Skip to main content
Top
Published in: European Journal of Medical Research 1/2017

Open Access 01-12-2017 | Research

Left innominate vein stenosis in an asymptomatic population: a retrospective analysis of 212 cases

Authors: Xiangjiang Guo, Yaxue Shi, Hui Xie, Lan Zhang, Guanhua Xue, Leyi Gu, Changning Hao, Shuofei Yang, Kejia Kan

Published in: European Journal of Medical Research | Issue 1/2017

Login to get access

Abstract

Background

Although left innominate vein (LIV) stenosis has been demonstrated to be attributed to compression by adjacent anatomical structures, most of the studies are focusing on hemodialysis patients with clinical symptoms compatible with LIV stenosis. The goal of this study was to retrospectively investigate the incidence of LIV stenosis and its influencing factors in an asymptomatic, non-hemodialysis population, which has rarely been performed.

Methods

From Jan 2013 to Dec 2014, 212 consecutive cases undergoing a chest multi-detector computed tomography (MDCT) angiography were enrolled. LIV stenosis was defined as loss of the area of the LIV (that is, 1 − compression degree) >25%. Multivariate logistic regression analysis was performed to explore the independent risk factors associated with LIV stenosis.

Results

LIV stenosis occurred in 35.4% of cases (75/212), with the median loss of the area of the LIV of 36.2% (interquartile range 30.2–49.8%). There were significant differences in age (62.5 ± 11.7 vs. 58.6 ± 14.3 years; P = 0.041), BMI (23.9 ± 2.9 vs. 23.0 ± 3.3, P = 0.036), the frequency of crossing site of LIV over the origin of the aortic arch (54.7 vs. 24.8%, P < 0.001), and the space between aortic arch and sternum [mean ± SD, 11.6 ± 4.2 mm vs. median, 14.1 (interquartile range 11.9–16.3) mm, P < 0.001] between patients with and without LIV stenosis, but only the latter two were confirmed as independent factors by the multivariate logistic regression analysis [crossing site of LIV over the aortic arch, OR (95% CI) = 2.632 (1.401, 4.944), P = 0.003; space between the aortic arch and sternum, OR (95% CI) = 0.841 (0.770, 0.919), P < 0.001].

