Skip to main content
Top
Published in: Multidisciplinary Respiratory Medicine 1/2015

Open Access 01-12-2015 | Review

N-acetylcysteine in COPD: why, how, and when?

Author: Claudio M. Sanguinetti

Published in: Multidisciplinary Respiratory Medicine | Issue 1/2015

Login to get access

Abstract

Oxidants have long been recognized to have an important role in the pathogenesis of COPD, and in this cigarette smoke has a strong responsibility, because it generates a conspicuous amount of oxidant radicals able to modify the structure of the respiratory tract and to enhance several mechanisms that sustain lung inflammation in COPD. In fact, oxidative stress is highly increased in COPD and natural antioxidant capacities, mainly afforded by reduced glutathione, are often overcome. Thus an exogenous supplementation of antioxidant compounds is mandatory to at least partially counteract the oxidative stress. For this purpose N-acetylcysteine has great potentialities due to its capacity of directly contrasting oxidants with its free thiols, and to the possibility it has of acting as donor of cysteine precursors aimed at glutathione restoration. Many studies in vitro and in vivo have already demonstrated the antioxidant capacity of NAC. Many clinical studies have long been performed to explore the efficacy of NAC in COPD with altern results, especially when the drug was used at very low dosage and/or for a short period of time. More recently, several trials have been conducted to verify the appropriateness of using high-dose NAC in COPD, above all to decrease the exacerbations rate. The results have been encouraging, even if some of the data come from the most widely sized trials that have been conducted in Chinese populations. Although other evidence should be necessary to confirm the results in other populations of patients, high-dose oral NAC nevertheless offers interesting perspectives as add-on therapy for COPD patients.
Literature
1.
go back to reference Bettoncelli G, Blasi F, Brusasco V, Centanni S, Corrado A, De Benedetto F, et al. The clinical and integrated management of COPD. An official document of AIMAR (Interdisciplinary Association for Research in Lung Disease), AIPO (Italian Association of Hospital Pulmonologists), SIMER (Italian Society of Respiratory Medicine), SIMG (Italian Society of General Medicine). Multidiscip Resp Med. 2014;9:25.CrossRef Bettoncelli G, Blasi F, Brusasco V, Centanni S, Corrado A, De Benedetto F, et al. The clinical and integrated management of COPD. An official document of AIMAR (Interdisciplinary Association for Research in Lung Disease), AIPO (Italian Association of Hospital Pulmonologists), SIMER (Italian Society of Respiratory Medicine), SIMG (Italian Society of General Medicine). Multidiscip Resp Med. 2014;9:25.CrossRef
2.
go back to reference Global Strategy for the Diagnosis, management and prevention of chronic obstructive pulmonary disease (updated 2015). www.goldcopd.org (accessed May 2015). Global Strategy for the Diagnosis, management and prevention of chronic obstructive pulmonary disease (updated 2015). www.​goldcopd.​org (accessed May 2015).
3.
go back to reference Sanguinetti CM. Oxidant/antioxidant imbalance: role in the pathogenesis of COPD. Respiration. 1992;59 Suppl 1:20–3.PubMedCrossRef Sanguinetti CM. Oxidant/antioxidant imbalance: role in the pathogenesis of COPD. Respiration. 1992;59 Suppl 1:20–3.PubMedCrossRef
4.
go back to reference Rahman I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys. 2005;43:167–88. Rahman I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys. 2005;43:167–88.
5.
go back to reference Rahman I. Antioxidant therapies in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:15–29. Rahman I. Antioxidant therapies in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:15–29.
6.
go back to reference Van Schooten FJ, Nia AB, De Flora S, D’Agostini F, Izzotti A, Camoirano A, et al. Effects of oral administration of N-acetyl-L-cysteine: a multi-biomarker study in smokers. Cancer Epidemiol Biomarkers Prev. 2002;11:167–75.PubMed Van Schooten FJ, Nia AB, De Flora S, D’Agostini F, Izzotti A, Camoirano A, et al. Effects of oral administration of N-acetyl-L-cysteine: a multi-biomarker study in smokers. Cancer Epidemiol Biomarkers Prev. 2002;11:167–75.PubMed
7.
go back to reference De Benedetto F, Aceto A, Dragani B, Spacone A, Formisano S, Pela R, et al. Long-term oral N-acetylcysteine reduces exhaled hydrogen peroxide in stable COPD. Pulm Pharmacol Ther. 2005;18:41–7.PubMedCrossRef De Benedetto F, Aceto A, Dragani B, Spacone A, Formisano S, Pela R, et al. Long-term oral N-acetylcysteine reduces exhaled hydrogen peroxide in stable COPD. Pulm Pharmacol Ther. 2005;18:41–7.PubMedCrossRef
8.
go back to reference Pela R, Calcagni AM, Subiaco S, Isidori P, Tubaldi A, Sanguinetti CM. N-acethylcysteine reduces exacerbation rate in patients with moderate to severe COPD. Respiration. 1999;66:495–500.PubMedCrossRef Pela R, Calcagni AM, Subiaco S, Isidori P, Tubaldi A, Sanguinetti CM. N-acethylcysteine reduces exacerbation rate in patients with moderate to severe COPD. Respiration. 1999;66:495–500.PubMedCrossRef
9.
go back to reference Stey C, Steurer J, Bachmann S, Medici TC, Tramer MR. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000;16:253–62.PubMedCrossRef Stey C, Steurer J, Bachmann S, Medici TC, Tramer MR. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000;16:253–62.PubMedCrossRef
10.
go back to reference Dekhuijzen PNR, Aben KK, Dekker I, Aarts LP, Wielders PL, van Herwaarden CL, et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154:813–6.PubMedCrossRef Dekhuijzen PNR, Aben KK, Dekker I, Aarts LP, Wielders PL, van Herwaarden CL, et al. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154:813–6.PubMedCrossRef
11.
go back to reference Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;156:341–57.PubMedCrossRef Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;156:341–57.PubMedCrossRef
13.
go back to reference Barnes PJ, Karin M. Nuclear factor-kB — a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.PubMedCrossRef Barnes PJ, Karin M. Nuclear factor-kB — a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.PubMedCrossRef
14.
go back to reference Pryor WA. Oxy-radicals and related species :their formation, lifetime and reactions. Ann Rev Physiol. 1986;48:657–67.CrossRef Pryor WA. Oxy-radicals and related species :their formation, lifetime and reactions. Ann Rev Physiol. 1986;48:657–67.CrossRef
16.
