early alterations in airway mucociliary clearance and inflammation of the lamina propria in CF mice. Am J Physiol 272(3 Pt 1):C853–9PubMed
142.
go back to reference Tirouvanziam R et al (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23(2):121–7PubMed Tirouvanziam R et al (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23(2):121–7PubMed
143.
go back to reference Kerbiriou M et al (2007) Coupling cystic fibrosis to endoplasmic reticulum stress: differential role of Grp78 and ATF6. Biochim Biophys Acta 1772(11–12):1236–49PubMed Kerbiriou M et al (2007) Coupling cystic fibrosis to endoplasmic reticulum stress: differential role of Grp78 and ATF6. Biochim Biophys Acta 1772(11–12):1236–49PubMed
144.
go back to reference Bartoszewski R et al (2008) The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem 283(18):12154–65PubMed Bartoszewski R et al (2008) The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J Biol Chem 283(18):12154–65PubMed
145.
go back to reference Bartoszewski R et al (2008) Activation of the unfolded protein response by deltaF508 CFTR. Am J Respir Cell Mol Biol 39(4):448–57PubMed Bartoszewski R et al (2008) Activation of the unfolded protein response by deltaF508 CFTR. Am J Respir Cell Mol Biol 39(4):448–57PubMed
146.
go back to reference Rab A et al (2007) Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. Am J Physiol Cell Physiol 292(2):C756–66PubMed Rab A et al (2007) Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. Am J Physiol Cell Physiol 292(2):C756–66PubMed
147.
go back to reference Weber AJ et al (2001) Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl− channel function. Am J Physiol Lung Cell Mol Physiol 281(1):L71–8PubMed Weber AJ et al (2001) Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl− channel function. Am J Physiol Lung Cell Mol Physiol 281(1):L71–8PubMed
148.
go back to reference Ribeiro CMP et al (2005) Chronic airway infection/inflammation induces a Ca2+ i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 280(18):17798–17806PubMed Ribeiro CMP et al (2005) Chronic airway infection/inflammation induces a Ca2+ i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia. J Biol Chem 280(18):17798–17806PubMed
149.
go back to reference Teichgraber V et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–91PubMed Teichgraber V et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–91PubMed
Metadata
Title
The UPR and lung disease
Authors
Fabiola Osorio
Bart Lambrecht
Sophie Janssens
Publication date
01-05-2013
Publisher
Springer-Verlag
Published in
Seminars in Immunopathology / Issue 3/2013
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-013-0368-6

Other articles of this Issue 3/2013

Seminars in Immunopathology 3/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.