Skip to main content
Top
Published in: Multidisciplinary Respiratory Medicine 1/2019

Open Access 01-12-2019 | Dyspnea | Original research article

Role of blood glucose and fat profile in lung function pattern of Indian type 2 diabetic subjects

Authors: Morteza A. Khafaie, Sundeep S. Salvi, Chittaranjan S. Yajnik, Fakher Rahim, Behzad Khafaei

Published in: Multidisciplinary Respiratory Medicine | Issue 1/2019

Login to get access

Abstract

Background and objectives

It has been hypothesized that changes in lung function can occur in patients with diabetes. Nevertheless, it is unclear how much of this correlation links with biomarkers of metabolism disorder. We have investigated the association between hypoglycaemic and fat profile with lung function in Indian diabetic subjects.

Design

Prospective observational study.

Setting

Diabetes care unit of King Edward Memorial (KEM) hospital.

Patients

Out of 465 patients who agreed to participate in this study, valid lung function data were available from 347 Type 2 diabetic subjects.

Measurements

Pulmonary function test including predicted forced vital capacity (% FVC), predicted forced expiratory volume in 1 second (% FEV1) and FEV1/FVC ratio were assessed. We also examined fat profile, glucose, HbA1c, hemoglobin and other hematological parameters.

Results

Four hundred sixty-five subjects aged 55 ± 11 participated in the study. Predicted forced vital capacity, % FEV1 and FEV1/FVC ratio was 85.88 ± 13.53, 85.87 ± 14.06 and 82.03 ± 6.83, respectively. Also, approximately 8 to 17% of the participant reported having at least one chronic respiratory symptom or lung disease. We found that high glycaemic measures (i.e. fasting and post-meal plasma glucose) are linked with dyspnea. In addition, HDL (high-density lipoprotein) concentration was directly associated with % FVC.