17.
go back to reference MacNee W, Wiggs B, Belzberg AS, Hogg JC. The effect of cigarette smoking on neutrophil kinetics in human lungs. N Engl J Med. 1989;321:924–8.PubMedCrossRef MacNee W, Wiggs B, Belzberg AS, Hogg JC. The effect of cigarette smoking on neutrophil kinetics in human lungs. N Engl J Med. 1989;321:924–8.PubMedCrossRef
18.
go back to reference Di Stefano A, Maestrelli P, Roggeri A, Turato G, Calabro S, Potena A, et al. Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med. 1994;149:803–10.PubMedCrossRef Di Stefano A, Maestrelli P, Roggeri A, Turato G, Calabro S, Potena A, et al. Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med. 1994;149:803–10.PubMedCrossRef
19.
go back to reference Schaberg T, Haller H, Rau M, Kaiser D, Fassbender M, Lode H. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur Respir J. 1992;5:387–93.PubMed Schaberg T, Haller H, Rau M, Kaiser D, Fassbender M, Lode H. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur Respir J. 1992;5:387–93.PubMed
20.
go back to reference MacNee W, Rahman I. Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med. 2001;7:55–62.PubMedCrossRef MacNee W, Rahman I. Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med. 2001;7:55–62.PubMedCrossRef
21.
go back to reference Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219–42.PubMedCrossRef Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28:219–42.PubMedCrossRef
22.
go back to reference Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011;6:413–21.PubMedCentralPubMedCrossRef Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011;6:413–21.PubMedCentralPubMedCrossRef
23.
go back to reference Hillas G, Nikolakopoulou S, Hussain S, Vassilakopoulos T. Antioxidants and mucolytics in COPD management: when (if ever) and in whom ? Curr Drug Targets. 2013;14:225–34.PubMedCrossRef Hillas G, Nikolakopoulou S, Hussain S, Vassilakopoulos T. Antioxidants and mucolytics in COPD management: when (if ever) and in whom ? Curr Drug Targets. 2013;14:225–34.PubMedCrossRef
24.
go back to reference Lundborg M, Bouhafs R, Gerde P, Ewing P, Camner P, Dahlen SE, et al. Aggregates of ultrafine particles modulate lipid peroxidation and bacterial killing by alveolar macrophages. Environ Res. 2007;104:250–7.PubMedCrossRef Lundborg M, Bouhafs R, Gerde P, Ewing P, Camner P, Dahlen SE, et al. Aggregates of ultrafine particles modulate lipid peroxidation and bacterial killing by alveolar macrophages. Environ Res. 2007;104:250–7.PubMedCrossRef
25.
go back to reference Kienast K, Knorst M, Lubjuhn S, Muller-Quernheim J, Ferlinz R. Nitrogen dioxide-induced reactive oxygen intermediates production by human alveolar macrophages and peripheral blood mononuclear cells. Arch Environ Health. 1994;49:246–50.PubMedCrossRef Kienast K, Knorst M, Lubjuhn S, Muller-Quernheim J, Ferlinz R. Nitrogen dioxide-induced reactive oxygen intermediates production by human alveolar macrophages and peripheral blood mononuclear cells. Arch Environ Health. 1994;49:246–50.PubMedCrossRef
26.
go back to reference Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.PubMedCrossRef Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.PubMedCrossRef
27.
go back to reference Lakshminarayan V, Drab-Weiss EA, Roebuck KA. H2O2 and tumor necrosis factor alpha induce differential binding of the redox-responsive transcription factor AP-1 and NF-kappa B to the interleukin 8 promoter in endothelial and epithelial cells. J Biol Chem. 1998;273:32670–8.CrossRef Lakshminarayan V, Drab-Weiss EA, Roebuck KA. H2O2 and tumor necrosis factor alpha induce differential binding of the redox-responsive transcription factor AP-1 and NF-kappa B to the interleukin 8 promoter in endothelial and epithelial cells. J Biol Chem. 1998;273:32670–8.CrossRef
28.
29.
go back to reference Fuke S, Betsuyaku T, Nasuhara Y, Morikawa T, Katoh H, Nishimura M. Chemokines in bronchiolar epithelium in the development of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2004;31:405–12.PubMedCrossRef Fuke S, Betsuyaku T, Nasuhara Y, Morikawa T, Katoh H, Nishimura M. Chemokines in bronchiolar epithelium in the development of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2004;31:405–12.PubMedCrossRef
30.
go back to reference Li XY, Donaldson K, Rahman I, MacNee W. An investigation of the role of glutathione in the increased epithelial permeability induced by cigarette smoke in vivo and in vitro. Am J Respir Crit Care Med. 1994;149:1518–25.PubMedCrossRef Li XY, Donaldson K, Rahman I, MacNee W. An investigation of the role of glutathione in the increased epithelial permeability induced by cigarette smoke in vivo and in vitro. Am J Respir Crit Care Med. 1994;149:1518–25.PubMedCrossRef
31.
go back to reference Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. N Engl J Med. 1995;332:1198–203.PubMedCrossRef Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. N Engl J Med. 1995;332:1198–203.PubMedCrossRef
32.
go back to reference Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166:490–5.PubMedCrossRef Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166:490–5.PubMedCrossRef
33.
go back to reference Sadowska AM, van Overveld FJ, Górecka D, Zdral A, Filewska M, Demkow UA, et al. The interrelationship between markers of inflammation and oxidative stress in chronic obstructive pulmonary disease : modulation by inhaled steroids and antioxidant. Respir Med. 2005;99:241–9.PubMedCrossRef Sadowska AM, van Overveld FJ, Górecka D, Zdral A, Filewska M, Demkow UA, et al. The interrelationship between markers of inflammation and oxidative stress in chronic obstructive pulmonary disease : modulation by inhaled steroids and antioxidant. Respir Med. 2005;99:241–9.PubMedCrossRef
34.