Conclusion

The patients with an older age, high BMI, LIV crossing over the origin of the aortic arch, or smaller space between aortic arch and sternum may have high risks for LIV stenosis. They should be paid more attention to exclude LIV stenosis preoperatively using MDCT angiography to prevent venous access dysfunction and symptomatic development by fistula creation when hemodialysis is required.
Literature
1.
go back to reference Fourestie V, Godeau B, Lejonc JL, Schaeffer A. Left innominate vein stenosis as a late complication of central vein catheterization. Chest. 1985;88(4):636–8.CrossRefPubMed Fourestie V, Godeau B, Lejonc JL, Schaeffer A. Left innominate vein stenosis as a late complication of central vein catheterization. Chest. 1985;88(4):636–8.CrossRefPubMed
2.
go back to reference Yevzlin SA. Hemodialysis catheter-associated central venous stenosis. Semin Dial. 2008;21(6):522–7.CrossRefPubMed Yevzlin SA. Hemodialysis catheter-associated central venous stenosis. Semin Dial. 2008;21(6):522–7.CrossRefPubMed
3.
go back to reference Spittell PC, Hayes DL. Venous complications after insertion of a transvenous pacemaker. Mayo Clin Proc. 1992;67(3):258–65.CrossRefPubMed Spittell PC, Hayes DL. Venous complications after insertion of a transvenous pacemaker. Mayo Clin Proc. 1992;67(3):258–65.CrossRefPubMed
4.
go back to reference Rozmus G, Daubert JP, Huang DT, Rosero S, Hall B, Francis C. Venous thrombosis and stenosis after implantation of pacemakers and defibrillators. J Interv Card Electrophysiol. 2005;13(1):9–19.CrossRefPubMed Rozmus G, Daubert JP, Huang DT, Rosero S, Hall B, Francis C. Venous thrombosis and stenosis after implantation of pacemakers and defibrillators. J Interv Card Electrophysiol. 2005;13(1):9–19.CrossRefPubMed
5.
go back to reference Itkin M, Kraus MJ, Trerotola SO. Extrinsic compression of the left innominate vein in hemodialysis patients. J Vasc Interv Radiol. 2004;15(1 Pt 1):51–6.CrossRefPubMed Itkin M, Kraus MJ, Trerotola SO. Extrinsic compression of the left innominate vein in hemodialysis patients. J Vasc Interv Radiol. 2004;15(1 Pt 1):51–6.CrossRefPubMed
6.
go back to reference Tanaka T, Uemura K, Takahashi M, Takehara S, Fukaya T, Tokuyama T, et al. Compression of the left brachiocephalic vein: cause of high signal intensity of the left sigmoid sinus and internal jugular vein on MR images. Radiology. 1993;188(2):355–61.CrossRefPubMed Tanaka T, Uemura K, Takahashi M, Takehara S, Fukaya T, Tokuyama T, et al. Compression of the left brachiocephalic vein: cause of high signal intensity of the left sigmoid sinus and internal jugular vein on MR images. Radiology. 1993;188(2):355–61.CrossRefPubMed
7.
go back to reference Oguzkurt L, Tercan F, Yıldırım S, Torun D. Central venous stenosis in haemodialysis patients without a previous history of catheter placement. Eur J Radiol. 2005;55(2):237–42.CrossRefPubMed Oguzkurt L, Tercan F, Yıldırım S, Torun D. Central venous stenosis in haemodialysis patients without a previous history of catheter placement. Eur J Radiol. 2005;55(2):237–42.CrossRefPubMed
8.
go back to reference Shi Y, Cheng J, Song Y, Zhang J. Anatomical factors associated with left innominate vein stenosis in hemodialysis patients. Hemodial Int. 2014;18(4):793–8.CrossRefPubMed Shi Y, Cheng J, Song Y, Zhang J. Anatomical factors associated with left innominate vein stenosis in hemodialysis patients. Hemodial Int. 2014;18(4):793–8.CrossRefPubMed
9.
go back to reference Kotoda A, Akimoto T, Kato M, Kanazawa H, Nakata M, Sugase T, et al. Central venous stenosis among hemodialysis patients is often not associated with previous central venous catheters. ASAIO J. 2011;57(5):439–43.CrossRefPubMed Kotoda A, Akimoto T, Kato M, Kanazawa H, Nakata M, Sugase T, et al. Central venous stenosis among hemodialysis patients is often not associated with previous central venous catheters. ASAIO J. 2011;57(5):439–43.CrossRefPubMed
10.
go back to reference Cha KS, Kim MH, Kim HJ. Prevalence and clinical predictors of severe tortuosity of right subclavian artery in patients undergoing transradial coronary angiography. Am J Cardiol. 2003;92(10):1220–2.CrossRefPubMed Cha KS, Kim MH, Kim HJ. Prevalence and clinical predictors of severe tortuosity of right subclavian artery in patients undergoing transradial coronary angiography. Am J Cardiol. 2003;92(10):1220–2.CrossRefPubMed
11.
go back to reference Nishizaki Y, Yamagami S, Haga K, Sesoko M, Yamashita H, Miyauchi K, et al. Usefulness of prominently projected aortic arch on chest radiograph to predict severe tortuosity of the right subclavian or brachiocephalic artery in patients aged >44 years undergoing coronary angiography with a right radial artery approach. Am J Cardiol. 2012;110(2):203–7.CrossRefPubMed Nishizaki Y, Yamagami S, Haga K, Sesoko M, Yamashita H, Miyauchi K, et al. Usefulness of prominently projected aortic arch on chest radiograph to predict severe tortuosity of the right subclavian or brachiocephalic artery in patients aged >44 years undergoing coronary angiography with a right radial artery approach. Am J Cardiol. 2012;110(2):203–7.CrossRefPubMed
12.
go back to reference Hill MD, Demchuk AM, Frayne R. Noninvasive imaging is improving but digital subtraction angiography remains the gold standard. Neurology. 2007;68(24):2057–8.CrossRefPubMed Hill MD, Demchuk AM, Frayne R. Noninvasive imaging is improving but digital subtraction angiography remains the gold standard. Neurology. 2007;68(24):2057–8.CrossRefPubMed
13.
go back to reference Brody WR. Digital subtraction angiography. IEEE Trans Nucl Sci. 1982;29(3):1176–80.CrossRef Brody WR. Digital subtraction angiography. IEEE Trans Nucl Sci. 1982;29(3):1176–80.CrossRef
14.
go back to reference Albrecht T, Foert E, Holtkamp R, Kirchin MA, Ribbe C, Wacker FK, et al. 16-MDCT angiography of aortoiliac and lower extremity arteries: comparison with digital subtraction angiography. AJR Am J Roentgenol. 2007;189(3):702–11. doi:10.2214/AJR.07.2333.CrossRefPubMed Albrecht T, Foert E, Holtkamp R, Kirchin MA, Ribbe C, Wacker FK, et al. 16-MDCT angiography of aortoiliac and lower extremity arteries: comparison with digital subtraction angiography. AJR Am J Roentgenol. 2007;189(3):702–11. doi:10.​2214/​AJR.​07.​2333.CrossRefPubMed
17.
go back to reference Safi M, Eslami V, Shabestari AA, Saadat H, Namazi MH, Vakili H, et al. Extrinsic compression of left main coronary artery by the pulmonary trunk secondary to pulmonary hypertension documented using 64-slice multidetector computed tomography coronary angiography. Clin Cardiol. 2009;32(8):426–8. doi:10.1002/clc.20457.CrossRefPubMed Safi M, Eslami V, Shabestari AA, Saadat H, Namazi MH, Vakili H, et al. Extrinsic compression of left main coronary artery by the pulmonary trunk secondary to pulmonary hypertension documented using 64-slice multidetector computed tomography coronary angiography. Clin Cardiol. 2009;32(8):426–8. doi:10.​1002/​clc.​20457.CrossRefPubMed
18.
go back to reference You SY, Yoon DY, Choi CS, Chang SK, Yun EJ, Seo YL, et al. Effects of right- versus left-arm injections of contrast material on computed tomography of the head and neck. J Comput Assist Tomogr. 2007;31(5):677–81.CrossRefPubMed You SY, Yoon DY, Choi CS, Chang SK, Yun EJ, Seo YL, et al. Effects of right- versus left-arm injections of contrast material on computed tomography of the head and neck. J Comput Assist Tomogr. 2007;31(5):677–81.CrossRefPubMed
Metadata
Title
Left innominate vein stenosis in an asymptomatic population: a retrospective analysis of 212 cases
Authors
Xiangjiang Guo
Yaxue Shi
Hui Xie
Lan Zhang
Guanhua Xue
Leyi Gu
Changning Hao
Shuofei Yang
Kejia Kan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2017
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-017-0243-3

Other articles of this Issue 1/2017

European Journal of Medical Research 1/2017 Go to the issue