Conclusions

It is difficult to draw a clear conclusion about the cause-effect relationship or clinical impact based on this study alone. However, identification of clinically meaningful elements for developing a screening program is critical.
Literature
1.
go back to reference Hills AP, Arena R, Khunti K, Yajnik CS, Jayawardena R, Henry CJ, Street SJ, Soares MJ, Misra A. Epidemiology and determinants of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 2018;6(12):966–78.CrossRef Hills AP, Arena R, Khunti K, Yajnik CS, Jayawardena R, Henry CJ, Street SJ, Soares MJ, Misra A. Epidemiology and determinants of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 2018;6(12):966–78.CrossRef
2.
go back to reference Hills AP, Misra A, Gill JMR, Byrne NM, Soares MJ, Ramachandran A, Palaniappan L, Street SJ, Jayawardena R, Khunti K, et al. Public health and health systems: implications for the prevention and management of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 2018;6(12):992–1002.CrossRef Hills AP, Misra A, Gill JMR, Byrne NM, Soares MJ, Ramachandran A, Palaniappan L, Street SJ, Jayawardena R, Khunti K, et al. Public health and health systems: implications for the prevention and management of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 2018;6(12):992–1002.CrossRef
4.
go back to reference Misra A, Sattar N, Tandon N, Shrivastava U, Vikram NK, Khunti K, Hills AP. Clinical management of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 2018;6(12):979–91.CrossRef Misra A, Sattar N, Tandon N, Shrivastava U, Vikram NK, Khunti K, Hills AP. Clinical management of type 2 diabetes in South Asia. Lancet Diabetes Endocrinol. 2018;6(12):979–91.CrossRef
5.
go back to reference Pitocco D, Fuso L, Conte EG, Zaccardi F, Condoluci C, Scavone G, Incalzi RA, Ghirlanda G. The diabetic lung - a new target organ? Rev Diabet Stud. 2012;9(1):23–35.CrossRef Pitocco D, Fuso L, Conte EG, Zaccardi F, Condoluci C, Scavone G, Incalzi RA, Ghirlanda G. The diabetic lung - a new target organ? Rev Diabet Stud. 2012;9(1):23–35.CrossRef
6.
go back to reference Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC. Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med. 2005;33(6):1191–8.CrossRef Gong MN, Thompson BT, Williams P, Pothier L, Boyce PD, Christiani DC. Clinical predictors of and mortality in acute respiratory distress syndrome: potential role of red cell transfusion. Crit Care Med. 2005;33(6):1191–8.CrossRef
7.
go back to reference Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B, et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med. 2008;36(5):1518–22.CrossRef Iscimen R, Cartin-Ceba R, Yilmaz M, Khan H, Hubmayr RD, Afessa B, et al. Risk factors for the development of acute lung injury in patients with septic shock: an observational cohort study. Crit Care Med. 2008;36(5):1518–22.CrossRef
8.
go back to reference Moss M, Guidot DM, Steinberg KP, Duhon GF, Treece P, Wolken R, et al. Parsons PE. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit Care Med. 2000;28(7):2187–92.CrossRef Moss M, Guidot DM, Steinberg KP, Duhon GF, Treece P, Wolken R, et al. Parsons PE. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit Care Med. 2000;28(7):2187–92.CrossRef
9.
go back to reference Yu S, Christiani DC, Thompson BT, Bajwa EK, Gong MN. Role of diabetes in the development of acute respiratory distress syndrome. Crit Care Med. 2013;41(12):2720–32.CrossRef Yu S, Christiani DC, Thompson BT, Bajwa EK, Gong MN. Role of diabetes in the development of acute respiratory distress syndrome. Crit Care Med. 2013;41(12):2720–32.CrossRef
10.
go back to reference Marquis K, Maltais F, Duguay V, Bezeau AM, LeBlanc P, Jobin J, et al. The metabolic syndrome in patients with chronic obstructive pulmonary disease. J Cardpulm Rehabil. 2005;25(4):226–32. discussion 233-224.CrossRef Marquis K, Maltais F, Duguay V, Bezeau AM, LeBlanc P, Jobin J, et al. The metabolic syndrome in patients with chronic obstructive pulmonary disease. J Cardpulm Rehabil. 2005;25(4):226–32. discussion 233-224.CrossRef
11.
go back to reference Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G, Meyer T, et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest. 2009;136(4):1039–46.CrossRef Watz H, Waschki B, Kirsten A, Muller KC, Kretschmar G, Meyer T, et al. The metabolic syndrome in patients with chronic bronchitis and COPD: frequency and associated consequences for systemic inflammation and physical inactivity. Chest. 2009;136(4):1039–46.CrossRef
12.
go back to reference Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med. 2016;11(1):28.CrossRef Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med. 2016;11(1):28.CrossRef
13.
go back to reference Rana JS, Mittleman MA, Sheikh J, Hu FB, Manson JE, Colditz GA, et al. Chronic obstructive pulmonary disease, asthma, and risk of type 2 diabetes in women. Diabetes Care. 2004;27(10):2478–84.CrossRef Rana JS, Mittleman MA, Sheikh J, Hu FB, Manson JE, Colditz GA, et al. Chronic obstructive pulmonary disease, asthma, and risk of type 2 diabetes in women. Diabetes Care. 2004;27(10):2478–84.CrossRef
14.
go back to reference Lee CT, Mao IC, Lin CH, Lin SH, Hsieh MC. Chronic obstructive pulmonary disease: a risk factor for type 2 diabetes: a nationwide population-based study. Eur J Clin Investig. 2013;43(11):1113–9. Lee CT, Mao IC, Lin CH, Lin SH, Hsieh MC. Chronic obstructive pulmonary disease: a risk factor for type 2 diabetes: a nationwide population-based study. Eur J Clin Investig. 2013;43(11):1113–9.
15.
go back to reference Ehrlich SF, Quesenberry CP Jr, Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33(1):55–60.CrossRef Ehrlich SF, Quesenberry CP Jr, Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010;33(1):55–60.CrossRef
16.
go back to reference Fimognari FL, Pasqualetti P, Moro L, Franco A, Piccirillo G, Pastorelli R, et al. The association between metabolic syndrome and restrictive ventilatory dysfunction in older persons. J Gerontol A Biol Sci Med Sci. 2007;62(7):760–5.CrossRef Fimognari FL, Pasqualetti P, Moro L, Franco A, Piccirillo G, Pastorelli R, et al. The association between metabolic syndrome and restrictive ventilatory dysfunction in older persons. J Gerontol A Biol Sci Med Sci. 2007;62(7):760–5.CrossRef
17.
go back to reference Tiengo A, Fadini GP, Avogaro A. The metabolic syndrome, diabetes and lung dysfunction. Diabetes Metab. 2008;34(5):447–54.CrossRef Tiengo A, Fadini GP, Avogaro A. The metabolic syndrome, diabetes and lung dysfunction. Diabetes Metab. 2008;34(5):447–54.CrossRef