go back to reference Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol. 2011;254:72–85.PubMedCentralPubMedCrossRef Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol. 2011;254:72–85.PubMedCentralPubMedCrossRef
35.
go back to reference Wozniak A, Gorecki D, Szpinda M, Mila-Kierzenkowska C, Wozniak B. Oxidant-antioxidant balance in the blood of patients with chronic obstructive pulmonary disease after smoking cessation. Oxid Med Cell Longev. 2013;2013:897075.PubMedCentralPubMed Wozniak A, Gorecki D, Szpinda M, Mila-Kierzenkowska C, Wozniak B. Oxidant-antioxidant balance in the blood of patients with chronic obstructive pulmonary disease after smoking cessation. Oxid Med Cell Longev. 2013;2013:897075.PubMedCentralPubMed
36.
go back to reference Ahmad A, Shameem M, Husain Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2013;17:1104–9.PubMedCrossRef Ahmad A, Shameem M, Husain Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2013;17:1104–9.PubMedCrossRef
37.
go back to reference Tse HN, Tseng CZS. Update on the pathological processes, molecular biology and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:825–36.PubMedCentralPubMedCrossRef Tse HN, Tseng CZS. Update on the pathological processes, molecular biology and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:825–36.PubMedCentralPubMedCrossRef
38.
go back to reference Nicks ME, O’Brien MM, Bowler RP. Plasma antioxidants are associated with impaired lung function and COPD exacerbations in smokers. COPD. 2011;8:264–9.PubMedCentralPubMedCrossRef Nicks ME, O’Brien MM, Bowler RP. Plasma antioxidants are associated with impaired lung function and COPD exacerbations in smokers. COPD. 2011;8:264–9.PubMedCentralPubMedCrossRef
39.
go back to reference Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, et al. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A. 2010;107:15571–6.PubMedCentralPubMedCrossRef Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL, et al. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A. 2010;107:15571–6.PubMedCentralPubMedCrossRef
40.
go back to reference Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.PubMedCrossRef Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.PubMedCrossRef
41.
go back to reference Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, et al. Decline in NRF2-regulated antioxidant in chronic obstructive pulmonary disease lungs due to loss of its positive regulator DJ-1. Am J Respir Crit Care Med. 2008;178:592–604.PubMedCentralPubMedCrossRef Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, et al. Decline in NRF2-regulated antioxidant in chronic obstructive pulmonary disease lungs due to loss of its positive regulator DJ-1. Am J Respir Crit Care Med. 2008;178:592–604.PubMedCentralPubMedCrossRef
42.
go back to reference Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004;114:1248–59.PubMedCentralPubMedCrossRef Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004;114:1248–59.PubMedCentralPubMedCrossRef
43.
go back to reference Rahman I, Li XY, Donaldson K, Harrison DJ, MacNee W. Glutathione homeostasis in alveolar epithelial cells in vitro and lung in vivo under oxidative stress. Am J Physiol. 1995;269:L285–92.PubMed Rahman I, Li XY, Donaldson K, Harrison DJ, MacNee W. Glutathione homeostasis in alveolar epithelial cells in vitro and lung in vivo under oxidative stress. Am J Physiol. 1995;269:L285–92.PubMed
44.
go back to reference Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352:1967–76.PubMedCrossRef Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352:1967–76.PubMedCrossRef
45.
go back to reference Wada H, Takizawa H. Future treatment for COPD: Targeting oxidative stress and its related signal. Recent Pat Inflamm Allergy Drug Discov. 2013;7:1–11.PubMedCrossRef Wada H, Takizawa H. Future treatment for COPD: Targeting oxidative stress and its related signal. Recent Pat Inflamm Allergy Drug Discov. 2013;7:1–11.PubMedCrossRef
46.
go back to reference Drost EM, Skwarski KM, Sauleda J, Soler N, Roca J, Agusti A, et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60:293–300.PubMedCentralPubMedCrossRef Drost EM, Skwarski KM, Sauleda J, Soler N, Roca J, Agusti A, et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60:293–300.PubMedCentralPubMedCrossRef
47.
go back to reference Stanojkovic I, Kotur-Stevuljevic J, Milenkovic B, Spasic S, Vujic T, Stefanovic A, et al. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir Med. 2011;Suppl105:S31–7.CrossRef Stanojkovic I, Kotur-Stevuljevic J, Milenkovic B, Spasic S, Vujic T, Stefanovic A, et al. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir Med. 2011;Suppl105:S31–7.CrossRef
48.
go back to reference Britton JR, Pavord ID, Richards KA, Knox AJ, Wisniewski AF, Lewis SA, et al. Dietary antioxidant vitamin intake and lung function in the general population. Am J Respir Crit Care Med. 1995;151:1383–7.PubMedCrossRef Britton JR, Pavord ID, Richards KA, Knox AJ, Wisniewski AF, Lewis SA, et al. Dietary antioxidant vitamin intake and lung function in the general population. Am J Respir Crit Care Med. 1995;151:1383–7.PubMedCrossRef
49.
go back to reference Grievink L, Smit HA, Ocke MC, van't Veer P, Kromhout D. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax. 1998;53:166–71.PubMedCentralPubMedCrossRef Grievink L, Smit HA, Ocke MC, van't Veer P, Kromhout D. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax. 1998;53:166–71.PubMedCentralPubMedCrossRef
50.
go back to reference Rautalahti M, Virtamo J, Haukka J, Heinonen OP, Sundvall J, Albanes D, et al. The effect of alpha-tocopherol and beta-carotene supplementation on COPD symptoms. Am J Respir Crit Care Med. 1997;156:1447–52.PubMedCrossRef Rautalahti M, Virtamo J, Haukka J, Heinonen OP, Sundvall J, Albanes D, et al. The effect of alpha-tocopherol and beta-carotene supplementation on COPD symptoms. Am J Respir Crit Care Med. 1997;156:1447–52.PubMedCrossRef
51.
