Skip to main content
Top
Published in: Clinical and Translational Medicine 1/2017

Open Access 01-12-2017 | Short report

Deletion of Cdc42 in embryonic cardiomyocytes results in right ventricle hypoplasia

Authors: Yang Liu, Jian Wang, Jieli Li, Rui Wang, Binu Tharakan, Shenyuan L. Zhang, Carl W. Tong, Xu Peng

Published in: Clinical and Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

Cdc42 is a member of the Rho GTPase family and functions as a molecular switch in regulating cytoskeleton remodeling and cell polarity establishment. Inactivating Cdc42 in cardiomyocytes resulted in embryonic lethality with heart developmental defects, including ventricular septum defects and thin ventricle wall syndrome.

Findings

In this study, we have generated a Cdc42 cardiomyocyte knockout mouse line by crossing Cdc42/flox mice with myosin light chain 2a (MLC2a)-Cre mice. We found that the deletion of Cdc42 in embryonic cardiomyocytes resulted in an underdeveloped right ventricle. Microarray analysis and real-time PCR data analysis displayed that the deletion of Cdc42 decreased dHand expression level. In addition, we found evaginations in the ventricle walls of Cdc42 knockout hearts.

Conclusion

We concluded that Cdc42 plays an essential role in right ventricle growth.
Literature
1.
go back to reference Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900CrossRefPubMed Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39(12):1890–1900CrossRefPubMed
2.
go back to reference Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153(6):807–813CrossRefPubMedPubMedCentral Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J Pediatr 153(6):807–813CrossRefPubMedPubMedCentral
3.
go back to reference Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603CrossRefPubMedPubMedCentral Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603CrossRefPubMedPubMedCentral
4.
go back to reference Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181):943–948CrossRefPubMed Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181):943–948CrossRefPubMed
5.
go back to reference Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942CrossRefPubMed Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942CrossRefPubMed
6.
go back to reference Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126(6):1037–1148CrossRefPubMed Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126(6):1037–1148CrossRefPubMed
7.
8.
10.
go back to reference Dib C, Araoz PA, Davies NP, Dearani JA, Ammash NM (2012) Hypoplastic right-heart syndrome presenting as multiple miscarriages. Tex Heart Inst J 39(2):249–254PubMedPubMedCentral Dib C, Araoz PA, Davies NP, Dearani JA, Ammash NM (2012) Hypoplastic right-heart syndrome presenting as multiple miscarriages. Tex Heart Inst J 39(2):249–254PubMedPubMedCentral
11.
go back to reference Dimopoulos A, Sicko RJ, Kay DM, Rigler SL, Druschel CM, Caggana M et al (2017) Rare copy number variants in a population-based investigation of hypoplastic right heart syndrome. Birth Defects Res 109(1):8–15CrossRefPubMed Dimopoulos A, Sicko RJ, Kay DM, Rigler SL, Druschel CM, Caggana M et al (2017) Rare copy number variants in a population-based investigation of hypoplastic right heart syndrome. Birth Defects Res 109(1):8–15CrossRefPubMed
12.
go back to reference Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440CrossRefPubMed Kelly RG, Brown NA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1(3):435–440CrossRefPubMed
13.
go back to reference Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH et al (2001) Conotruncal myocardium arises from a secondary heart field. Development (Cambridge, England) 128(16):3179–3188 Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH et al (2001) Conotruncal myocardium arises from a secondary heart field. Development (Cambridge, England) 128(16):3179–3188
14.
go back to reference Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238(1):97–109CrossRefPubMed Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA et al (2001) The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 238(1):97–109CrossRefPubMed
15.
go back to reference Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889CrossRefPubMedPubMedCentral Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5(6):877–889CrossRefPubMedPubMedCentral
16.
go back to reference Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407(6801):221–226CrossRefPubMed Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407(6801):221–226CrossRefPubMed
17.
go back to reference Lin Q, Srivastava D, Olson EN (1997) A transcriptional pathway for cardiac development. Cold Spring Harb Symp Quant Biol 62:405–411CrossRefPubMed Lin Q, Srivastava D, Olson EN (1997) A transcriptional pathway for cardiac development. Cold Spring Harb Symp Quant Biol 62:405–411CrossRefPubMed
18.
go back to reference Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16(2):154–160CrossRefPubMed Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16(2):154–160CrossRefPubMed
19.
21.
go back to reference Vogler G, Liu J, Iafe TW, Migh E, Mihaly J, Bodmer R (2014) Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. J Cell Biol 206(7):909–922CrossRefPubMedPubMedCentral Vogler G, Liu J, Iafe TW, Migh E, Mihaly J, Bodmer R (2014) Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. J Cell Biol 206(7):909–922CrossRefPubMedPubMedCentral
22.
go back to reference Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S et al (2017) Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 421(2):271–283CrossRefPubMed Li J, Liu Y, Jin Y, Wang R, Wang J, Lu S et al (2017) Essential role of Cdc42 in cardiomyocyte proliferation and cell-cell adhesion during heart development. Dev Biol 421(2):271–283CrossRefPubMed
23.
go back to reference Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segre AV et al (2012) Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA 109(35):14035–14040CrossRefPubMedPubMedCentral Lage K, Greenway SC, Rosenfeld JA, Wakimoto H, Gorham JM, Segre AV et al (2012) Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci USA 109(35):14035–14040CrossRefPubMedPubMedCentral
24.
go back to reference Peng X, Wu X, Druso JE, Wei H, Park AY, Kraus MS et al (2008) Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci USA 105(18):6638–6643CrossRefPubMedPubMedCentral Peng X, Wu X, Druso JE, Wei H, Park AY, Kraus MS et al (2008) Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci USA 105(18):6638–6643CrossRefPubMedPubMedCentral
25.
go back to reference McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development (Cambridge, England) 132(1):189–201CrossRef McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development (Cambridge, England) 132(1):189–201CrossRef
26.
go back to reference Togi K, Kawamoto T, Yamauchi R, Yoshida Y, Kita T, Tanaka M (2004) Role of Hand1/eHAND in the dorso-ventral patterning and interventricular septum formation in the embryonic heart. Mol Cell Biol 24(11):4627–4635CrossRefPubMedPubMedCentral Togi K, Kawamoto T, Yamauchi R, Yoshida Y, Kita T, Tanaka M (2004) Role of Hand1/eHAND in the dorso-ventral patterning and interventricular septum formation in the embryonic heart. Mol Cell Biol 24(11):4627–4635CrossRefPubMedPubMedCentral
27.
go back to reference Low BC, Lim YP, Lim J, Wong ES, Guy GR (1999) Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42. J Biol Chem 274(46):33123–33130CrossRefPubMed Low BC, Lim YP, Lim J, Wong ES, Guy GR (1999) Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42. J Biol Chem 274(46):33123–33130CrossRefPubMed
28.
go back to reference Kaibuchi K, Kuroda S, Fukata M, Nakagawa M (1999) Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 11(5):591–596CrossRefPubMed Kaibuchi K, Kuroda S, Fukata M, Nakagawa M (1999) Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 11(5):591–596CrossRefPubMed
Metadata
Title
Deletion of Cdc42 in embryonic cardiomyocytes results in right ventricle hypoplasia
Authors
Yang Liu
Jian Wang
Jieli Li
Rui Wang
Binu Tharakan
Shenyuan L. Zhang
Carl W. Tong
Xu Peng
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical and Translational Medicine / Issue 1/2017
Electronic ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-017-0171-4

Other articles of this Issue 1/2017

Clinical and Translational Medicine 1/2017 Go to the issue