18.
go back to reference van den Borst B, Gosker HR, Zeegers MP, Schols AM. Pulmonary function in diabetes: a metaanalysis. Chest. 2010;138(2):393–406.CrossRef van den Borst B, Gosker HR, Zeegers MP, Schols AM. Pulmonary function in diabetes: a metaanalysis. Chest. 2010;138(2):393–406.CrossRef
19.
go back to reference Fumagalli G, Fabiani F, Forte S, Napolitano M, Marinelli P, Palange P, et al. INDACO project: a pilot study on incidence of comorbidities in COPD patients referred to pneumology units. Multidiscip Respir Med. 2013;8(1):28. Fumagalli G, Fabiani F, Forte S, Napolitano M, Marinelli P, Palange P, et al. INDACO project: a pilot study on incidence of comorbidities in COPD patients referred to pneumology units. Multidiscip Respir Med. 2013;8(1):28.
20.
go back to reference Zheng H, Wu J, Jin Z, Yan L-J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis. 2017;8(1):7–16.CrossRef Zheng H, Wu J, Jin Z, Yan L-J. Potential biochemical mechanisms of lung injury in diabetes. Aging Dis. 2017;8(1):7–16.CrossRef
21.
go back to reference Liang JQ, Ding CH, Ling YL, Xu HB, Lu P, Xian XH. The protective function of puerarin to the injury of the lung and its mechanisms during diabetes. Zhongguo Ying Yong Sheng li Xue Za Zhi. 2007;23(3):355–8.PubMed Liang JQ, Ding CH, Ling YL, Xu HB, Lu P, Xian XH. The protective function of puerarin to the injury of the lung and its mechanisms during diabetes. Zhongguo Ying Yong Sheng li Xue Za Zhi. 2007;23(3):355–8.PubMed
22.
go back to reference Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.
24.
go back to reference Khafaie MA, Salvi SS, Yajnik CS, Ojha A, Khafaie B, Gore SD. Air pollution and respiratory health among diabetic and non-diabetic subjects in Pune, India-results from the Wellcome Trust genetic study. Environ Sci Pollut Res Int. 2017;24(18):15538–46.CrossRef Khafaie MA, Salvi SS, Yajnik CS, Ojha A, Khafaie B, Gore SD. Air pollution and respiratory health among diabetic and non-diabetic subjects in Pune, India-results from the Wellcome Trust genetic study. Environ Sci Pollut Res Int. 2017;24(18):15538–46.CrossRef
25.
go back to reference Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European Community for steel and coal. Official statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:5–40.CrossRef Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European Community for steel and coal. Official statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:5–40.CrossRef
26.
go back to reference Choi JH, Park S, Shin YH, Kim MY, Lee YJ. Sex differences in the relationship between metabolic syndrome and pulmonary function: the 2007 Korean National Health and nutrition examination survey. Endocr J. 2011;58(6):459–65.CrossRef Choi JH, Park S, Shin YH, Kim MY, Lee YJ. Sex differences in the relationship between metabolic syndrome and pulmonary function: the 2007 Korean National Health and nutrition examination survey. Endocr J. 2011;58(6):459–65.CrossRef
27.
go back to reference Leone N, Courbon D, Thomas F, Bean K, Jego B, Leynaert B, et al. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509–16.CrossRef Leone N, Courbon D, Thomas F, Bean K, Jego B, Leynaert B, et al. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509–16.CrossRef
28.
go back to reference Rogliani P, Curradi G, Mura M, Lauro D, Federici M, Galli A, et al. Metabolic syndrome and risk of pulmonary involvement. Respir Med. 2010;104(1):47–51.CrossRef Rogliani P, Curradi G, Mura M, Lauro D, Federici M, Galli A, et al. Metabolic syndrome and risk of pulmonary involvement. Respir Med. 2010;104(1):47–51.CrossRef
29.
go back to reference Lazarus R, Sparrow D, Weiss ST. Baseline ventilatory function predicts the development of higher levels of fasting insulin and fasting insulin resistance index: the normative aging study. Eur Respir J. 1998;12(3):641–5.CrossRef Lazarus R, Sparrow D, Weiss ST. Baseline ventilatory function predicts the development of higher levels of fasting insulin and fasting insulin resistance index: the normative aging study. Eur Respir J. 1998;12(3):641–5.CrossRef
30.
go back to reference Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.CrossRef Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.CrossRef
31.
go back to reference Nakanishi N, Yoshida H, Matsuo Y, Suzuki K, Tatara K. White blood-cell count and the risk of impaired fasting glucose or type II diabetes in middle-aged Japanese men. Diabetologia. 2002;45(1):42–8.CrossRef Nakanishi N, Yoshida H, Matsuo Y, Suzuki K, Tatara K. White blood-cell count and the risk of impaired fasting glucose or type II diabetes in middle-aged Japanese men. Diabetologia. 2002;45(1):42–8.CrossRef
32.
go back to reference Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and markers of inflammation: data from the third National Health and nutrition examination. Am J Med. 2003;114(9):758–62.CrossRef Mannino DM, Ford ES, Redd SC. Obstructive and restrictive lung disease and markers of inflammation: data from the third National Health and nutrition examination. Am J Med. 2003;114(9):758–62.CrossRef
33.
go back to reference Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, et al. Low lipid concentrations in critical illness: implications for preventing and treating endotoxemia. Crit Care Med. 1996;24(4):584–9.CrossRef Gordon BR, Parker TS, Levine DM, Saal SD, Wang JC, Sloan BJ, et al. Low lipid concentrations in critical illness: implications for preventing and treating endotoxemia. Crit Care Med. 1996;24(4):584–9.CrossRef
34.
go back to reference Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, et al. The yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman duff memorial lecture. Arterioscler Thromb Vasc Biol. 1996;16(7):831–42.CrossRef Navab M, Berliner JA, Watson AD, Hama SY, Territo MC, Lusis AJ, et al. The yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman duff memorial lecture. Arterioscler Thromb Vasc Biol. 1996;16(7):831–42.CrossRef
Metadata
Title
Role of blood glucose and fat profile in lung function pattern of Indian type 2 diabetic subjects
Authors
Morteza A. Khafaie
Sundeep S. Salvi
Chittaranjan S. Yajnik
Fakher Rahim
Behzad Khafaei
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Multidisciplinary Respiratory Medicine / Issue 1/2019
Electronic ISSN: 2049-6958
DOI
https://doi.org/10.1186/s40248-019-0184-5

Other articles of this Issue 1/2019

Multidisciplinary Respiratory Medicine 1/2019 Go to the issue