go back to reference Sargeant LA, Jaeckel A, Wareham NJ. Interaction of vitamin C with the relation between smoking and obstructive airways disease in EPIC Norfolk. European Prospective Investigation into Cancer and Nutrition. Eur Respir J. 2000;16:397–403.PubMedCrossRef Sargeant LA, Jaeckel A, Wareham NJ. Interaction of vitamin C with the relation between smoking and obstructive airways disease in EPIC Norfolk. European Prospective Investigation into Cancer and Nutrition. Eur Respir J. 2000;16:397–403.PubMedCrossRef
52.
go back to reference Tabak C, Arts IC, Smit HA, Heederik D, Kromhout D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the MORGEN Study. Am J Respir Crit Care Med. 2001;164:61–4.PubMedCrossRef Tabak C, Arts IC, Smit HA, Heederik D, Kromhout D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the MORGEN Study. Am J Respir Crit Care Med. 2001;164:61–4.PubMedCrossRef
53.
go back to reference Culpitt SV, Rogers DF, Fenwick PS, Shah P, De Matos C, Russell RE, et al. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax. 2003;58:942–6.PubMedCentralPubMedCrossRef Culpitt SV, Rogers DF, Fenwick PS, Shah P, De Matos C, Russell RE, et al. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax. 2003;58:942–6.PubMedCentralPubMedCrossRef
54.
go back to reference Robb EL, Page MM, Wiens BE, Stuart BA. Molecular mechanisms of oxidative stress resistance induced by resveratrol: specif and progressive induction of MsSOD. Biochem Biophys Res Commun. 2008;367:406–12.PubMedCrossRef Robb EL, Page MM, Wiens BE, Stuart BA. Molecular mechanisms of oxidative stress resistance induced by resveratrol: specif and progressive induction of MsSOD. Biochem Biophys Res Commun. 2008;367:406–12.PubMedCrossRef
55.
go back to reference Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294:L478–88.PubMedCrossRef Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294:L478–88.PubMedCrossRef
56.
go back to reference Sheffner AL. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent. N acetyl-L-cysteine. Ann NY Acad Sci. 1963;106:298–310.PubMedCrossRef Sheffner AL. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent. N acetyl-L-cysteine. Ann NY Acad Sci. 1963;106:298–310.PubMedCrossRef
57.
go back to reference Sadowska AM. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2012;6:127–35.PubMedCrossRef Sadowska AM. N-Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2012;6:127–35.PubMedCrossRef
58.
go back to reference Grassier B, Cabanis A, Lebegue S, Brunet C, Dine T, Luyckx M, et al. Decrease of hypochlorous acid and hydroxyl radical generated by stimulated human neutrophils : comparison in vitro of some thiol containing drugs. Methods Find Exp Clin Pharmacol. 1994;16:9–13. Grassier B, Cabanis A, Lebegue S, Brunet C, Dine T, Luyckx M, et al. Decrease of hypochlorous acid and hydroxyl radical generated by stimulated human neutrophils : comparison in vitro of some thiol containing drugs. Methods Find Exp Clin Pharmacol. 1994;16:9–13.
59.
go back to reference Aruoma O, Halliwell B, Hoey M, Butler J. The antioxidant action of N-acetylcysteine : its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypoclorous acid. Free Radic Biol Med. 1989;6:593–7.PubMedCrossRef Aruoma O, Halliwell B, Hoey M, Butler J. The antioxidant action of N-acetylcysteine : its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypoclorous acid. Free Radic Biol Med. 1989;6:593–7.PubMedCrossRef
60.
go back to reference Moldeus P, Cotgreave IA, Berggren M. Lung protection by a thiol-containing antioxidant: N-acetylcysteine. Respiration. 1986;50 Suppl 1:31–42.PubMed Moldeus P, Cotgreave IA, Berggren M. Lung protection by a thiol-containing antioxidant: N-acetylcysteine. Respiration. 1986;50 Suppl 1:31–42.PubMed
61.
go back to reference Bridgeman MME, Marsden M, MacNee W, Flenley DC, Ryle AP. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax. 1991;46:39–42.PubMedCentralPubMedCrossRef Bridgeman MME, Marsden M, MacNee W, Flenley DC, Ryle AP. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax. 1991;46:39–42.PubMedCentralPubMedCrossRef
62.
go back to reference Martensson J, Jain A, Frayer W, Meister A. Glutathione metabolism in the lung: inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc Natl Acad Sci USA. 1989;86:5296–300.PubMedCentralPubMedCrossRef Martensson J, Jain A, Frayer W, Meister A. Glutathione metabolism in the lung: inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc Natl Acad Sci USA. 1989;86:5296–300.PubMedCentralPubMedCrossRef
63.
go back to reference Bridgeman MME, Marsden M, Selby C, Morrison D, MacNee W. Effect of N-acetylcysteine on the concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue. Thorax. 1994;49:670–5.PubMedCentralPubMedCrossRef Bridgeman MME, Marsden M, Selby C, Morrison D, MacNee W. Effect of N-acetylcysteine on the concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue. Thorax. 1994;49:670–5.PubMedCentralPubMedCrossRef
64.
go back to reference Simon LM, Suttorp N. Lung cell oxidant injury: decrease in oxidant mediated cytotoxicity by N-acetylcysteine. Eur J Respir Dis. 1985;66 suppl 139:132–5. Simon LM, Suttorp N. Lung cell oxidant injury: decrease in oxidant mediated cytotoxicity by N-acetylcysteine. Eur J Respir Dis. 1985;66 suppl 139:132–5.
65.
go back to reference Wagner PD, Mathieu-Costello O, Bebout DE, Gray AT, Natterson PD, Glennow C. Protection against pulmonary 02 toxicity by N-acetylcysteine. Eur Respir J. 1989;2:116–26.PubMed Wagner PD, Mathieu-Costello O, Bebout DE, Gray AT, Natterson PD, Glennow C. Protection against pulmonary 02 toxicity by N-acetylcysteine. Eur Respir J. 1989;2:116–26.PubMed
66.
go back to reference Cotgreave IA. N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol. 1997;38:205–27.PubMedCrossRef Cotgreave IA. N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol. 1997;38:205–27.PubMedCrossRef
67.
go back to reference Dekhuijzen PNR. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 2004;23:629–36.PubMedCrossRef Dekhuijzen PNR. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 2004;23:629–36.PubMedCrossRef
68.
go back to reference De Caro L, Ghizzi A, Costa R, Longo A, Ventresca GP, Lodola E. Pharmacokinetics and bioavailability of oral acetylcysteine in healthy volunteers. Arzneimittelforschung. 1989;39:382–6.PubMed De Caro L, Ghizzi A, Costa R, Longo A, Ventresca GP, Lodola E. Pharmacokinetics and bioavailability of oral acetylcysteine in healthy volunteers. Arzneimittelforschung. 1989;39:382–6.PubMed
69.
go back to reference Sadowska AM, Manuel-y-Kenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD : discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther. 2007;20:9–22.PubMedCrossRef Sadowska AM, Manuel-y-Kenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD : discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther. 2007;20:9–22.PubMedCrossRef
70.
go back to reference Santangelo F. Intracellular thiol concentration modulating inflammatory response: influence on the regulation of cell functions through cysteine prodrug approach. Curr Med Chem. 2003;10:2599–610.PubMedCrossRef Santangelo F. Intracellular thiol concentration modulating inflammatory response: influence on the regulation of cell functions through cysteine prodrug approach. Curr Med Chem. 2003;10:2599–610.PubMedCrossRef
71.
go back to reference Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000;28:1405–20.PubMedCrossRef Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000;28:1405–20.PubMedCrossRef
72.
go back to reference Grinberg L, Fibach E, Amer J, Atlas D. N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med. 2005;38:136–45.PubMedCrossRef Grinberg L, Fibach E, Amer J, Atlas D. N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med. 2005;38:136–45.PubMedCrossRef
73.
go back to reference Mazor D, Golan E, Philip V, Katz M, Jafe A, Ben Zvi Z, et al. Red blood cell permeability to thiol compounds following oxidative stress. Eur J Haematol. 1996;57:241–6.PubMedCrossRef Mazor D, Golan E, Philip V, Katz M, Jafe A, Ben Zvi Z, et al. Red blood cell permeability to thiol compounds following oxidative stress. Eur J Haematol. 1996;57:241–6.PubMedCrossRef
74.
go back to reference Tsikas D, Sandmann J, Ikic M, Fauler J, Stichtenoth DO, Frolich JC. Analysis of cysteine and N-acetylcysteine in human plasma by highperformance liquid chromatography at the basal state and after oral administration of N-acetylcysteine. J Chromatogr B: Biomed Sci Appl. 1998;708:55–60.CrossRef Tsikas D, Sandmann J, Ikic M, Fauler J, Stichtenoth DO, Frolich JC. Analysis of cysteine and N-acetylcysteine in human plasma by highperformance liquid chromatography at the basal state and after oral administration of N-acetylcysteine. J Chromatogr B: Biomed Sci Appl. 1998;708:55–60.CrossRef
75.
go back to reference Desaki M, Takizawa H, Kasama T, Kobayashi K, Morita Y, Yamamoto K. Nuclear factor-kb activation in silica-induced interleukin 8 production by human bronchial epithelial cells. Cytokine. 2000;12:1257–60.PubMedCrossRef Desaki M, Takizawa H, Kasama T, Kobayashi K, Morita Y, Yamamoto K. Nuclear factor-kb activation in silica-induced interleukin 8 production by human bronchial epithelial cells. Cytokine. 2000;12:1257–60.PubMedCrossRef
76.
go back to reference Wuyts WA, Vanaudenaerde BM, Dupont LJ, Demedts MG, Verleden GM. Involvement of p38 MAPK, JNK, p42/p44 ERK and NF-kB in IL-1beta-induced chemokine release in human airway smooth muscle cells. Respir Med. 2003;97:811–7.PubMedCrossRef Wuyts WA, Vanaudenaerde BM, Dupont LJ, Demedts MG, Verleden GM. Involvement of p38 MAPK, JNK, p42/p44 ERK and NF-kB in IL-1beta-induced chemokine release in human airway smooth muscle cells. Respir Med. 2003;97:811–7.PubMedCrossRef
77.
go back to reference Reddy NM, Kleeberger SR, Bream JH, Fallon PG, Kensler TW, Yamamoto M, et al. Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene. 2008;27:5821–32.PubMedCentralPubMedCrossRef Reddy NM, Kleeberger SR, Bream JH, Fallon PG, Kensler TW, Yamamoto M, et al. Genetic disruption of the Nrf2 compromises cell-cycle progression by impairing GSH-induced redox signaling. Oncogene. 2008;27:5821–32.PubMedCentralPubMedCrossRef
78.
go back to reference Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets. 2010;14:329–46.PubMedCrossRef Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets. 2010;14:329–46.PubMedCrossRef
79.
go back to reference Dekhuijzen PNR, van Beurden WJC. The role for N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:99–106.PubMedCentralPubMed Dekhuijzen PNR, van Beurden WJC. The role for N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1:99–106.PubMedCentralPubMed
80.
go back to reference Linden M, Wieslander E, Eklund A, Larsson K, Brattsand R. Effects of oral N-acetylcysteine on cell content and macrophage function in bronchoalveolar lavage from healthy smokers. Eur Respir J. 1988;1:645–50.PubMed Linden M, Wieslander E, Eklund A, Larsson K, Brattsand R. Effects of oral N-acetylcysteine on cell content and macrophage function in bronchoalveolar lavage from healthy smokers. Eur Respir J. 1988;1:645–50.PubMed
81.
go back to reference Jankowska R, Passowicz Muszynska E, Medrala W, Banas T, Marcinkowska A. The influence of n-acetylcysteine on chemiluminescence of granulocytes in peripheral blood of patients with chronic bronchitis. Pneumonol Alergol Pol. 1993;61:586–91.PubMed Jankowska R, Passowicz Muszynska E, Medrala W, Banas T, Marcinkowska A. The influence of n-acetylcysteine on chemiluminescence of granulocytes in peripheral blood of patients with chronic bronchitis. Pneumonol Alergol Pol. 1993;61:586–91.PubMed
82.
go back to reference Novak D, Kasielski M, Antczak A, Pietras T, Bialasiewicz P. Increased content of thiobarbituric and acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease : no significant effect of cigarette smoking. Respir Med. 1999;93:389–96.CrossRef Novak D, Kasielski M, Antczak A, Pietras T, Bialasiewicz P. Increased content of thiobarbituric and acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease : no significant effect of cigarette smoking. Respir Med. 1999;93:389–96.CrossRef
83.
go back to reference De Benedetto F, Aceto A, Dragani B, Spacone A, Formisano S, Cocco R, et al. Validation of a new technique to assess exhaled hydrogen peroxide: results from normals and COPD patients. Monaldi Arch Chest Dis. 2000;55:185–8.PubMed De Benedetto F, Aceto A, Dragani B, Spacone A, Formisano S, Cocco R, et al. Validation of a new technique to assess exhaled hydrogen peroxide: results from normals and COPD patients. Monaldi Arch Chest Dis. 2000;55:185–8.PubMed
84.
go back to reference Boman G, Backer U, Larsson S, Melander B, Wahlander L. Oral acetylcysteine reduces exacerbation rate in chronic bronchitis: report of a trial organized by the Swedish Society for Pulmonary diseases. Eur J Respir Dis. 1983;64:405–15.PubMed Boman G, Backer U, Larsson S, Melander B, Wahlander L. Oral acetylcysteine reduces exacerbation rate in chronic bronchitis: report of a trial organized by the Swedish Society for Pulmonary diseases. Eur J Respir Dis. 1983;64:405–15.PubMed
85.
go back to reference Rasmussen JB, Gleenow C. Reduction in days of illness after long-term treatment with Nacetylcysteine controlled-release tablets in patients with chronic bronchitis. Eur Respir J. 1988;1:351–5.PubMed Rasmussen JB, Gleenow C. Reduction in days of illness after long-term treatment with Nacetylcysteine controlled-release tablets in patients with chronic bronchitis. Eur Respir J. 1988;1:351–5.PubMed
86.
go back to reference British Thoracic Society Research Committee. Oral N-acetylcysteine and exacerbation rates in patients with chronic bronchitis and severe airways obstruction. Thorax. 1985;40:823–35. British Thoracic Society Research Committee. Oral N-acetylcysteine and exacerbation rates in patients with chronic bronchitis and severe airways obstruction. Thorax. 1985;40:823–35.
87.
go back to reference Grandjean EM, Berthet P, Ruffmann R, Leuenberger P. Efficacy of oral long-term N-acetylcysteine in chronic bronchopulmonary disease: a meta-analysis of published double-blind, placebo-controlled clinical trials. Clin Ther. 2000;22:209–21.PubMedCrossRef Grandjean EM, Berthet P, Ruffmann R, Leuenberger P. Efficacy of oral long-term N-acetylcysteine in chronic bronchopulmonary disease: a meta-analysis of published double-blind, placebo-controlled clinical trials. Clin Ther. 2000;22:209–21.PubMedCrossRef
88.
go back to reference Poole PJ, Black PN. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease: systematic review. Br Med J. 2001;322:1271–4.CrossRef Poole PJ, Black PN. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease: systematic review. Br Med J. 2001;322:1271–4.CrossRef
89.
go back to reference Decramer M, Rutten-van Molken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino R, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost- Utility Study, BRONCUS): A randomised placebo-controlled trial. Lancet. 2005;365:1552–60.PubMedCrossRef Decramer M, Rutten-van Molken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino R, et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost- Utility Study, BRONCUS): A randomised placebo-controlled trial. Lancet. 2005;365:1552–60.PubMedCrossRef
90.
go back to reference Sutherland ER, Crapo JD, Bowler RP. N-acetylcysteine and exacerbations of chronic obstructive pulmonary disease. COPD. 2006;3:195–202.PubMedCrossRef Sutherland ER, Crapo JD, Bowler RP. N-acetylcysteine and exacerbations of chronic obstructive pulmonary disease. COPD. 2006;3:195–202.PubMedCrossRef
91.
go back to reference Schermer T, Chavannes N, Dekhuijzen R, Wouters E, Muris J, Akkermans R, et al. Fluticasone and N-acetylcysteine in primary care patients with COPD or chronic bronchitis. Respir Med. 2009;103:542–51.PubMedCrossRef Schermer T, Chavannes N, Dekhuijzen R, Wouters E, Muris J, Akkermans R, et al. Fluticasone and N-acetylcysteine in primary care patients with COPD or chronic bronchitis. Respir Med. 2009;103:542–51.PubMedCrossRef
92.
go back to reference Kasielski M, Nowak D. Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respir Med. 2001;95:448–56.PubMedCrossRef Kasielski M, Nowak D. Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respir Med. 2001;95:448–56.PubMedCrossRef
93.
go back to reference Gerrits CMJM, Herings RMC, Leufkens HGM, Lammers J-WG. N-acetylcysteine reduces the risk of re-hospitalization among patients with chronic obstructive pulmonary disease. Eur Respir J. 2003;21:795–8.PubMedCrossRef Gerrits CMJM, Herings RMC, Leufkens HGM, Lammers J-WG. N-acetylcysteine reduces the risk of re-hospitalization among patients with chronic obstructive pulmonary disease. Eur Respir J. 2003;21:795–8.PubMedCrossRef
94.
go back to reference Zuin R, Palamidese A, Negrin R, Catozzo L, Scarda A, Balbinot M. High-dose N-acetylcysteine in patients with exacerbations of chronic obstructive pulmonary disease. Clin Drug Investig. 2005;25:401–8.PubMedCrossRef Zuin R, Palamidese A, Negrin R, Catozzo L, Scarda A, Balbinot M. High-dose N-acetylcysteine in patients with exacerbations of chronic obstructive pulmonary disease. Clin Drug Investig. 2005;25:401–8.PubMedCrossRef
95.
go back to reference De Backer J, Vos W, Van Holsbeke C, Vinchurckar S, Claes R, Parizel PM, et al. Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients. Int J Chron Obstruct Pulmon Dis. 2013;8:569–79.PubMedCentralPubMedCrossRef De Backer J, Vos W, Van Holsbeke C, Vinchurckar S, Claes R, Parizel PM, et al. Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients. Int J Chron Obstruct Pulmon Dis. 2013;8:569–79.PubMedCentralPubMedCrossRef
96.
go back to reference Shen Y, Cai W, Lei S, Zhang Z. Effect of high/low dose N-acetylcysteine in chronic obstructive pulmonary disease: a systematic review and meta-analysis. COPD. 2013;10:1–8. Shen Y, Cai W, Lei S, Zhang Z. Effect of high/low dose N-acetylcysteine in chronic obstructive pulmonary disease: a systematic review and meta-analysis. COPD. 2013;10:1–8.
97.
go back to reference Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Wai KY, et al. High-dose N-acetylcysteine in stable COPD. The 1-year, double-blind, randomized placebo-controlled HIACE study. Chest. 2013;144:106–18.PubMedCrossRef Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Wai KY, et al. High-dose N-acetylcysteine in stable COPD. The 1-year, double-blind, randomized placebo-controlled HIACE study. Chest. 2013;144:106–18.PubMedCrossRef
98.
go back to reference McFadden Jr ER, Linden DA. A reduction in maximum midexpiratory flow rate. A spirographic manifestation of small airway disease. Am J Med. 1972;52:725–37.PubMedCrossRef McFadden Jr ER, Linden DA. A reduction in maximum midexpiratory flow rate. A spirographic manifestation of small airway disease. Am J Med. 1972;52:725–37.PubMedCrossRef
99.
go back to reference Knudson RJ, Lebowitz MD. Maximal mid-expiratory flow (FEF25–75%): normal limits and assessment of sensitivity. Am Rev Respir Dis. 1978;117:609–10.PubMed Knudson RJ, Lebowitz MD. Maximal mid-expiratory flow (FEF25–75%): normal limits and assessment of sensitivity. Am Rev Respir Dis. 1978;117:609–10.PubMed
101.
go back to reference Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.PubMedCrossRef Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.PubMedCrossRef
102.
go back to reference Burgel PR, Bourdin A, Chanez P, Chabot F, Chaouat A, Chinet T, et al. Update on the roles of distal airways in COPD. Eur Respir Rev. 2011;20:7–22.PubMedCrossRef Burgel PR, Bourdin A, Chanez P, Chabot F, Chaouat A, Chinet T, et al. Update on the roles of distal airways in COPD. Eur Respir Rev. 2011;20:7–22.PubMedCrossRef
103.
go back to reference Burgel PR. The role of small airways in obstructive airway diseases. Eur Respir Rev. 2011;20:23–33.PubMedCrossRef Burgel PR. The role of small airways in obstructive airway diseases. Eur Respir Rev. 2011;20:23–33.PubMedCrossRef
104.
go back to reference Hansen JE, Sun XG, Wasserman K. Discriminating measures and normal values for expiratory obstruction. Chest. 2006;129:369–77.PubMedCrossRef Hansen JE, Sun XG, Wasserman K. Discriminating measures and normal values for expiratory obstruction. Chest. 2006;129:369–77.PubMedCrossRef
105.
go back to reference Goldman MD, Saadeh C, Ross D. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol. 2005;148:179–94.PubMedCrossRef Goldman MD, Saadeh C, Ross D. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol. 2005;148:179–94.PubMedCrossRef
106.
go back to reference Kolsum U, Borrill Z, Roy K, Starkey C, Vestbo J, Houghton C, et al. Impulse oscillometry in COPD : identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir Med. 2009;103:136–43.PubMedCrossRef Kolsum U, Borrill Z, Roy K, Starkey C, Vestbo J, Houghton C, et al. Impulse oscillometry in COPD : identification of measurements related to airway obstruction, airway conductance and lung volumes. Respir Med. 2009;103:136–43.PubMedCrossRef
107.
go back to reference Johnson MK, Birch M, Carter R, Kinsella J, Stevenson RD. Use of reactance to estimate transpulmonary resistance. Eur Respir J. 2005;25:1061–9.PubMedCrossRef Johnson MK, Birch M, Carter R, Kinsella J, Stevenson RD. Use of reactance to estimate transpulmonary resistance. Eur Respir J. 2005;25:1061–9.PubMedCrossRef
108.
go back to reference Stav D, Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest. 2009;136:381–6.PubMedCrossRef Stav D, Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest. 2009;136:381–6.PubMedCrossRef
109.
go back to reference Suer E, Sayrac S, Sarinay E, Ozturk HE, Turkoz M, Ichinose A, et al. Variation in the attachment of Streptococcus pneumoniae to human pharyngeal epithelial cells after treatment with S carboxymethylcysteine. J Infect Chemother. 2008;14:333–6.PubMedCrossRef Suer E, Sayrac S, Sarinay E, Ozturk HE, Turkoz M, Ichinose A, et al. Variation in the attachment of Streptococcus pneumoniae to human pharyngeal epithelial cells after treatment with S carboxymethylcysteine. J Infect Chemother. 2008;14:333–6.PubMedCrossRef
110.
go back to reference Corn SD, Barstow TJ. Effects of oral N-acetylcysteine on fatigue, critical power, and W’ in exercising humans. Respir Physiol Neurobiol. 2011;178:261–8. Corn SD, Barstow TJ. Effects of oral N-acetylcysteine on fatigue, critical power, and W’ in exercising humans. Respir Physiol Neurobiol. 2011;178:261–8.
111.
go back to reference Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N. Oxidative stress and respiratory system: clinical reappraisal of N-acetylcysteine. COPD. 2014;11:705–17.PubMedCentralPubMedCrossRef Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N. Oxidative stress and respiratory system: clinical reappraisal of N-acetylcysteine. COPD. 2014;11:705–17.PubMedCentralPubMedCrossRef
112.
go back to reference Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Yee KS, et al. Benefits of high-dose N-acetylcysteine to exacerbation-prone patients with COPD. Chest. 2014;146:611–23.PubMedCrossRef Tse HN, Raiteri L, Wong KY, Yee KS, Ng LY, Yee KS, et al. Benefits of high-dose N-acetylcysteine to exacerbation-prone patients with COPD. Chest. 2014;146:611–23.PubMedCrossRef
113.
go back to reference Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38.PubMedCrossRef Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–38.PubMedCrossRef
114.
go back to reference Wedzicha JA, Brill SE, Allinson JP, Donaldson GC. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013;11:181.PubMedCentralPubMedCrossRef Wedzicha JA, Brill SE, Allinson JP, Donaldson GC. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013;11:181.PubMedCentralPubMedCrossRef
115.
go back to reference Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. TORCH Investigators. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356:775–89.PubMedCrossRef Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. TORCH Investigators. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356:775–89.PubMedCrossRef
116.
go back to reference Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, et al. UPLIFT Study Investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359:1543–54.PubMedCrossRef Tashkin DP, Celli B, Senn S, Burkhart D, Kesten S, Menjoge S, et al. UPLIFT Study Investigators. A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med. 2008;359:1543–54.PubMedCrossRef
117.
go back to reference Vogelmeier C, Hederer B, Glaab T, Schmidt H, Rutten-van Mölken MP, Beeh KM, et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011;364:1093–103.PubMedCrossRef Vogelmeier C, Hederer B, Glaab T, Schmidt H, Rutten-van Mölken MP, Beeh KM, et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011;364:1093–103.PubMedCrossRef
118.
go back to reference Wedzicha JA, Rabe KF, Martinez FJ, Bredenbröker D, Brose M, Goehring UM, et al. Efficacy of roflumilast in the COPD frequent exacerbator phenotype. Chest. 2013;143:1302–11.PubMedCrossRef Wedzicha JA, Rabe KF, Martinez FJ, Bredenbröker D, Brose M, Goehring UM, et al. Efficacy of roflumilast in the COPD frequent exacerbator phenotype. Chest. 2013;143:1302–11.PubMedCrossRef
119.
go back to reference Zheng JP, Kang J, Huang SG, Chen P, Yao WZ, Yang L, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomized placebo-controlled study. Lancet. 2008;371:2013–8.PubMedCrossRef Zheng JP, Kang J, Huang SG, Chen P, Yao WZ, Yang L, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomized placebo-controlled study. Lancet. 2008;371:2013–8.PubMedCrossRef
120.
go back to reference Zheng J-P, Wen F-Q, Bai C-X, Wan H-Y, Kang J, Chen P, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014;2:187–94.PubMedCrossRef Zheng J-P, Wen F-Q, Bai C-X, Wan H-Y, Kang J, Chen P, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014;2:187–94.PubMedCrossRef
121.
go back to reference Anderson D, MacNee W. Targeted treatment in COPD: a multi-system approach for a multi-system disease. Int J Chron Obstruct Pulmon Dis. 2009;4:321–35.PubMedCentralPubMedCrossRef Anderson D, MacNee W. Targeted treatment in COPD: a multi-system approach for a multi-system disease. Int J Chron Obstruct Pulmon Dis. 2009;4:321–35.PubMedCentralPubMedCrossRef
122.
go back to reference Turner RD, Bothamley GH. N-acetylcysteine for COPD : the evidence remains inconclusive. Lancet Respir Med. 2014;2:e3–4.PubMedCrossRef Turner RD, Bothamley GH. N-acetylcysteine for COPD : the evidence remains inconclusive. Lancet Respir Med. 2014;2:e3–4.PubMedCrossRef
123.
go back to reference Cazzola M, MacNee W, Martinez FJ, Rabe K, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008;31:416–68.PubMedCrossRef Cazzola M, MacNee W, Martinez FJ, Rabe K, Franciosi LG, Barnes PJ, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008;31:416–68.PubMedCrossRef
124.
go back to reference Cazzola M, Matera MG. N-acetylcysteine in COPD may be beneficial, but for whom ? Lancet Respir Med. 2014;2:166–7.PubMedCrossRef Cazzola M, Matera MG. N-acetylcysteine in COPD may be beneficial, but for whom ? Lancet Respir Med. 2014;2:166–7.PubMedCrossRef
125.
go back to reference Criner GJ, Bourbeau J, Diekemper RL, Ouellette DR, Goodridge D, Hernandez P, et al. Prevention of acute exacerbations of COPD. American College of Chest Physicians and Canadian Thoracic Society Guideline. Chest. 2015;147:894–942.PubMedCrossRef Criner GJ, Bourbeau J, Diekemper RL, Ouellette DR, Goodridge D, Hernandez P, et al. Prevention of acute exacerbations of COPD. American College of Chest Physicians and Canadian Thoracic Society Guideline. Chest. 2015;147:894–942.PubMedCrossRef
126.
go back to reference Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The Nature of Small Airway Obstruction in Chronic Obstructive Pulmonary Disease. N Engl J Med. 2004;350:2645–53.PubMedCrossRef Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The Nature of Small Airway Obstruction in Chronic Obstructive Pulmonary Disease. N Engl J Med. 2004;350:2645–53.PubMedCrossRef
127.
go back to reference Sinojia R, Shaikh M, Kodgule R, Bhosale S, Madas S, Vaidya A, et al. Priming of beta-2 agonist and antimuscarinic induced physiological responses induced by 1200 mg/day NAC in moderate to severe COPD patients: a pilot study. Respir Physiol Neurobiol. 2014;191:52–9.PubMedCrossRef Sinojia R, Shaikh M, Kodgule R, Bhosale S, Madas S, Vaidya A, et al. Priming of beta-2 agonist and antimuscarinic induced physiological responses induced by 1200 mg/day NAC in moderate to severe COPD patients: a pilot study. Respir Physiol Neurobiol. 2014;191:52–9.PubMedCrossRef
Metadata
Title
N-acetylcysteine in COPD: why, how, and when?
Author
Claudio M. Sanguinetti
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Multidisciplinary Respiratory Medicine / Issue 1/2015
Electronic ISSN: 2049-6958
DOI
https://doi.org/10.1186/s40248-016-0039-2

Other articles of this Issue 1/2015

Multidisciplinary Respiratory Medicine 1/2015 Go to the issue